!18244 Add modelarts export support for yolov4&yolov3_darknet53&yolov3_resnet18

Merge pull request !18244 from zhanghuiyao/fix_yolov3v4_export
This commit is contained in:
i-robot 2021-06-15 15:33:38 +08:00 committed by Gitee
commit 6e6dacf03b
5 changed files with 69 additions and 29 deletions

View File

@ -258,6 +258,7 @@ def modelarts_pre_process():
print("Device: {}, Finish sync unzip data from {} to {}.".format(get_device_id(), zip_file_1, save_dir_1))
config.log_path = os.path.join(config.output_path, config.log_path)
@moxing_wrapper(pre_process=modelarts_pre_process)
def run_test():

View File

@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import os
import numpy as np
import mindspore as ms
@ -20,12 +21,17 @@ from mindspore.train.serialization import export, load_checkpoint, load_param_in
from src.yolo import YOLOV3DarkNet53
from model_utils.config import config
from model_utils.moxing_adapter import moxing_wrapper
context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target)
if config.device_target == "Ascend":
def modelarts_pre_process():
'''modelarts pre process function.'''
config.file_name = os.path.join(config.output_path, config.file_name)
@moxing_wrapper(pre_process=modelarts_pre_process)
def run_export():
context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target)
if config.device_target == "Ascend":
context.set_context(device_id=config.device_id)
if __name__ == "__main__":
network = YOLOV3DarkNet53(is_training=False)
param_dict = load_checkpoint(config.ckpt_file)
@ -37,3 +43,7 @@ if __name__ == "__main__":
input_data = Tensor(np.zeros(shape), ms.float32)
export(network, input_data, file_name=config.file_name, file_format=config.file_format)
if __name__ == "__main__":
run_export()

View File

@ -33,6 +33,13 @@ anno_path: ""
eval_mindrecord_dir: "./Mindrecord_eval"
ckpt_path: ""
# export options
device_id: 0
export_batch_size: 1
ckpt_file: ""
file_name: "yolov3_resnet18"
file_format: "AIR"
---
# Help description for each configuration
@ -54,3 +61,10 @@ anno_path: "Annotation path."
# Eval options
eval_mindrecord_dir: "Mindrecord directory for eval."
ckpt_path: "Checkpoint path."
# export options
device_id: "Device id"
export_batch_size: "export batch size"
ckpt_file: "Checkpoint file path."
file_name: "output file name."
file_format: "file format. choices in ['AIR', 'ONNX', 'MINDIR']"

View File

@ -12,7 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import argparse
import os
import numpy as np
import mindspore as ms
@ -22,33 +22,36 @@ from mindspore.train.serialization import export, load_checkpoint, load_param_in
from src.yolov3 import yolov3_resnet18, YoloWithEval
from src.config import ConfigYOLOV3ResNet18
parser = argparse.ArgumentParser(description='yolov3_resnet18 export')
parser.add_argument("--device_id", type=int, default=0, help="Device id")
parser.add_argument("--batch_size", type=int, default=1, help="batch size")
parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
parser.add_argument("--file_name", type=str, default="yolov3_resnet18", help="output file name.")
parser.add_argument('--file_format', type=str, choices=["AIR", "ONNX", "MINDIR"], default='AIR', help='file format')
parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend",
help="device target")
args = parser.parse_args()
from model_utils.config import config as default_config
from model_utils.moxing_adapter import moxing_wrapper
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
if args.device_target == "Ascend":
context.set_context(device_id=args.device_id)
if __name__ == "__main__":
config = ConfigYOLOV3ResNet18()
net = yolov3_resnet18(config)
eval_net = YoloWithEval(net, config)
def modelarts_pre_process():
'''modelarts pre process function.'''
default_config.file_name = os.path.join(default_config.output_path, default_config.file_name)
param_dict = load_checkpoint(args.ckpt_file)
@moxing_wrapper(pre_process=modelarts_pre_process)
def run_export():
context.set_context(mode=context.GRAPH_MODE, device_target=default_config.device_target)
if default_config.device_target == "Ascend":
context.set_context(device_id=default_config.device_id)
cfg = ConfigYOLOV3ResNet18()
net = yolov3_resnet18(cfg)
eval_net = YoloWithEval(net, cfg)
param_dict = load_checkpoint(default_config.ckpt_file)
load_param_into_net(eval_net, param_dict)
eval_net.set_train(False)
shape = [args.batch_size, 3] + config.img_shape
shape = [default_config.export_batch_size, 3] + cfg.img_shape
input_data = Tensor(np.zeros(shape), ms.float32)
input_shape = Tensor(np.zeros([1, 2]), ms.float32)
inputs = (input_data, input_shape)
export(eval_net, *inputs, file_name=args.file_name, file_format=args.file_format)
export(eval_net, *inputs, file_name=default_config.file_name, file_format=default_config.file_format)
if __name__ == "__main__":
run_export()

View File

@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import os
import numpy as np
import mindspore
@ -21,12 +22,19 @@ from mindspore.train.serialization import export, load_checkpoint, load_param_in
from src.yolo import YOLOV4CspDarkNet53
from model_utils.config import config
from model_utils.moxing_adapter import moxing_wrapper
context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target)
if config.device_target == "Ascend":
def modelarts_pre_process():
'''modelarts pre process function.'''
config.file_name = os.path.join(config.output_path, config.file_name)
@moxing_wrapper(pre_process=modelarts_pre_process)
def run_export():
context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target)
if config.device_target == "Ascend":
context.set_context(device_id=config.device_id)
if __name__ == "__main__":
ts_shape = config.testing_shape
network = YOLOV4CspDarkNet53()
@ -38,3 +46,7 @@ if __name__ == "__main__":
input_data = Tensor(np.zeros([config.batch_size, 3, ts_shape, ts_shape]), mindspore.float32)
export(network, input_data, file_name=config.file_name, file_format=config.file_format)
if __name__ == "__main__":
run_export()