forked from mindspore-Ecosystem/mindspore
fix cache doc
This commit is contained in:
parent
9cbcf4a4e1
commit
6b29a07d9b
|
@ -34,7 +34,7 @@ Wide&Deep model is a classical model in Recommendation and Click Prediction area
|
|||
|
||||
Wide&Deep model jointly trained wide linear models and deep neural network, which combined the benefits of memorization and generalization for recommender systems.
|
||||
|
||||
Currently we support host-device mode with column partition and parameter server mode, and we implement the cache mode that supported multi-dimensional slice for huge embedding table which cooperated with Noah's Ark Lab([ScaleFreeCTR](https://arxiv.org/abs/2104.08542)).
|
||||
Currently we support host-device mode with multi-dimensional partition parallel for embedding table and parameter server mode, and we implement the cache mode for huge embedding table which cooperated with Noah's Ark Lab([ScaleFreeCTR](https://arxiv.org/abs/2104.08542)).
|
||||
|
||||
# [Dataset](#contents)
|
||||
|
||||
|
|
|
@ -36,7 +36,7 @@ Wide&Deep模型是推荐和点击预测领域的经典模型。 [Wide&Deep推
|
|||
|
||||
Wide&Deep模型训练了宽线性模型和深度学习神经网络,结合了推荐系统的记忆和泛化的优点。
|
||||
|
||||
目前我们支持列式分区的主机设备模式和参数服务器模式,且已和诺亚实验室合作实现了超大规模推荐网络多维度切分的缓存方案([ScaleFreeCTR](https://arxiv.org/abs/2104.08542))。
|
||||
目前我们支持embedding多维度切分并行的主机设备模式和参数服务器模式,且已和诺亚实验室合作实现了超大规模推荐网络的缓存方案([ScaleFreeCTR](https://arxiv.org/abs/2104.08542))。
|
||||
|
||||
# 数据集
|
||||
|
||||
|
|
Loading…
Reference in New Issue