!1532 clean pylint warning in test dir

Merge pull request !1532 from jinyaohui/pylint1
This commit is contained in:
mindspore-ci-bot 2020-05-30 10:13:45 +08:00 committed by Gitee
commit 692f38ded2
48 changed files with 211 additions and 185 deletions

View File

@ -244,8 +244,8 @@ def check_supported(input_x1, input_x2, bias=None, output_y={}, trans_a=False, t
return True return True
# pylint: disable=locally-disabled,too-many-arguments, too-many-locals, too-many-statements,
# pylint: disable=locally-disabled,too-many-arguments, too-many-locals, too-many-statements # pylint: disable=inconsistent-return-statements
# @util.check_input_type(dict, dict, (dict, NoneType), dict, bool, bool, str) # @util.check_input_type(dict, dict, (dict, NoneType), dict, bool, bool, str)
@op_info_register(matmul_cube_dense_left_op_info) @op_info_register(matmul_cube_dense_left_op_info)
def CusMatMulCubeDenseLeft(input_x1, input_x2, bias=None, output_y={}, trans_a=False, trans_b=False, def CusMatMulCubeDenseLeft(input_x1, input_x2, bias=None, output_y={}, trans_a=False, trans_b=False,

View File

@ -40,6 +40,7 @@ matmul_cube_dense_right_op_info = TBERegOp("CusMatMulCubeDenseRight") \
.get_op_info() .get_op_info()
# pylint: disable=inconsistent-return-statements
@op_info_register(matmul_cube_dense_right_op_info) @op_info_register(matmul_cube_dense_right_op_info)
def CusMatMulCubeDenseRight(input_x1, input_x2, input_x3, bias=None, output_y={}, trans_a=False, trans_b=False, def CusMatMulCubeDenseRight(input_x1, input_x2, input_x3, bias=None, output_y={}, trans_a=False, trans_b=False,
kernel_name="matmulcube"): kernel_name="matmulcube"):

View File

@ -31,6 +31,8 @@ from .transformer_model import TransformerModel
GRADIENT_CLIP_TYPE = 1 GRADIENT_CLIP_TYPE = 1
GRADIENT_CLIP_VALUE = 5.0 GRADIENT_CLIP_VALUE = 5.0
# pylint: disable=consider-using-in
class ClipGradients(nn.Cell): class ClipGradients(nn.Cell):
""" """
Clip gradients. Clip gradients.
@ -48,6 +50,7 @@ class ClipGradients(nn.Cell):
self.clip_by_norm = nn.ClipByNorm() self.clip_by_norm = nn.ClipByNorm()
self.cast = P.Cast() self.cast = P.Cast()
self.dtype = P.DType() self.dtype = P.DType()
def construct(self, def construct(self,
grads, grads,
clip_type, clip_type,
@ -217,10 +220,12 @@ class TransformerTrainOneStepCell(nn.Cell):
grad_scale = C.MultitypeFuncGraph("grad_scale") grad_scale = C.MultitypeFuncGraph("grad_scale")
reciprocal = P.Reciprocal() reciprocal = P.Reciprocal()
@grad_scale.register("Tensor", "Tensor") @grad_scale.register("Tensor", "Tensor")
def tensor_grad_scale(scale, grad): def tensor_grad_scale(scale, grad):
return grad * F.cast(reciprocal(scale), F.dtype(grad)) return grad * F.cast(reciprocal(scale), F.dtype(grad))
class TransformerTrainOneStepWithLossScaleCell(nn.Cell): class TransformerTrainOneStepWithLossScaleCell(nn.Cell):
""" """
Encapsulation class of Transformer network training. Encapsulation class of Transformer network training.

View File

@ -34,6 +34,9 @@ GRADIENT_CLIP_VALUE = 1.0
_nn_clip_by_norm = nn.ClipByNorm() _nn_clip_by_norm = nn.ClipByNorm()
clip_grad = C.MultitypeFuncGraph("clip_grad") clip_grad = C.MultitypeFuncGraph("clip_grad")
# pylint: disable=consider-using-in
@clip_grad.register("Number", "Number", "Tensor") @clip_grad.register("Number", "Number", "Tensor")
def _clip_grad(clip_type, clip_value, grad): def _clip_grad(clip_type, clip_value, grad):
""" """
@ -57,6 +60,7 @@ def _clip_grad(clip_type, clip_value, grad):
new_grad = _nn_clip_by_norm(grad, F.cast(F.tuple_to_array((clip_value,)), dt)) new_grad = _nn_clip_by_norm(grad, F.cast(F.tuple_to_array((clip_value,)), dt))
return new_grad return new_grad
class GetMaskedLMOutput(nn.Cell): class GetMaskedLMOutput(nn.Cell):
""" """
Get masked lm output. Get masked lm output.
@ -377,6 +381,7 @@ class BertTrainOneStepWithLossScaleCell(nn.Cell):
self.loss_scale = Parameter(Tensor(scale_update_cell.get_loss_scale(), dtype=mstype.float32), self.loss_scale = Parameter(Tensor(scale_update_cell.get_loss_scale(), dtype=mstype.float32),
name="loss_scale") name="loss_scale")
self.add_flags(has_effect=True) self.add_flags(has_effect=True)
def construct(self, def construct(self,
input_ids, input_ids,
input_mask, input_mask,

View File

@ -15,14 +15,15 @@
"""Test bert submodules.""" """Test bert submodules."""
import numpy as np
import os import os
from mindspore import Tensor import numpy as np
from mindspore import nn, context
from mindspore.model_zoo.Bert_NEZHA import EmbeddingLookup, GetMaskedLMOutput, \ from mindspore.model_zoo.Bert_NEZHA import EmbeddingLookup, GetMaskedLMOutput, \
BertConfig, BertPreTraining, BertNetworkWithLoss BertConfig, BertPreTraining, BertNetworkWithLoss
from mindspore.model_zoo.Bert_NEZHA.bert_model import BertModel from mindspore.model_zoo.Bert_NEZHA.bert_model import BertModel
from mindspore import Tensor
from mindspore import nn, context
from ..mindspore_test import mindspore_test from ..mindspore_test import mindspore_test
from ..pipeline.forward.compile_forward import pipeline_for_compile_forward_anf_graph_for_case_by_case_config, \ from ..pipeline.forward.compile_forward import pipeline_for_compile_forward_anf_graph_for_case_by_case_config, \
pipeline_for_compile_forward_ge_graph_for_case_by_case_config pipeline_for_compile_forward_ge_graph_for_case_by_case_config

View File

@ -15,9 +15,10 @@
"""Component that Check if the function raises the expected Exception.""" """Component that Check if the function raises the expected Exception."""
import pytest
import sys import sys
import pytest
from ...components.icomponent import IExectorComponent from ...components.icomponent import IExectorComponent
from ...utils import keyword from ...utils import keyword

View File

@ -16,9 +16,10 @@
"""Implementation of Numerical gradients checking.""" """Implementation of Numerical gradients checking."""
# pylint: disable=missing-docstring # pylint: disable=missing-docstring
from typing import Callable, List, Any
import mindspore._c_expression as _c_expression import mindspore._c_expression as _c_expression
import numpy as np import numpy as np
from typing import Callable, List, Any
from mindspore import ParameterTuple from mindspore import ParameterTuple
from mindspore import Tensor from mindspore import Tensor

View File

@ -15,9 +15,10 @@
"""Dataset utils.""" """Dataset utils."""
import numpy as np
import random import random
import numpy as np
from mindspore import Tensor from mindspore import Tensor

View File

@ -24,8 +24,7 @@ from mindspore.ops import operations as P
from mindspore.ops._grad.grad_base import bprop_getters from mindspore.ops._grad.grad_base import bprop_getters
from mindspore.ops.primitive import prim_attr_register, PrimitiveWithInfer from mindspore.ops.primitive import prim_attr_register, PrimitiveWithInfer
logging.basicConfig(level=logging.DEBUG, format= logging.basicConfig(level=logging.DEBUG, format='[%(levelname)s] %(asctime)s %(pathname)s:%(lineno)d %(message)s')
'[%(levelname)s] %(asctime)s %(pathname)s:%(lineno)d %(message)s')
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)

View File

@ -14,9 +14,8 @@
# ============================================================================ # ============================================================================
"""Other utils.""" """Other utils."""
import mindspore._c_expression as _c_expression
import numpy as np import numpy as np
import mindspore._c_expression as _c_expression
from mindspore.common.tensor import Tensor from mindspore.common.tensor import Tensor

View File

@ -34,6 +34,9 @@ GRADIENT_CLIP_VALUE = 1.0
_nn_clip_by_norm = nn.ClipByNorm() _nn_clip_by_norm = nn.ClipByNorm()
clip_grad = C.MultitypeFuncGraph("clip_grad") clip_grad = C.MultitypeFuncGraph("clip_grad")
# pylint: disable=consider-using-in
@clip_grad.register("Number", "Number", "Tensor") @clip_grad.register("Number", "Number", "Tensor")
def _clip_grad(clip_type, clip_value, grad): def _clip_grad(clip_type, clip_value, grad):
""" """
@ -57,6 +60,7 @@ def _clip_grad(clip_type, clip_value, grad):
new_grad = _nn_clip_by_norm(grad, F.cast(F.tuple_to_array((clip_value,)), dt)) new_grad = _nn_clip_by_norm(grad, F.cast(F.tuple_to_array((clip_value,)), dt))
return new_grad return new_grad
class GetMaskedLMOutput(nn.Cell): class GetMaskedLMOutput(nn.Cell):
""" """
Get masked lm output. Get masked lm output.
@ -377,6 +381,7 @@ class BertTrainOneStepWithLossScaleCell(nn.Cell):
self.loss_scale = Parameter(Tensor(scale_update_cell.get_loss_scale(), dtype=mstype.float32), self.loss_scale = Parameter(Tensor(scale_update_cell.get_loss_scale(), dtype=mstype.float32),
name="loss_scale") name="loss_scale")
self.add_flags(has_effect=True) self.add_flags(has_effect=True)
def construct(self, def construct(self,
input_ids, input_ids,
input_mask, input_mask,

View File

@ -23,10 +23,12 @@ from mindspore.ops import functional as F, composite as C
import mindspore.context as context import mindspore.context as context
import pytest import pytest
class TensorIntAutoCast(nn.Cell): class TensorIntAutoCast(nn.Cell):
def __init__(self, ): def __init__(self, ):
super(TensorIntAutoCast, self).__init__() super(TensorIntAutoCast, self).__init__()
self.i = 2 self.i = 2
def construct(self, t): def construct(self, t):
z = F.tensor_mul(t, self.i) z = F.tensor_mul(t, self.i)
return z return z
@ -36,6 +38,7 @@ class TensorFPAutoCast(nn.Cell):
def __init__(self, ): def __init__(self, ):
super(TensorFPAutoCast, self).__init__() super(TensorFPAutoCast, self).__init__()
self.f = 1.2 self.f = 1.2
def construct(self, t): def construct(self, t):
z = F.tensor_mul(t, self.f) z = F.tensor_mul(t, self.f)
return z return z
@ -45,13 +48,16 @@ class TensorBoolAutoCast(nn.Cell):
def __init__(self, ): def __init__(self, ):
super(TensorBoolAutoCast, self).__init__() super(TensorBoolAutoCast, self).__init__()
self.f = True self.f = True
def construct(self, t): def construct(self, t):
z = F.tensor_mul(t, self.f) z = F.tensor_mul(t, self.f)
return z return z
class TensorAutoCast(nn.Cell): class TensorAutoCast(nn.Cell):
def __init__(self, ): def __init__(self, ):
super(TensorAutoCast, self).__init__() super(TensorAutoCast, self).__init__()
def construct(self, t1, t2): def construct(self, t1, t2):
z = F.tensor_mul(t1, t2) z = F.tensor_mul(t1, t2)
return z return z
@ -210,7 +216,6 @@ def test_tensor_auto_cast():
with pytest.raises(TypeError): with pytest.raises(TypeError):
net(t_uint64, t_fp64) net(t_uint64, t_fp64)
with pytest.raises(TypeError): with pytest.raises(TypeError):
tfp(t_uint16) tfp(t_uint16)
with pytest.raises(TypeError): with pytest.raises(TypeError):

View File

@ -21,6 +21,7 @@ import mindspore.common.dtype as mstype
from mindspore import Tensor from mindspore import Tensor
from mindspore.ops import operations as P from mindspore.ops import operations as P
from mindspore import context from mindspore import context
context.set_context(mode=context.GRAPH_MODE, save_graphs=True) context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
@ -29,6 +30,7 @@ def test_cast_op_attr():
def __init__(self): def __init__(self):
super(CastNet, self).__init__() super(CastNet, self).__init__()
self.cast = P.Cast() self.cast = P.Cast()
def construct(self, x, t): def construct(self, x, t):
return self.cast(x, t) return self.cast(x, t)
@ -37,6 +39,7 @@ def test_cast_op_attr():
super(CastTypeTest, self).__init__() super(CastTypeTest, self).__init__()
self.net = net self.net = net
self.cast = P.Cast() self.cast = P.Cast()
def construct(self, x, y, z): def construct(self, x, y, z):
cast_op = self.cast cast_op = self.cast
t1 = cast_op(x, mstype.float32) t1 = cast_op(x, mstype.float32)
@ -46,6 +49,7 @@ def test_cast_op_attr():
t4 = cast_net(y, mstype.int32) t4 = cast_net(y, mstype.int32)
t5 = cast_net(z, mstype.float16) t5 = cast_net(z, mstype.float16)
return (t1, t2, t3, t4, t5) return (t1, t2, t3, t4, t5)
net = CastTypeTest(CastNet()) net = CastTypeTest(CastNet())
t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.int32)) t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.int32))
t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32)) t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32))

View File

@ -142,4 +142,6 @@ def test_transpose():
assert (output[1].asnumpy() == expect1).all() assert (output[1].asnumpy() == expect1).all()
assert (output[2].asnumpy() == expect2).all() assert (output[2].asnumpy() == expect2).all()
assert (output[3].asnumpy() == expect3).all() assert (output[3].asnumpy() == expect3).all()
test_transpose() test_transpose()

View File

@ -1043,6 +1043,7 @@ def test_print_tuple_wrapper(tag):
return fns[tag] return fns[tag]
# pylint: disable=unnecessary-semicolon
def test_constant_duplicate_mul(tag): def test_constant_duplicate_mul(tag):
fns = FnDict() fns = FnDict()
Mul = Primitive('Mul'); Mul = Primitive('Mul');

View File

@ -152,7 +152,7 @@ def test_dict_set_item():
x = Tensor(np.ones([2, 2, 3], np.float32)) x = Tensor(np.ones([2, 2, 3], np.float32))
net = DictSetNet() net = DictSetNet()
out = net(x) _ = net(x)
# if the dictionary item does not exist, create a new one # if the dictionary item does not exist, create a new one
@ -168,4 +168,4 @@ def test_dict_set_item_create_new():
return my_dict return my_dict
x = Tensor(np.ones([2, 2, 3], np.float32)) x = Tensor(np.ones([2, 2, 3], np.float32))
net = DictSetNet() net = DictSetNet()
out = net(x) _ = net(x)

View File

@ -81,31 +81,3 @@ def test_hypermap_func_const():
net = NetMap() net = NetMap()
assert net() == (8, 12, 16) assert net() == (8, 12, 16)
"""
def test_hypermap_func_variable():
class NetMap(Cell):
def __init__(self):
super(NetMap, self).__init__()
def double(self, x):
return 2 * x
def triple(self, x):
return 3 * x
def square(self, x):
return x * x
def construct(self, x):
_list = [self.double, self.triple, self.square]
return map(lambda f: f(x), _list)
x = Tensor(np.ones([3, 2, 3], np.float32))
net = NetMap()
with pytest.raises(RuntimeError) as ex:
net(x)
assert "HyperMap don't support Closure with free variable yet" in str(ex.value)
"""

View File

@ -99,4 +99,4 @@ def test_assignadd_scalar_cast():
net = AssignAddNet() net = AssignAddNet()
x = Tensor(np.ones([1]).astype(np.int64) * 102) x = Tensor(np.ones([1]).astype(np.int64) * 102)
# _executor.compile(net, 1) # _executor.compile(net, 1)
result = net(x) _ = net(x)

View File

@ -429,9 +429,9 @@ def test_tensor_dtype_np_int64():
def test_tensor_dtype_fp32_to_bool(): def test_tensor_dtype_fp32_to_bool():
with pytest.raises(RuntimeError): with pytest.raises(RuntimeError):
input = np.random.randn(2, 3, 4, 5).astype(np.float32) input_ = np.random.randn(2, 3, 4, 5).astype(np.float32)
input = ms.Tensor(input) input_ = ms.Tensor(input_)
input_me = ms.Tensor(input, dtype=ms.bool_) _ = ms.Tensor(input_, dtype=ms.bool_)
def test_tensor_operation(): def test_tensor_operation():

View File

@ -41,10 +41,10 @@ class Func(nn.Cell):
def construct(self, x, y): def construct(self, x, y):
init = self.alloc_status() init = self.alloc_status()
sum = add(x, y) sum_ = add(x, y)
product = mul1(x, y) product = mul1(x, y)
flag = self.get_status(init) flag = self.get_status(init)
out = add2(sum, product) out = add2(sum_, product)
clear = self.clear_status(flag) clear = self.clear_status(flag)
out = F.depend(out, clear) out = F.depend(out, clear)
return out return out
@ -88,7 +88,7 @@ def test_sens():
sens = Tensor(np.ones([3, 3]).astype(np.float32)) sens = Tensor(np.ones([3, 3]).astype(np.float32))
net = Net() net = Net()
net.add_flags(has_effect=True) net.add_flags(has_effect=True)
out = net(x, y, sens) _ = net(x, y, sens)
class Net_hyper(nn.Cell): class Net_hyper(nn.Cell):
@ -119,7 +119,7 @@ def test_hyper_add():
sens = Tensor(np.ones([3, 3]).astype(np.float32)) sens = Tensor(np.ones([3, 3]).astype(np.float32))
net = Net_hyper() net = Net_hyper()
net.add_flags(has_effect=True) net.add_flags(has_effect=True)
out = net(x, y, sens) _ = net(x, y, sens)
def test_keep_order_io_effect_exception_return_dtype(): def test_keep_order_io_effect_exception_return_dtype():

View File

@ -148,9 +148,6 @@ def test_cast():
_executor.compile(net, x) _executor.compile(net, x)
"""test grad of PReLU, which cause AddN(generated by grad) fail"""
class IRBlockZ(nn.Cell): class IRBlockZ(nn.Cell):
def __init__(self, inplanes, planes): def __init__(self, inplanes, planes):
super(IRBlockZ, self).__init__() super(IRBlockZ, self).__init__()

View File

@ -46,6 +46,7 @@ class MaxNet(nn.Cell):
kernel_size, kernel_size,
stride=None, stride=None,
padding=0): padding=0):
_ = padding
super(MaxNet, self).__init__() super(MaxNet, self).__init__()
self.maxpool = nn.MaxPool2d(kernel_size, self.maxpool = nn.MaxPool2d(kernel_size,
stride) stride)
@ -73,5 +74,5 @@ class Avg1dNet(nn.Cell):
def test_avg1d(): def test_avg1d():
net = Avg1dNet(6, 1) net = Avg1dNet(6, 1)
input = Tensor(np.random.randint(0, 255, [1, 3, 6]).astype(np.float32)) input_ = Tensor(np.random.randint(0, 255, [1, 3, 6]).astype(np.float32))
_executor.compile(net, input) _executor.compile(net, input_)

View File

@ -52,19 +52,19 @@ def test_compile_psnr_grayscale():
def test_psnr_max_val_negative(): def test_psnr_max_val_negative():
max_val = -1 max_val = -1
with pytest.raises(ValueError): with pytest.raises(ValueError):
net = PSNRNet(max_val) _ = PSNRNet(max_val)
def test_psnr_max_val_bool(): def test_psnr_max_val_bool():
max_val = True max_val = True
with pytest.raises(TypeError): with pytest.raises(TypeError):
net = PSNRNet(max_val) _ = PSNRNet(max_val)
def test_psnr_max_val_zero(): def test_psnr_max_val_zero():
max_val = 0 max_val = 0
with pytest.raises(ValueError): with pytest.raises(ValueError):
net = PSNRNet(max_val) _ = PSNRNet(max_val)
def test_psnr_different_shape(): def test_psnr_different_shape():

View File

@ -51,59 +51,59 @@ def test_compile_grayscale():
def test_ssim_max_val_negative(): def test_ssim_max_val_negative():
max_val = -1 max_val = -1
with pytest.raises(ValueError): with pytest.raises(ValueError):
net = SSIMNet(max_val) _ = SSIMNet(max_val)
def test_ssim_max_val_bool(): def test_ssim_max_val_bool():
max_val = True max_val = True
with pytest.raises(TypeError): with pytest.raises(TypeError):
net = SSIMNet(max_val) _ = SSIMNet(max_val)
def test_ssim_max_val_zero(): def test_ssim_max_val_zero():
max_val = 0 max_val = 0
with pytest.raises(ValueError): with pytest.raises(ValueError):
net = SSIMNet(max_val) _ = SSIMNet(max_val)
def test_ssim_filter_size_float(): def test_ssim_filter_size_float():
with pytest.raises(TypeError): with pytest.raises(TypeError):
net = SSIMNet(filter_size=1.1) _ = SSIMNet(filter_size=1.1)
def test_ssim_filter_size_zero(): def test_ssim_filter_size_zero():
with pytest.raises(ValueError): with pytest.raises(ValueError):
net = SSIMNet(filter_size=0) _ = SSIMNet(filter_size=0)
def test_ssim_filter_sigma_zero(): def test_ssim_filter_sigma_zero():
with pytest.raises(ValueError): with pytest.raises(ValueError):
net = SSIMNet(filter_sigma=0.0) _ = SSIMNet(filter_sigma=0.0)
def test_ssim_filter_sigma_negative(): def test_ssim_filter_sigma_negative():
with pytest.raises(ValueError): with pytest.raises(ValueError):
net = SSIMNet(filter_sigma=-0.1) _ = SSIMNet(filter_sigma=-0.1)
def test_ssim_k1_k2_wrong_value(): def test_ssim_k1_k2_wrong_value():
with pytest.raises(ValueError): with pytest.raises(ValueError):
net = SSIMNet(k1=1.1) _ = SSIMNet(k1=1.1)
with pytest.raises(ValueError): with pytest.raises(ValueError):
net = SSIMNet(k1=1.0) _ = SSIMNet(k1=1.0)
with pytest.raises(ValueError): with pytest.raises(ValueError):
net = SSIMNet(k1=0.0) _ = SSIMNet(k1=0.0)
with pytest.raises(ValueError): with pytest.raises(ValueError):
net = SSIMNet(k1=-1.0) _ = SSIMNet(k1=-1.0)
with pytest.raises(ValueError): with pytest.raises(ValueError):
net = SSIMNet(k2=1.1) _ = SSIMNet(k2=1.1)
with pytest.raises(ValueError): with pytest.raises(ValueError):
net = SSIMNet(k2=1.0) _ = SSIMNet(k2=1.0)
with pytest.raises(ValueError): with pytest.raises(ValueError):
net = SSIMNet(k2=0.0) _ = SSIMNet(k2=0.0)
with pytest.raises(ValueError): with pytest.raises(ValueError):
net = SSIMNet(k2=-1.0) _ = SSIMNet(k2=-1.0)
def test_ssim_different_shape(): def test_ssim_different_shape():

View File

@ -64,13 +64,13 @@ class BatchNormTester(nn.Cell):
def test_batchnorm_train_onnx_export(): def test_batchnorm_train_onnx_export():
"test onnx export interface does not modify trainable flag of a network" "test onnx export interface does not modify trainable flag of a network"
input = Tensor(np.ones([1, 3, 32, 32]).astype(np.float32) * 0.01) input_ = Tensor(np.ones([1, 3, 32, 32]).astype(np.float32) * 0.01)
net = BatchNormTester(3) net = BatchNormTester(3)
net.set_train() net.set_train()
if not net.training: if not net.training:
raise ValueError('netowrk is not in training mode') raise ValueError('netowrk is not in training mode')
onnx_file = 'batch_norm.onnx' onnx_file = 'batch_norm.onnx'
export(net, input, file_name=onnx_file, file_format='ONNX') export(net, input_, file_name=onnx_file, file_format='ONNX')
if not net.training: if not net.training:
raise ValueError('netowrk is not in training mode') raise ValueError('netowrk is not in training mode')
@ -172,6 +172,7 @@ net_cfgs = [
def get_id(cfg): def get_id(cfg):
_ = cfg
return list(map(lambda x: x[0], net_cfgs)) return list(map(lambda x: x[0], net_cfgs))

View File

@ -660,6 +660,7 @@ test_case_math_ops = [
'skip': ['backward']}), 'skip': ['backward']}),
] ]
@mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception) @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
def test_check_exception(): def test_check_exception():
return raise_set return raise_set

View File

@ -21,12 +21,15 @@ import mindspore.context as context
from mindspore import Tensor from mindspore import Tensor
from mindspore.ops import functional as F from mindspore.ops import functional as F
from mindspore.ops import prim_attr_register, PrimitiveWithInfer from mindspore.ops import prim_attr_register, PrimitiveWithInfer
context.set_context(mode=context.GRAPH_MODE, save_graphs=True) context.set_context(mode=context.GRAPH_MODE, save_graphs=True)
class FakeOp(PrimitiveWithInfer): class FakeOp(PrimitiveWithInfer):
@prim_attr_register @prim_attr_register
def __init__(self): def __init__(self):
"""""" """"""
def infer_shape(self, x, y): def infer_shape(self, x, y):
self.second_shape = y self.second_shape = y
self.add_prim_attr("second_shape", y) self.add_prim_attr("second_shape", y)
@ -35,6 +38,7 @@ class FakeOp(PrimitiveWithInfer):
def infer_dtype(self, x, y): def infer_dtype(self, x, y):
return x return x
# test the normal case that should generate independent primitive because of different # test the normal case that should generate independent primitive because of different
# generated attributes after inference # generated attributes after inference
def test_conv2d_same_primitive(): def test_conv2d_same_primitive():
@ -43,15 +47,18 @@ def test_conv2d_same_primitive():
super(Conv2DSameNet, self).__init__() super(Conv2DSameNet, self).__init__()
self.conv1 = nn.Conv2d(16, 64, (1, 41), (1, 4), "same", 0, 1, has_bias=True) self.conv1 = nn.Conv2d(16, 64, (1, 41), (1, 4), "same", 0, 1, has_bias=True)
self.conv2 = nn.Conv2d(16, 64, (1, 41), (1, 4), "same", 0, 1, has_bias=True) self.conv2 = nn.Conv2d(16, 64, (1, 41), (1, 4), "same", 0, 1, has_bias=True)
def construct(self, x, y): def construct(self, x, y):
r1 = self.conv1(x) r1 = self.conv1(x)
r2 = self.conv2(y) r2 = self.conv2(y)
return (r1, r2) return (r1, r2)
t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32)) t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32))
t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32)) t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32))
net = Conv2DSameNet() net = Conv2DSameNet()
net(t1, t2) net(t1, t2)
# test cell as high order argument # test cell as high order argument
# The graph with free variables used as argument is not supported yet # The graph with free variables used as argument is not supported yet
# because of the limit of inference specialize system # because of the limit of inference specialize system
@ -59,18 +66,22 @@ def Xtest_conv2d_op_with_arg():
class Conv2dNet(nn.Cell): class Conv2dNet(nn.Cell):
def __init__(self): def __init__(self):
super(Conv2dNet, self).__init__() super(Conv2dNet, self).__init__()
def construct(self, op, x): def construct(self, op, x):
return op(x) return op(x)
class OpsNet(nn.Cell): class OpsNet(nn.Cell):
def __init__(self, net): def __init__(self, net):
super(OpsNet, self).__init__() super(OpsNet, self).__init__()
self.opnet = net self.opnet = net
self.conv2 = nn.Conv2d(16, 64, (1, 41), (1, 4), "same", 0, 1, has_bias=True) self.conv2 = nn.Conv2d(16, 64, (1, 41), (1, 4), "same", 0, 1, has_bias=True)
def construct(self, x, y): def construct(self, x, y):
conv_op = self.conv2 conv_op = self.conv2
a = self.opnet(conv_op, x) a = self.opnet(conv_op, x)
b = self.opnet(conv_op, y) b = self.opnet(conv_op, y)
return (a, b) return (a, b)
t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32)) t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32))
t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32)) t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32))
net = OpsNet(Conv2dNet()) net = OpsNet(Conv2dNet())
@ -82,23 +93,29 @@ def test_conv2d_op_with_arg():
def __init__(self): def __init__(self):
super(FackOpNet, self).__init__() super(FackOpNet, self).__init__()
self.op = FakeOp() self.op = FakeOp()
def construct(self, x, y): def construct(self, x, y):
return self.op(x, y) return self.op(x, y)
class OpNet(nn.Cell): class OpNet(nn.Cell):
def __init__(self): def __init__(self):
super(OpNet, self).__init__() super(OpNet, self).__init__()
def construct(self, op, x, y): def construct(self, op, x, y):
return op(x, y) return op(x, y)
class OpsNet(nn.Cell): class OpsNet(nn.Cell):
def __init__(self, net): def __init__(self, net):
super(OpsNet, self).__init__() super(OpsNet, self).__init__()
self.opnet = net self.opnet = net
self.op = FackOpNet() self.op = FackOpNet()
def construct(self, x, y): def construct(self, x, y):
op = self.op op = self.op
a = self.opnet(op, x, y) a = self.opnet(op, x, y)
b = self.opnet(op, y, x) b = self.opnet(op, y, x)
return (a, b) return (a, b)
t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32)) t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32))
t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32)) t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32))
net = OpsNet(OpNet()) net = OpsNet(OpNet())
@ -110,63 +127,77 @@ def test_conv2d_op_with_arg_same_input():
def __init__(self): def __init__(self):
super(FackOpNet, self).__init__() super(FackOpNet, self).__init__()
self.op = FakeOp() self.op = FakeOp()
def construct(self, x, y): def construct(self, x, y):
return self.op(x, y) return self.op(x, y)
class OpNet(nn.Cell): class OpNet(nn.Cell):
def __init__(self): def __init__(self):
super(OpNet, self).__init__() super(OpNet, self).__init__()
def construct(self, op, x, y): def construct(self, op, x, y):
return op(x, y) return op(x, y)
class OpsNet(nn.Cell): class OpsNet(nn.Cell):
def __init__(self, net): def __init__(self, net):
super(OpsNet, self).__init__() super(OpsNet, self).__init__()
self.opnet = net self.opnet = net
self.op = FackOpNet() self.op = FackOpNet()
def construct(self, x, y): def construct(self, x, y):
op = self.op op = self.op
a = self.opnet(op, x, x) a = self.opnet(op, x, x)
b = self.opnet(op, y, x) b = self.opnet(op, y, x)
return (a, b) return (a, b)
t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32)) t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32))
t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32)) t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32))
net = OpsNet(OpNet()) net = OpsNet(OpNet())
net(t1, t2) net(t1, t2)
# test op with partial # test op with partial
def test_op_as_partial(): def test_op_as_partial():
class OpAsPartial(nn.Cell): class OpAsPartial(nn.Cell):
def __init__(self): def __init__(self):
super(OpAsPartial, self).__init__() super(OpAsPartial, self).__init__()
self.op = FakeOp() self.op = FakeOp()
def construct(self, x, y, z): def construct(self, x, y, z):
partial_op = F.partial(self.op, x) partial_op = F.partial(self.op, x)
a = partial_op(y) a = partial_op(y)
b = partial_op(z) b = partial_op(z)
return a, b return a, b
t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32)) t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32))
t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32)) t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32))
t3 = Tensor(np.ones([1, 16, 1, 1234]).astype(np.float32)) t3 = Tensor(np.ones([1, 16, 1, 1234]).astype(np.float32))
net = OpAsPartial() net = OpAsPartial()
net(t1, t2, t3) net(t1, t2, t3)
# test op with partial # test op with partial
def test_op_as_partial_inside(): def test_op_as_partial_inside():
class OpAsPartial(nn.Cell): class OpAsPartial(nn.Cell):
def __init__(self): def __init__(self):
super(OpAsPartial, self).__init__() super(OpAsPartial, self).__init__()
self.op = FakeOp() self.op = FakeOp()
def construct(self, x, y, z): def construct(self, x, y, z):
partial_op = F.partial(self.op, x) partial_op = F.partial(self.op, x)
a = partial_op(y) a = partial_op(y)
b = partial_op(z) b = partial_op(z)
return a, b return a, b
class OuterNet(nn.Cell): class OuterNet(nn.Cell):
def __init__(self): def __init__(self):
super(OuterNet, self).__init__() super(OuterNet, self).__init__()
self.net = OpAsPartial() self.net = OpAsPartial()
def construct(self, x, y, z): def construct(self, x, y, z):
a, b = self.net(x, y, z) a, b = self.net(x, y, z)
return a, b return a, b
t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32)) t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32))
t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32)) t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32))
t3 = Tensor(np.ones([1, 16, 1, 1234]).astype(np.float32)) t3 = Tensor(np.ones([1, 16, 1, 1234]).astype(np.float32))
@ -180,12 +211,14 @@ def test_op_as_partial_independent():
def __init__(self): def __init__(self):
super(OpAsPartial, self).__init__() super(OpAsPartial, self).__init__()
self.op = FakeOp() self.op = FakeOp()
def construct(self, x, y, z): def construct(self, x, y, z):
partial_op1 = F.partial(self.op, x) partial_op1 = F.partial(self.op, x)
a = partial_op1(y) a = partial_op1(y)
partial_op2 = F.partial(self.op, x) partial_op2 = F.partial(self.op, x)
b = partial_op2(z) b = partial_op2(z)
return a, b return a, b
t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32)) t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32))
t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32)) t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32))
t3 = Tensor(np.ones([1, 16, 1, 1234]).astype(np.float32)) t3 = Tensor(np.ones([1, 16, 1, 1234]).astype(np.float32))
@ -198,6 +231,7 @@ def test_nest_partial():
def __init__(self): def __init__(self):
super(NestPartial, self).__init__() super(NestPartial, self).__init__()
self.op = FakeOp() self.op = FakeOp()
def construct(self, x, y, z): def construct(self, x, y, z):
partial_op1 = F.partial(self.op) partial_op1 = F.partial(self.op)
partial_op2 = F.partial(partial_op1, x) partial_op2 = F.partial(partial_op1, x)
@ -206,54 +240,65 @@ def test_nest_partial():
partial_op4 = F.partial(partial_op3, x) partial_op4 = F.partial(partial_op3, x)
b = partial_op4(z) b = partial_op4(z)
return a, b return a, b
t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32)) t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32))
t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32)) t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32))
t3 = Tensor(np.ones([1, 16, 1, 1234]).astype(np.float32)) t3 = Tensor(np.ones([1, 16, 1, 1234]).astype(np.float32))
net = NestPartial() net = NestPartial()
net(t1, t2, t3) net(t1, t2, t3)
# high order argument # high order argument
# op and op args as network arguments # op and op args as network arguments
def test_op_with_arg_as_input(): def test_op_with_arg_as_input():
class WithOpArgNet(nn.Cell): class WithOpArgNet(nn.Cell):
def __init__(self): def __init__(self):
super(WithOpArgNet, self).__init__() super(WithOpArgNet, self).__init__()
def construct(self, op, x, y): def construct(self, op, x, y):
return op(x, y) return op(x, y)
class OpsNet(nn.Cell): class OpsNet(nn.Cell):
def __init__(self, net): def __init__(self, net):
super(OpsNet, self).__init__() super(OpsNet, self).__init__()
self.opnet = net self.opnet = net
self.op = FakeOp() self.op = FakeOp()
def construct(self, x, y, z): def construct(self, x, y, z):
op = self.op op = self.op
a = self.opnet(op, x, z) a = self.opnet(op, x, z)
b = self.opnet(op, x, y) b = self.opnet(op, x, y)
return (a, b) return (a, b)
t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32)) t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32))
t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32)) t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32))
t3 = Tensor(np.ones([1, 16, 1, 1234]).astype(np.float32)) t3 = Tensor(np.ones([1, 16, 1, 1234]).astype(np.float32))
net = OpsNet(WithOpArgNet()) net = OpsNet(WithOpArgNet())
net(t1, t2, t3) net(t1, t2, t3)
# The partial application used as argument is not supported yet # The partial application used as argument is not supported yet
# because of the limit of inference specialize system # because of the limit of inference specialize system
def Xtest_partial_as_arg(): def Xtest_partial_as_arg():
class PartialArgNet(nn.Cell): class PartialArgNet(nn.Cell):
def __init__(self): def __init__(self):
super(PartialArgNet, self).__init__() super(PartialArgNet, self).__init__()
def construct(self, partial_op, y): def construct(self, partial_op, y):
return partial_op(y) return partial_op(y)
class OpsNet(nn.Cell): class OpsNet(nn.Cell):
def __init__(self, net): def __init__(self, net):
super(OpsNet, self).__init__() super(OpsNet, self).__init__()
self.partial_net = net self.partial_net = net
self.op = FakeOp() self.op = FakeOp()
def construct(self, x, y, z): def construct(self, x, y, z):
partial_op = F.partial(self.op, x) partial_op = F.partial(self.op, x)
a = self.partial_net(partial_op, z) a = self.partial_net(partial_op, z)
b = self.partial_net(partial_op, y) b = self.partial_net(partial_op, y)
return (a, b) return (a, b)
t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32)) t1 = Tensor(np.ones([1, 16, 1, 1918]).astype(np.float32))
t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32)) t2 = Tensor(np.ones([1, 16, 1, 3840]).astype(np.float32))
t3 = Tensor(np.ones([1, 16, 1, 1234]).astype(np.float32)) t3 = Tensor(np.ones([1, 16, 1, 1234]).astype(np.float32))

View File

@ -32,6 +32,7 @@ from ....mindspore_test_framework.pipeline.forward.verify_exception \
logging.basicConfig(level=logging.WARNING) logging.basicConfig(level=logging.WARNING)
# pylint: disable=abstract-method
class NetMissConstruct(nn.Cell): class NetMissConstruct(nn.Cell):
""" NetMissConstruct definition """ """ NetMissConstruct definition """
@ -46,7 +47,6 @@ class NetMissConstruct(nn.Cell):
self.max_pool2d = nn.MaxPool2d(kernel_size=2) self.max_pool2d = nn.MaxPool2d(kernel_size=2)
self.flatten = P.Flatten() self.flatten = P.Flatten()
# pylint: disable=abstract-method
# TestCase: Mis-spelled 'construct' to 'construtc' # TestCase: Mis-spelled 'construct' to 'construtc'
def construtc(self, x): def construtc(self, x):
x = self.max_pool2d(self.relu(self.conv1(x))) x = self.max_pool2d(self.relu(self.conv1(x)))

View File

@ -44,7 +44,7 @@ class MockNeg(PrimitiveWithInfer):
def infer_dtype(self, input_x): def infer_dtype(self, input_x):
raise TypeError("InferError") raise TypeError("InferError")
return input_x # return input_x
class MockSub(PrimitiveWithInfer): class MockSub(PrimitiveWithInfer):
@ -79,8 +79,8 @@ class Net(nn.Cell):
self.matmul = P.MatMul() self.matmul = P.MatMul()
self.add = P.TensorAdd() self.add = P.TensorAdd()
def construct(self, input): def construct(self, input_):
output = self.add(self.matmul(input, self.weight), self.bias) output = self.add(self.matmul(input_, self.weight), self.bias)
return output return output
@ -93,9 +93,9 @@ class NetFP16(nn.Cell):
self.add = P.TensorAdd() self.add = P.TensorAdd()
self.cast = P.Cast() self.cast = P.Cast()
def construct(self, input): def construct(self, input_):
output = self.cast( output = self.cast(
self.add(self.matmul(self.cast(input, mstype.float16), self.cast(self.weight, mstype.float16)), self.add(self.matmul(self.cast(input_, mstype.float16), self.cast(self.weight, mstype.float16)),
self.cast(self.bias, mstype.float16)), mstype.float32) self.cast(self.bias, mstype.float16)), mstype.float32)
return output return output

View File

@ -42,10 +42,10 @@ class MindDataSet(MindData):
if self._size < self._iter_num: if self._size < self._iter_num:
raise StopIteration raise StopIteration
self._iter_num += 1 self._iter_num += 1
next = [] lst = []
for shape, type in zip(self._output_shapes, self._np_types): for shape_, type_ in zip(self._output_shapes, self._np_types):
next.append(Tensor(np.ones(shape).astype(type))) lst.append(Tensor(np.ones(shape_).astype(type_)))
return tuple(next) return tuple(lst)
class Net(nn.Cell): class Net(nn.Cell):
@ -56,8 +56,8 @@ class Net(nn.Cell):
self.matmul = P.MatMul() self.matmul = P.MatMul()
self.add = P.TensorAdd() self.add = P.TensorAdd()
def construct(self, input): def construct(self, input_):
output = self.add(self.matmul(input, self.weight), self.bias) output = self.add(self.matmul(input_, self.weight), self.bias)
return output return output
@ -70,9 +70,9 @@ class NetFP16(nn.Cell):
self.add = P.TensorAdd() self.add = P.TensorAdd()
self.cast = P.Cast() self.cast = P.Cast()
def construct(self, input): def construct(self, input_):
output = self.cast( output = self.cast(
self.add(self.matmul(self.cast(input, mstype.float16), self.cast(self.weight, mstype.float16)), self.add(self.matmul(self.cast(input_, mstype.float16), self.cast(self.weight, mstype.float16)),
self.cast(self.bias, mstype.float16)), mstype.float32) self.cast(self.bias, mstype.float16)), mstype.float32)
return output return output

View File

@ -97,8 +97,8 @@ def test_all_to_all():
print(strategys) print(strategys)
expect_dict = {'Default/network-_VirtualDatasetCell/_backbone-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits' expect_dict = {'Default/network-_VirtualDatasetCell/_backbone-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits'
'/SoftmaxCrossEntropyWithLogits-op3': [[8, 1], [8, 1]], '/SoftmaxCrossEntropyWithLogits-op3': [[8, 1], [8, 1]],
'Default/network-_VirtualDatasetCell/_backbone-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/OneHot-op4': [ 'Default/network-_VirtualDatasetCell/_backbone-WithLossCell/_loss_fn-SoftmaxCrossEntropyWithLogits/'
[8, 1], [], []], 'OneHot-op4': [[8, 1], [], []],
'Default/network-_VirtualDatasetCell/_backbone-WithLossCell/_backbone-AllToAllNet/Transpose-op1': [ 'Default/network-_VirtualDatasetCell/_backbone-WithLossCell/_backbone-AllToAllNet/Transpose-op1': [
[8, 1]], [8, 1]],
'Default/network-_VirtualDatasetCell/_backbone-WithLossCell/_backbone-AllToAllNet/MatMul-op0': [ 'Default/network-_VirtualDatasetCell/_backbone-WithLossCell/_backbone-AllToAllNet/MatMul-op0': [

View File

@ -280,4 +280,4 @@ def test_mixed_precision_const_parameter():
x = Tensor(np.ones((1, 3, 28, 28), np.float32)) x = Tensor(np.ones((1, 3, 28, 28), np.float32))
y = Tensor(np.ones((1, 3, 14, 14), np.float32)) y = Tensor(np.ones((1, 3, 14, 14), np.float32))
z = Tensor(np.ones((1, 3, 28, 28), np.float32)) z = Tensor(np.ones((1, 3, 28, 28), np.float32))
out = net(x, y, z) _ = net(x, y, z)

View File

@ -39,7 +39,7 @@ def test_net_vargs_expand():
y = Tensor(np.random.normal(0, 1, [3, 4, 5]).astype(np.float32)) y = Tensor(np.random.normal(0, 1, [3, 4, 5]).astype(np.float32))
sens = Tensor(np.random.normal(0, 1, [3, 4, 5]).astype(np.float32)) sens = Tensor(np.random.normal(0, 1, [3, 4, 5]).astype(np.float32))
net = AddNet() net = AddNet()
out = C.grad_all_with_sens(net, net.trainable_params())(x, y, sens) _ = C.grad_all_with_sens(net, net.trainable_params())(x, y, sens)
class VarNet(Cell): class VarNet(Cell):
@ -111,7 +111,7 @@ def test_all_var_args_grad_with_sens():
sens = Tensor(1.0, dtype=mstype.float32) sens = Tensor(1.0, dtype=mstype.float32)
net = VarNet(SecondNet()) net = VarNet(SecondNet())
grad_net = GradNet(net) grad_net = GradNet(net)
out = grad_net(x, y, sens) _ = grad_net(x, y, sens)
def test_grad_list_var_args(): def test_grad_list_var_args():
@ -128,7 +128,7 @@ def test_grad_list_var_args():
y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
net = VarNet(SecondNet()) net = VarNet(SecondNet())
grad_net = GradNet(net) grad_net = GradNet(net)
out = grad_net(x, y) _ = grad_net(x, y)
def test_grad_all_var_args(): def test_grad_all_var_args():
@ -145,7 +145,7 @@ def test_grad_all_var_args():
y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
net = VarNet(SecondNet()) net = VarNet(SecondNet())
grad_net = GradNet(net) grad_net = GradNet(net)
out = grad_net(x, y) _ = grad_net(x, y)
def test_grad_all_var_args_with_sens(): def test_grad_all_var_args_with_sens():
@ -163,7 +163,7 @@ def test_grad_all_var_args_with_sens():
sens = Tensor(1.0, dtype=mstype.float32) sens = Tensor(1.0, dtype=mstype.float32)
net = VarNet(SecondNet()) net = VarNet(SecondNet())
grad_net = GradNet(net) grad_net = GradNet(net)
out = grad_net(x, y, sens) _ = grad_net(x, y, sens)
def test_grad_var_args_with_sens(): def test_grad_var_args_with_sens():
@ -181,7 +181,7 @@ def test_grad_var_args_with_sens():
sens = Tensor(1.0, dtype=mstype.float32) sens = Tensor(1.0, dtype=mstype.float32)
net = VarNet(SecondNet()) net = VarNet(SecondNet())
grad_net = GradNet(net) grad_net = GradNet(net)
out = grad_net(x, y, sens) _ = grad_net(x, y, sens)
def test_var_args_grad(): def test_var_args_grad():
@ -219,7 +219,7 @@ def test_var_args_grad():
sens = Tensor(1.0, dtype=mstype.float32) sens = Tensor(1.0, dtype=mstype.float32)
net = VarNet(SecondNet()) net = VarNet(SecondNet())
grad_net = GradNet(net) grad_net = GradNet(net)
out = grad_net(x, y, sens) _ = grad_net(x, y, sens)
def test_var_args_positional(): def test_var_args_positional():
@ -253,7 +253,7 @@ def test_var_args_positional():
y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
net = VarNet(SecondNet()) net = VarNet(SecondNet())
grad_net = GradNet(net) grad_net = GradNet(net)
out = grad_net(x, y) _ = grad_net(x, y)
def test_grad_within_if_else(): def test_grad_within_if_else():
@ -271,7 +271,7 @@ def test_grad_within_if_else():
x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) x = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32) y = Tensor(np.ones([3, 4, 5]), dtype=mstype.float32)
sens = Tensor(1.0, dtype=mstype.float32) _ = Tensor(1.0, dtype=mstype.float32)
net = VarNet(SecondNet()) net = VarNet(SecondNet())
grad_net = GradNet(net) grad_net = GradNet(net)
out = grad_net(x, y) out = grad_net(x, y)
@ -316,10 +316,10 @@ def test_grad_for_concat():
net = Concat(axis=self.axis) net = Concat(axis=self.axis)
grad_net = GradNet(net) grad_net = GradNet(net)
grad_net.set_train() grad_net.set_train()
input_grad = grad_net(*inputs, Tensor(self.out_grad_np)) _ = grad_net(*inputs, Tensor(self.out_grad_np))
def grad_cmp(self): def grad_cmp(self):
input_grad_mindspore = self.grad_mindspore_impl() self.grad_mindspore_impl()
fact = ConcatFactory(input_shape=( fact = ConcatFactory(input_shape=(
(2, 184320, 1), (2, 46080, 1), (2, 11520, 1), (2, 2880, 1), (2, 720, 1)), axis=1) (2, 184320, 1), (2, 46080, 1), (2, 11520, 1), (2, 2880, 1), (2, 720, 1)), axis=1)

View File

@ -84,7 +84,7 @@ class for_loop_with_cont_break(Cell):
if i > 5: if i > 5:
x *= 3 x *= 3
break break
x *= 2 # x *= 2
x = x * 2 x = x * 2
pass pass
return x return x

View File

@ -123,6 +123,7 @@ def sub(x, y):
return x - y return x - y
# pylint: disable=using-constant-test
@ms_function @ms_function
def if_always_true(x): def if_always_true(x):
""" if_always_true """ """ if_always_true """
@ -870,6 +871,7 @@ def test_grad_refactor_14():
assert C.grad_all(grad_refactor_14)(2, 3) == (3, 9) assert C.grad_all(grad_refactor_14)(2, 3) == (3, 9)
# pylint: disable=using-constant-test
class IfDeferInline(nn.Cell): class IfDeferInline(nn.Cell):
def __init__(self, mul_size): def __init__(self, mul_size):
super().__init__() super().__init__()

View File

@ -1,12 +1,10 @@
import numpy as np import numpy as np
import mindspore.nn as nn import mindspore.nn as nn
import mindspore.ops.operations as P import mindspore.ops.operations as P
from mindspore import context
from mindspore.ops import composite as C from mindspore.ops import composite as C
from mindspore.common import dtype as mstype
from mindspore import context, Tensor, ParameterTuple from mindspore import context, Tensor, ParameterTuple
from mindspore.common.initializer import TruncatedNormal from mindspore.common.initializer import TruncatedNormal
from mindspore.nn import Dense, WithLossCell, SoftmaxCrossEntropyWithLogits, Momentum from mindspore.nn import WithLossCell, Momentum
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
@ -18,16 +16,19 @@ def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
kernel_size=kernel_size, stride=stride, padding=padding, kernel_size=kernel_size, stride=stride, padding=padding,
weight_init=weight, has_bias=False, pad_mode="valid") weight_init=weight, has_bias=False, pad_mode="valid")
def fc_with_initialize(input_channels, out_channels): def fc_with_initialize(input_channels, out_channels):
"""weight initial for fc layer""" """weight initial for fc layer"""
weight = weight_variable() weight = weight_variable()
bias = weight_variable() bias = weight_variable()
return nn.Dense(input_channels, out_channels, weight, bias) return nn.Dense(input_channels, out_channels, weight, bias)
def weight_variable(): def weight_variable():
"""weight initial""" """weight initial"""
return TruncatedNormal(0.02) return TruncatedNormal(0.02)
def cell_hook_function(cell_id, grad_input, grad_output): def cell_hook_function(cell_id, grad_input, grad_output):
print(cell_id) print(cell_id)
assert (grad_output[0].asnumpy().shape == (32, 6, 14, 14)) assert (grad_output[0].asnumpy().shape == (32, 6, 14, 14))
@ -94,6 +95,7 @@ class GradWrap(nn.Cell):
weights = self.weights weights = self.weights
return C.GradOperation('get_by_list', get_by_list=True)(self.network, weights)(x, label) return C.GradOperation('get_by_list', get_by_list=True)(self.network, weights)(x, label)
def test_hook(): def test_hook():
net = LeNet5() net = LeNet5()
optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.1, 0.9) optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.1, 0.9)
@ -111,8 +113,6 @@ def test_hook():
print(loss_output.asnumpy().shape) print(loss_output.asnumpy().shape)
class MulAdd(nn.Cell): class MulAdd(nn.Cell):
def __init__(self): def __init__(self):
super(MulAdd, self).__init__() super(MulAdd, self).__init__()
@ -127,6 +127,7 @@ class MulAdd(nn.Cell):
assert (dout == 1) assert (dout == 1)
return 3 * dout, 2 * y return 3 * dout, 2 * y
def test_custom_bprop(): def test_custom_bprop():
mul_add = MulAdd() mul_add = MulAdd()
mul_add.bprop_debug = True mul_add.bprop_debug = True

View File

@ -18,10 +18,9 @@ import pytest
import mindspore.common.dtype as mstype import mindspore.common.dtype as mstype
import mindspore.nn as nn import mindspore.nn as nn
from mindspore import Parameter, ParameterTuple, Tensor from mindspore import Parameter, ParameterTuple
from mindspore import Tensor from mindspore import Tensor
from mindspore import context from mindspore import context
from mindspore import context
from mindspore.common.api import ms_function from mindspore.common.api import ms_function
from mindspore.ops import composite as C from mindspore.ops import composite as C
from mindspore.ops import operations as P from mindspore.ops import operations as P

View File

@ -60,6 +60,7 @@ class InvertedResidual(nn.Cell):
class MobileNetV2(nn.Cell): class MobileNetV2(nn.Cell):
def __init__(self, num_class=1000, input_size=224, width_mul=1.): def __init__(self, num_class=1000, input_size=224, width_mul=1.):
super(MobileNetV2, self).__init__() super(MobileNetV2, self).__init__()
_ = input_size
block = InvertedResidual block = InvertedResidual
input_channel = 32 input_channel = 32
last_channel = 1280 last_channel = 1280

View File

@ -68,6 +68,7 @@ class InvertedResidual(nn.Cell):
class MobileNetV2(nn.Cell): class MobileNetV2(nn.Cell):
def __init__(self, num_class=1000, input_size=224, width_mul=1.): def __init__(self, num_class=1000, input_size=224, width_mul=1.):
super(MobileNetV2, self).__init__() super(MobileNetV2, self).__init__()
_ = input_size
block = InvertedResidual block = InvertedResidual
input_channel = 32 input_channel = 32
last_channel = 1280 last_channel = 1280

View File

@ -63,33 +63,3 @@ class LeNet5(nn.Cell):
x = self.fc2(x) x = self.fc2(x)
x = self.fc3(x) x = self.fc3(x)
return x return x
"""
def test_qat_lenet():
net = LeNet5()
net = qat.convert_quant_network(
net, quant_delay=0, bn_fold=False, freeze_bn=10000, weight_bits=8, act_bits=8)
def test_qat_mobile():
net = MobileNetV2()
img = Tensor(np.ones((1, 3, 224, 224)).astype(np.float32))
net = qat.convert_quant_network(
net, quant_delay=0, bn_fold=False, freeze_bn=10000, weight_bits=8, act_bits=8)
net(img)
def test_qat_mobile_train():
net = MobileNetV2(num_class=10)
img = Tensor(np.ones((1, 3, 224, 224)).astype(np.float32))
label = Tensor(np.ones((1, 10)).astype(np.float32))
net = qat.convert_quant_network(
net, quant_delay=0, bn_fold=False, freeze_bn=10000, weight_bits=8, act_bits=8)
loss = nn.SoftmaxCrossEntropyWithLogits(reduction='mean')
optimizer = nn.Momentum(net.trainable_params(),
learning_rate=0.1, momentum=0.9)
net = nn.WithLossCell(net, loss)
net = nn.TrainOneStepCell(net, optimizer)
net(img, label)
"""

View File

@ -13,9 +13,10 @@
# limitations under the License. # limitations under the License.
# ============================================================================ # ============================================================================
"""Summary reader.""" """Summary reader."""
import mindspore.train.summary_pb2 as summary_pb2
import struct import struct
import mindspore.train.summary_pb2 as summary_pb2
_HEADER_SIZE = 8 _HEADER_SIZE = 8
_HEADER_CRC_SIZE = 4 _HEADER_CRC_SIZE = 4
_DATA_CRC_SIZE = 4 _DATA_CRC_SIZE = 4

View File

@ -25,6 +25,7 @@ from ....dataset_mock import MindData
def setup_module(module): def setup_module(module):
_ = module
context.set_context(mode=context.GRAPH_MODE) context.set_context(mode=context.GRAPH_MODE)
@ -56,7 +57,7 @@ def test_amp_o0():
optimizer = nn.Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) optimizer = nn.Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
train_network = amp.build_train_network(net, optimizer, level="O0") train_network = amp.build_train_network(net, optimizer, level="O0")
output = train_network(inputs, label) _ = train_network(inputs, label)
def test_amp_o2(): def test_amp_o2():
@ -66,7 +67,7 @@ def test_amp_o2():
optimizer = nn.Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) optimizer = nn.Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
train_network = amp.build_train_network(net, optimizer, level="O2") train_network = amp.build_train_network(net, optimizer, level="O2")
output = train_network(inputs, label) _ = train_network(inputs, label)
def test_amp_o2_loss(): def test_amp_o2_loss():
@ -76,7 +77,7 @@ def test_amp_o2_loss():
loss = nn.MSELoss() loss = nn.MSELoss()
optimizer = nn.Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) optimizer = nn.Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
train_network = amp.build_train_network(net, optimizer, loss, level="O2") train_network = amp.build_train_network(net, optimizer, loss, level="O2")
output = train_network(inputs, label) _ = train_network(inputs, label)
def test_amp_o0_loss(): def test_amp_o0_loss():
@ -86,7 +87,7 @@ def test_amp_o0_loss():
loss = nn.MSELoss() loss = nn.MSELoss()
optimizer = nn.Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) optimizer = nn.Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
train_network = amp.build_train_network(net, optimizer, loss) train_network = amp.build_train_network(net, optimizer, loss)
output = train_network(inputs, label) _ = train_network(inputs, label)
class MindDataSet(MindData): class MindDataSet(MindData):
@ -100,10 +101,10 @@ class MindDataSet(MindData):
if self._size < self._iter_num: if self._size < self._iter_num:
raise StopIteration raise StopIteration
self._iter_num += 1 self._iter_num += 1
next = [] lst = []
for shape, type in zip(self._output_shapes, self._np_types): for shape_, type_ in zip(self._output_shapes, self._np_types):
next.append(Tensor(np.ones(shape).astype(type))) lst.append(Tensor(np.ones(shape_).astype(type_)))
return tuple(next) return tuple(lst)
def test_compile_model_train_O0(): def test_compile_model_train_O0():

View File

@ -151,7 +151,7 @@ def test_eval():
with pytest.raises(ValueError): with pytest.raises(ValueError):
model2.eval(dataset) model2.eval(dataset)
net3 = LossNet() _ = LossNet()
model3 = Model(net2, eval_network=net2, metrics={"loss"}) model3 = Model(net2, eval_network=net2, metrics={"loss"})
with pytest.raises(ValueError): with pytest.raises(ValueError):
model3.eval(dataset) model3.eval(dataset)

View File

@ -15,6 +15,7 @@
"""test callback function.""" """test callback function."""
import os import os
import stat import stat
import numpy as np import numpy as np
import pytest import pytest
@ -283,14 +284,14 @@ def test_build_callbacks():
callbacks = [ck_obj, loss_cb_1, 'Error', None] callbacks = [ck_obj, loss_cb_1, 'Error', None]
with pytest.raises(TypeError): with pytest.raises(TypeError):
callback_list = _build_callbacks(callbacks) _ = _build_callbacks(callbacks)
def test_RunContext(): def test_RunContext():
"""Test RunContext.""" """Test RunContext."""
context_err = 666 context_err = 666
with pytest.raises(TypeError): with pytest.raises(TypeError):
context = RunContext(context_err) _ = RunContext(context_err)
cb_params = _InternalCallbackParam() cb_params = _InternalCallbackParam()
cb_params.member1 = 1 cb_params.member1 = 1

View File

@ -223,6 +223,7 @@ def vm_impl_avg_pool_grad(self):
return vm_impl return vm_impl
# pylint: disable=function-redefined
@vm_impl_getters.register(G.FusedBatchNormGrad) @vm_impl_getters.register(G.FusedBatchNormGrad)
def vm_impl_fused_batch_norm_grad(self): def vm_impl_fused_batch_norm_grad(self):
"""Generate vm_impl function for FusedBatchNormGrad""" """Generate vm_impl function for FusedBatchNormGrad"""
@ -239,6 +240,7 @@ def vm_impl_fused_batch_norm_grad(self):
return vm_impl return vm_impl
# pylint: disable=function-redefined
@vm_impl_getters.register(G.BatchNormGrad) @vm_impl_getters.register(G.BatchNormGrad)
def vm_impl_fused_batch_norm_grad(self): def vm_impl_fused_batch_norm_grad(self):
"""Generate vm_impl function for BatchNormGrad""" """Generate vm_impl function for BatchNormGrad"""