forked from mindspore-Ecosystem/mindspore
!23483 pclint warning clean
Merge pull request !23483 from liutongtong9/pclint_ma
This commit is contained in:
commit
6b09551408
|
@ -44,7 +44,7 @@ void BatchNorm::set_format(const Format &format) {
|
|||
}
|
||||
|
||||
void BatchNorm::set_momentum(const float momentun) {
|
||||
CheckAndConvertUtils::CheckInRange<int64_t>(kMomentum, SizeToLong(momentun), kIncludeBoth, {0.0, 1.0}, this->name());
|
||||
CheckAndConvertUtils::CheckInRange<float>(kMomentum, momentun, kIncludeBoth, {0.0, 1.0}, this->name());
|
||||
(void)this->AddAttr(kMomentum, MakeValue(momentun));
|
||||
}
|
||||
|
||||
|
|
|
@ -49,7 +49,7 @@ abstract::ShapePtr InferShape(const PrimitivePtr &primitive, const std::vector<A
|
|||
MS_EXCEPTION(ValueError) << prim_name << " input_x dimension 0 " << out_shape[0]
|
||||
<< " should be divisible by block_shape_prod " << block_shape_prod;
|
||||
}
|
||||
out_shape[0] = int64_t(floor(out_shape[0] / block_shape_prod));
|
||||
out_shape[0] = int64_t(floor(out_shape[0] / static_cast<float>(block_shape_prod)));
|
||||
return std::make_shared<abstract::Shape>(out_shape);
|
||||
}
|
||||
|
||||
|
|
|
@ -40,9 +40,9 @@ int64_t CheckInputsAndGetShape(const AbstractBasePtr &input_arg, const string &p
|
|||
if (max_shape.empty()) {
|
||||
MS_LOG(EXCEPTION) << prim_name << " input shape is dynamic, but max shape is empty.";
|
||||
}
|
||||
return max_shape[0];
|
||||
return static_cast<size_t>(max_shape[0]);
|
||||
}
|
||||
return input_shape[0];
|
||||
return static_cast<size_t>(input_shape[0]);
|
||||
} else if (input_arg->isa<abstract::AbstractTuple>()) {
|
||||
auto x_shape = dyn_cast<abstract::AbstractTuple>(input_arg);
|
||||
auto x_shape_data = x_shape->elements();
|
||||
|
|
|
@ -26,7 +26,7 @@
|
|||
namespace mindspore {
|
||||
namespace ops {
|
||||
namespace {
|
||||
abstract::ShapePtr InferShape(const PrimitivePtr &primitive, const std::vector<AbstractBasePtr> &input_args) {
|
||||
abstract::ShapePtr InferShape(const std::vector<AbstractBasePtr> &input_args) {
|
||||
auto in_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[0]->GetShapeTrack())[kShape];
|
||||
return std::make_shared<abstract::Shape>(in_shape);
|
||||
}
|
||||
|
@ -43,8 +43,7 @@ AbstractBasePtr FloorInfer(const abstract::AnalysisEnginePtr &, const PrimitiveP
|
|||
MS_EXCEPTION_IF_NULL(primitive);
|
||||
const int64_t input_num = 1;
|
||||
CheckAndConvertUtils::CheckInputArgs(input_args, kEqual, input_num, primitive->name());
|
||||
return std::make_shared<abstract::AbstractTensor>(InferType(primitive, input_args),
|
||||
InferShape(primitive, input_args));
|
||||
return std::make_shared<abstract::AbstractTensor>(InferType(primitive, input_args), InferShape(input_args));
|
||||
}
|
||||
REGISTER_PRIMITIVE_C(kNameFloor, Floor);
|
||||
} // namespace ops
|
||||
|
|
|
@ -96,7 +96,7 @@ abstract::ShapePtr InferShape(const PrimitivePtr &primitive, const std::vector<A
|
|||
return std::make_shared<abstract::Shape>(out_shape);
|
||||
}
|
||||
|
||||
TypePtr InferType(const PrimitivePtr &prim, const std::vector<AbstractBasePtr> &input_args) {
|
||||
TypePtr InferType(const std::vector<AbstractBasePtr> &input_args) {
|
||||
for (auto item : input_args) {
|
||||
MS_EXCEPTION_IF_NULL(item);
|
||||
}
|
||||
|
@ -106,8 +106,7 @@ TypePtr InferType(const PrimitivePtr &prim, const std::vector<AbstractBasePtr> &
|
|||
|
||||
AbstractBasePtr AvgPoolFusionInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const std::vector<AbstractBasePtr> &input_args) {
|
||||
return std::make_shared<abstract::AbstractTensor>(InferType(primitive, input_args),
|
||||
InferShape(primitive, input_args));
|
||||
return std::make_shared<abstract::AbstractTensor>(InferType(input_args), InferShape(primitive, input_args));
|
||||
}
|
||||
REGISTER_PRIMITIVE_C(kNameAvgPoolFusion, AvgPoolFusion);
|
||||
} // namespace ops
|
||||
|
|
|
@ -56,8 +56,7 @@ bool IsDynamic(const std::vector<ShapeVector> &shape) {
|
|||
return false;
|
||||
}
|
||||
|
||||
abstract::AbstractBasePtr GetnextInferShape(const PrimitivePtr &primitive,
|
||||
const std::vector<AbstractBasePtr> &input_args) {
|
||||
abstract::AbstractBasePtr GetnextInferShape(const PrimitivePtr &primitive) {
|
||||
MS_EXCEPTION_IF_NULL(primitive);
|
||||
auto types = GetValue<std::vector<TypePtr>>(primitive->GetAttr("types"));
|
||||
ValuePtr shape_attr = primitive->GetAttr("shapes");
|
||||
|
@ -89,7 +88,7 @@ abstract::AbstractBasePtr GetnextInferShape(const PrimitivePtr &primitive,
|
|||
|
||||
AbstractBasePtr GetNextInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const std::vector<AbstractBasePtr> &input_args) {
|
||||
return GetnextInferShape(primitive, input_args);
|
||||
return GetnextInferShape(primitive);
|
||||
}
|
||||
REGISTER_PRIMITIVE_EVAL_IMPL(GetNext, prim::kPrimGetNext, GetNextInfer, nullptr, true);
|
||||
} // namespace ops
|
||||
|
|
|
@ -19,8 +19,7 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace ops {
|
||||
AbstractBasePtr MaxPoolGradInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const std::vector<AbstractBasePtr> &input_args) {
|
||||
AbstractBasePtr MaxPoolGradInfer(const std::vector<AbstractBasePtr> &input_args) {
|
||||
MS_EXCEPTION_IF_NULL(input_args[0]->BuildValue());
|
||||
auto x1_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[0]->BuildShape())[kShape];
|
||||
auto tensor_type = input_args[0]->BuildType()->cast<TensorTypePtr>();
|
||||
|
|
|
@ -35,8 +35,7 @@ class MS_CORE_API MaxPoolGrad : public PoolGrad {
|
|||
MS_DECLARE_PARENT(MaxPoolGrad, PoolGrad);
|
||||
};
|
||||
|
||||
AbstractBasePtr MaxPoolGradInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const std::vector<AbstractBasePtr> &input_args);
|
||||
AbstractBasePtr MaxPoolGradInfer(const std::vector<AbstractBasePtr> &input_args);
|
||||
using PrimMaxPoolGradPtr = std::shared_ptr<MaxPoolGrad>;
|
||||
} // namespace ops
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -111,8 +111,8 @@ abstract::ShapePtr InferShape(const PrimitivePtr &primitive, const std::vector<A
|
|||
out_w = static_cast<int64_t>(ceil((in_w - (kernel_w - 1)) + static_cast<float>(stride_w) - 1) /
|
||||
static_cast<float>(stride_w));
|
||||
} else if (pad_mode == SAME) {
|
||||
out_h = static_cast<int64_t>(ceil(in_h / static_cast<int64_t>(stride_h)));
|
||||
out_w = static_cast<int64_t>(ceil(in_w / static_cast<int64_t>(stride_w)));
|
||||
out_h = static_cast<int64_t>(ceil(in_h / static_cast<float>(stride_h)));
|
||||
out_w = static_cast<int64_t>(ceil(in_w / static_cast<float>(stride_w)));
|
||||
}
|
||||
std::vector<int64_t> out_shape = {batch, channel, out_h, out_w};
|
||||
if (format == NHWC) {
|
||||
|
|
|
@ -29,8 +29,7 @@ int64_t NonMaxSuppression::get_center_point_box() const {
|
|||
}
|
||||
void NonMaxSuppression::Init(const int64_t center_point_box) { this->set_center_point_box(center_point_box); }
|
||||
|
||||
AbstractBasePtr NonMaxSuppressionInfer(const abstract::AnalysisEnginePtr &,
|
||||
const std::vector<AbstractBasePtr> &input_args) {
|
||||
AbstractBasePtr NonMaxSuppressionInfer(const abstract::AnalysisEnginePtr &) {
|
||||
MS_LOG(INFO) << "NonMaxSuppression infer shape in runtime.";
|
||||
return std::make_shared<abstract::AbstractTensor>(kInt32, std::vector<int64_t>{});
|
||||
}
|
||||
|
|
|
@ -40,8 +40,7 @@ class MS_CORE_API NonMaxSuppression : public PrimitiveC {
|
|||
void set_center_point_box(const int64_t center_point_box);
|
||||
int64_t get_center_point_box() const;
|
||||
};
|
||||
AbstractBasePtr NonMaxSuppressionInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const std::vector<AbstractBasePtr> &input_args);
|
||||
AbstractBasePtr NonMaxSuppressionInfer(const abstract::AnalysisEnginePtr &);
|
||||
using PrimNonMaxSuppressionPtr = std::shared_ptr<NonMaxSuppression>;
|
||||
} // namespace ops
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -22,7 +22,7 @@
|
|||
namespace mindspore {
|
||||
namespace ops {
|
||||
namespace {
|
||||
abstract::ShapePtr InferShape(const PrimitivePtr &primitive, const std::vector<AbstractBasePtr> &input_args) {
|
||||
abstract::ShapePtr InferShape(const std::vector<AbstractBasePtr> &input_args) {
|
||||
auto x_shape = CheckAndConvertUtils::ConvertShapePtrToShapeMap(input_args[0]->BuildShape())[kShape];
|
||||
return std::make_shared<abstract::Shape>(x_shape);
|
||||
}
|
||||
|
@ -36,8 +36,7 @@ TypePtr InferType(const PrimitivePtr &prim, const std::vector<AbstractBasePtr> &
|
|||
|
||||
AbstractBasePtr RoundInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const std::vector<AbstractBasePtr> &input_args) {
|
||||
return std::make_shared<abstract::AbstractTensor>(InferType(primitive, input_args),
|
||||
InferShape(primitive, input_args)->shape());
|
||||
return std::make_shared<abstract::AbstractTensor>(InferType(primitive, input_args), InferShape(input_args)->shape());
|
||||
}
|
||||
REGISTER_PRIMITIVE_C(kNameRound, Round);
|
||||
} // namespace ops
|
||||
|
|
|
@ -44,7 +44,7 @@ abstract::ShapePtr InferShape(const PrimitivePtr &primitive, const std::vector<A
|
|||
MS_EXCEPTION(ValueError) << prim_name << " padded[" << i << "]" << padded << "should be divisible by block_shape["
|
||||
<< i << "]" << block_shape[i];
|
||||
}
|
||||
out_shape[i + offset] = int64_t(floor(padded / block_shape[i]));
|
||||
out_shape[i + offset] = int64_t(floor(padded / static_cast<float>(block_shape[i])));
|
||||
block_shape_prod = block_shape_prod * block_shape[i];
|
||||
}
|
||||
out_shape[0] = out_shape[0] * block_shape_prod;
|
||||
|
|
|
@ -40,9 +40,7 @@ abstract::ShapePtr TensorListFromTensorInferShape(const PrimitivePtr &primitive,
|
|||
return std::make_shared<abstract::Shape>(infer_shape);
|
||||
}
|
||||
|
||||
TypePtr TensorListFromTensorInferType(const PrimitivePtr &prim, const std::vector<AbstractBasePtr> &input_args) {
|
||||
return kTensorType;
|
||||
}
|
||||
TypePtr TensorListFromTensorInferType() { return kTensorType; }
|
||||
} // namespace
|
||||
|
||||
void TensorListFromTensor::Init(const int64_t element_dtype, const int64_t shape_type) {
|
||||
|
@ -70,7 +68,7 @@ void TensorListFromTensor::set_shape_type(const int64_t shape_type) {
|
|||
|
||||
AbstractBasePtr TensorListFromTensorInfer(const abstract::AnalysisEnginePtr &, const PrimitivePtr &primitive,
|
||||
const std::vector<AbstractBasePtr> &input_args) {
|
||||
return std::make_shared<abstract::AbstractTensor>(TensorListFromTensorInferType(primitive, input_args),
|
||||
return std::make_shared<abstract::AbstractTensor>(TensorListFromTensorInferType(),
|
||||
TensorListFromTensorInferShape(primitive, input_args)->shape());
|
||||
}
|
||||
REGISTER_PRIMITIVE_C(kNameTensorListFromTensor, TensorListFromTensor);
|
||||
|
|
Loading…
Reference in New Issue