forked from mindspore-Ecosystem/mindspore
set last node data parallel or repeat calculate in eval/predict
This commit is contained in:
parent
4bbb854d3c
commit
65d8e63580
|
@ -1512,7 +1512,87 @@ Status ValidStageCheck(const std::vector<int32_t> &stages, int32_t strategy_stag
|
|||
}
|
||||
}
|
||||
|
||||
void ExtractInformation(const std::vector<AnfNodePtr> &all_nodes) {
|
||||
// find previous parallel care node.
|
||||
bool FindPreNodes(const AnfNodePtr &node, vector<std::string> *unique_ids) {
|
||||
MS_EXCEPTION_IF_NULL(unique_ids);
|
||||
// if previous node is a parameter, handle it in the outsize.
|
||||
if (node->isa<Parameter>()) {
|
||||
return false;
|
||||
}
|
||||
if (!node->isa<CNode>()) {
|
||||
return false;
|
||||
}
|
||||
CNodePtr cnode = node->cast<CNodePtr>();
|
||||
if (!IsValueNode<Primitive>(cnode->input(0))) {
|
||||
return false;
|
||||
}
|
||||
ValueNodePtr prim_anf_node = cnode->input(0)->cast<ValueNodePtr>();
|
||||
PrimitivePtr prim = prim_anf_node->value()->cast<PrimitivePtr>();
|
||||
if (IsParallelCareNode(cnode) && prim->name() != MAKE_TUPLE && prim->name() != MAKE_LIST) {
|
||||
unique_ids->push_back(cnode->UniqueId());
|
||||
return true;
|
||||
}
|
||||
bool find = false;
|
||||
for (size_t index = 0; index < cnode->inputs().size(); ++index) {
|
||||
if (prim->name() == DEPEND && index != 1) {
|
||||
continue;
|
||||
}
|
||||
if (FindPreNodes(cnode->inputs()[index], unique_ids)) {
|
||||
find = true;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
return find;
|
||||
}
|
||||
|
||||
void FindLastNodesUniqueId(const std::vector<AnfNodePtr> &all_nodes, vector<std::string> *unique_ids) {
|
||||
MS_EXCEPTION_IF_NULL(unique_ids);
|
||||
for (auto &node : all_nodes) {
|
||||
auto cnode = node->cast<CNodePtr>();
|
||||
if ((cnode == nullptr) || !IsValueNode<Primitive>(cnode->input(0))) {
|
||||
continue;
|
||||
}
|
||||
ValueNodePtr prim_anf_node = cnode->input(0)->cast<ValueNodePtr>();
|
||||
PrimitivePtr prim = GetValueNode<PrimitivePtr>(prim_anf_node);
|
||||
if (prim->name() == RETURN) {
|
||||
if (!FindPreNodes(cnode, unique_ids)) {
|
||||
MS_LOG(WARNING) << "cannot find the last parallel care node in eval graph";
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
StrategyPtr GenerateBatchParallelStrategy(const OperatorInfoPtr operator_, const PrimitivePtr prim) {
|
||||
MS_EXCEPTION_IF_NULL(operator_);
|
||||
MS_EXCEPTION_IF_NULL(prim);
|
||||
StrategyPtr strategyPtr;
|
||||
std::shared_ptr<Strategys> strategy_v_ptr = operator_->GenerateBatchStrategies();
|
||||
MS_EXCEPTION_IF_NULL(strategy_v_ptr);
|
||||
strategyPtr = NewStrategy(0, *strategy_v_ptr);
|
||||
std::vector<ValuePtr> elements;
|
||||
for (size_t i = 0; i < strategy_v_ptr->size(); i++) {
|
||||
elements.push_back(MakeValue((*strategy_v_ptr)[i]));
|
||||
}
|
||||
ValueTuplePtr strategy = std::make_shared<ValueTuple>(elements);
|
||||
// display the strategy generated by batch parallel
|
||||
auto attrs = prim->attrs();
|
||||
attrs[GEN_STRATEGY] = strategy;
|
||||
(void)prim->SetAttrs(attrs);
|
||||
MS_LOG(INFO) << "prim " << prim->name() << " batch parallel strategy is " << attrs[GEN_STRATEGY]->ToString();
|
||||
return strategyPtr;
|
||||
}
|
||||
|
||||
void SetLastNodeStrategy(const StrategyPtr strategyPtr) {
|
||||
auto strategys = strategyPtr->GetInputDim();
|
||||
for (size_t i = 0; i < strategys.size(); ++i) {
|
||||
for (size_t j = 0; j < strategys[i].size(); ++j) {
|
||||
strategys[i][j] = 1;
|
||||
}
|
||||
}
|
||||
strategyPtr->ResetInputs(strategys);
|
||||
}
|
||||
|
||||
void ExtractInformation(const std::vector<AnfNodePtr> &all_nodes, bool is_training) {
|
||||
// load strategy map from checkpoint
|
||||
StrategyMap stra_map;
|
||||
if (StrategyCheckpoint::GetInstance().LoadCheckPointOn()) {
|
||||
|
@ -1520,7 +1600,11 @@ void ExtractInformation(const std::vector<AnfNodePtr> &all_nodes) {
|
|||
MS_LOG(EXCEPTION) << "Load strategy checkpoint failed";
|
||||
}
|
||||
}
|
||||
|
||||
vector<std::string> last_forward_node_ids;
|
||||
if (!is_training) {
|
||||
FindLastNodesUniqueId(all_nodes, &last_forward_node_ids);
|
||||
MS_LOG(INFO) << "there are " << last_forward_node_ids.size() << " output nodes in eval/predict";
|
||||
}
|
||||
// Get global rank after the checkpoint?
|
||||
int32_t global_rank = ParallelContext::GetInstance()->global_rank();
|
||||
std::vector<int32_t> stages = ParallelContext::GetInstance()->stage();
|
||||
|
@ -1572,30 +1656,22 @@ void ExtractInformation(const std::vector<AnfNodePtr> &all_nodes) {
|
|||
}
|
||||
bool load_strategy_from_ckpt =
|
||||
StrategyCheckpoint::GetInstance().LoadCheckPointOn() && stra_map.find(strategy_key_name) != stra_map.end();
|
||||
if (!StrategyFound(attrs) && !load_strategy_from_ckpt) {
|
||||
bool is_last_nodes = std::find(last_forward_node_ids.begin(), last_forward_node_ids.end(), cnode->UniqueId()) !=
|
||||
last_forward_node_ids.end();
|
||||
bool full_batch = ParallelContext::GetInstance()->full_batch();
|
||||
if ((is_last_nodes && !full_batch) || (!StrategyFound(attrs) && !load_strategy_from_ckpt)) {
|
||||
MS_LOG(INFO) << "ExtractInformation: the strategy of node " << node->ToString() << " prim " << prim->name()
|
||||
<< " is empty, using batch parallel";
|
||||
std::shared_ptr<Strategys> strategy_v_ptr = operator_->GenerateBatchStrategies();
|
||||
if (strategy_v_ptr == nullptr) {
|
||||
MS_LOG(EXCEPTION) << "Failure:Generate batch parallel strategy failed";
|
||||
}
|
||||
std::vector<ValuePtr> elements;
|
||||
for (size_t i = 0; i < strategy_v_ptr->size(); i++) {
|
||||
elements.push_back(MakeValue((*strategy_v_ptr)[i]));
|
||||
}
|
||||
ValueTuplePtr strategy = std::make_shared<ValueTuple>(elements);
|
||||
// display the strategy generated by batch parallel
|
||||
attrs[GEN_STRATEGY] = strategy;
|
||||
(void)prim->SetAttrs(attrs);
|
||||
MS_LOG(INFO) << "node " << node->ToString() << " prim " << prim->name() << " batch parallel strategy is "
|
||||
<< attrs[GEN_STRATEGY]->ToString();
|
||||
strategyPtr = NewStrategy(0, *strategy_v_ptr);
|
||||
strategyPtr = GenerateBatchParallelStrategy(operator_, prim);
|
||||
} else if (load_strategy_from_ckpt) {
|
||||
strategyPtr = stra_map[strategy_key_name];
|
||||
} else {
|
||||
strategyPtr = ExtractStrategy(attrs);
|
||||
}
|
||||
if (strategyPtr != nullptr) {
|
||||
if (is_last_nodes && full_batch) {
|
||||
SetLastNodeStrategy(strategyPtr);
|
||||
}
|
||||
(*operator_).set_stage_id(strategyPtr->GetInputStage());
|
||||
MS_LOG(INFO) << "Extract stage id for op " << prim->name() << " is " << (*operator_).stage_id();
|
||||
if (ValidStageCheck(stages, (*operator_).stage_id()) == FAILED) {
|
||||
|
@ -2854,7 +2930,7 @@ bool StepParallel(const FuncGraphPtr &root, const opt::OptimizerPtr &optimizer)
|
|||
}
|
||||
|
||||
// extract shape and strategy, set operator_info
|
||||
ExtractInformation(all_nodes);
|
||||
ExtractInformation(all_nodes, root->has_flag(TRAINING));
|
||||
ReshapeInit(all_nodes);
|
||||
}
|
||||
|
||||
|
|
|
@ -118,7 +118,7 @@ void CoverSliceShape(const FuncGraphPtr &root);
|
|||
void SetVirtualDatasetStrategy(const CNodePtr &node);
|
||||
|
||||
// Creat parallel operator for primitive node(has strategy)
|
||||
void ExtractInformation(const std::vector<AnfNodePtr> &all_nodes);
|
||||
void ExtractInformation(const std::vector<AnfNodePtr> &all_nodes, bool is_training = true);
|
||||
|
||||
TensorLayout GetInputLayoutFromCNode(const std::pair<AnfNodePtr, int> &node_pair);
|
||||
|
||||
|
|
|
@ -59,6 +59,7 @@ class Grad(nn.Cell):
|
|||
|
||||
def compile_net(net, x, y):
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
|
|
|
@ -48,6 +48,7 @@ class GradWrap(nn.Cell):
|
|||
|
||||
def compile_net(net, x, y, b):
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, b)
|
||||
|
||||
|
||||
|
@ -649,6 +650,7 @@ def test_assign_sub():
|
|||
|
||||
def compile_sub_net(net, x):
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x)
|
||||
|
||||
context.set_auto_parallel_context(device_num=64, global_rank=15)
|
||||
|
@ -696,6 +698,7 @@ def test_assign_add():
|
|||
|
||||
def compile_sub_net(net, x):
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x)
|
||||
|
||||
context.set_auto_parallel_context(device_num=64, global_rank=15)
|
||||
|
@ -743,6 +746,7 @@ def test_assign():
|
|||
|
||||
def compile_sub_net(net, x):
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x)
|
||||
|
||||
context.set_auto_parallel_context(device_num=64, global_rank=15)
|
||||
|
|
|
@ -73,4 +73,5 @@ def test_auto_parallel_bn_with_prelu():
|
|||
|
||||
net = GradWrap(NetWithLoss(Net()))
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x)
|
||||
|
|
|
@ -43,6 +43,7 @@ def compile_net(net):
|
|||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
train_net.set_auto_parallel()
|
||||
train_net.set_train()
|
||||
_executor.compile(train_net, _x, _b)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
|
|
@ -52,6 +52,7 @@ class GradWrap(nn.Cell):
|
|||
|
||||
def compile_net(net, x, y, b, phase):
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, b, phase=phase)
|
||||
|
||||
|
||||
|
|
|
@ -61,6 +61,7 @@ def test_auto_parallel_assign_sub_with_ref_key():
|
|||
net.set_auto_parallel()
|
||||
reset_op_id()
|
||||
|
||||
net.set_train()
|
||||
_executor.compile(net, x, phase="train")
|
||||
strategies = _executor._get_shard_strategy(net)
|
||||
for (k, v) in strategies.items():
|
||||
|
|
|
@ -81,6 +81,7 @@ def test_double_star_graph():
|
|||
net.set_auto_parallel()
|
||||
reset_op_id()
|
||||
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, z, w, phase='train')
|
||||
strategies = _executor._get_shard_strategy(net)
|
||||
expected_strategies = {'Default/network-Net/Cast-op0': [[8, 1]],
|
||||
|
|
|
@ -72,4 +72,5 @@ def test_common_parameter():
|
|||
net = GradWrap(NetWithLoss(Net()))
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, z)
|
||||
|
|
|
@ -79,6 +79,7 @@ def test_double_source_graph():
|
|||
net = GradWrap(NetWithLoss(Net()))
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, z, w, a)
|
||||
|
||||
|
||||
|
@ -114,4 +115,5 @@ def test_double_source_complex_graph():
|
|||
net = GradWrap(NetWithLoss(Net()))
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, z, w, a)
|
||||
|
|
|
@ -83,4 +83,5 @@ def test_double_star_graph():
|
|||
net = GradWrap(NetWithLoss(Net()))
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, z, w, a, b, c)
|
||||
|
|
|
@ -113,6 +113,7 @@ def test_double_subgraphs():
|
|||
|
||||
x = Tensor(np.ones([8, 8, 8, 8]), dtype=ms.float32)
|
||||
reset_op_id()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, phase='train')
|
||||
strategies = _executor._get_shard_strategy(net)
|
||||
for (k, v) in strategies.items():
|
||||
|
|
|
@ -70,4 +70,5 @@ def test_two_matmul():
|
|||
net = GradWrap(NetWithLoss(Net()))
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, b)
|
||||
|
|
|
@ -49,6 +49,7 @@ class GradWrap(nn.Cell):
|
|||
|
||||
def compile_net(net, x, y, z, w, b):
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, z, w, b)
|
||||
|
||||
# model_parallel test
|
||||
|
|
|
@ -73,4 +73,5 @@ def test_auto_parallel_l2normalize():
|
|||
x = Tensor(np.ones([128, 64, 64]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([128, 64, 64]), dtype=ms.float32)
|
||||
b = Tensor(np.ones([128, 64, 64]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, b, phase='train')
|
||||
|
|
|
@ -70,4 +70,5 @@ def test_two_matmul_dropout():
|
|||
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, b)
|
||||
|
|
|
@ -74,6 +74,7 @@ def test_matmul_prelu():
|
|||
net.set_auto_parallel()
|
||||
reset_op_id()
|
||||
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, b, phase='train')
|
||||
strategies = _executor._get_shard_strategy(net)
|
||||
for (k, v) in strategies.items():
|
||||
|
|
|
@ -58,6 +58,7 @@ def compile_net(net):
|
|||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
train_net.set_auto_parallel()
|
||||
train_net.set_train()
|
||||
_executor.compile(train_net, inputs_, label_)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
|
|
@ -99,6 +99,7 @@ def test_auto_parallel_arithmetic():
|
|||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||
b = Tensor(np.ones([64]), dtype=ms.int32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, b)
|
||||
|
||||
|
||||
|
|
|
@ -68,6 +68,7 @@ def test_common_parameter():
|
|||
net.set_auto_parallel()
|
||||
reset_op_id()
|
||||
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, phase='train')
|
||||
strategies = _executor._get_shard_strategy(net)
|
||||
for (k, v) in strategies.items():
|
||||
|
|
|
@ -77,4 +77,5 @@ def test_four_matmul_linear():
|
|||
net = GradWrap(NetWithLoss(Net(strategy1)))
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, z, w, b)
|
||||
|
|
|
@ -49,6 +49,7 @@ class GradWrap(nn.Cell):
|
|||
|
||||
def compile_net(net, x, y, b):
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, b)
|
||||
|
||||
|
||||
|
|
|
@ -68,6 +68,7 @@ def test_reshape_matmul():
|
|||
net = GradWrap(NetWithLoss(Net()))
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x)
|
||||
|
||||
def test_reshape_reshape():
|
||||
|
@ -90,6 +91,7 @@ def test_reshape_reshape():
|
|||
net = GradWrap(NetWithLoss(Net()))
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x)
|
||||
|
||||
|
||||
|
@ -115,6 +117,7 @@ def test_reshape_auto_1():
|
|||
net = GradWrap(NetWithLoss(Net()))
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x)
|
||||
|
||||
|
||||
|
@ -143,6 +146,7 @@ def test_reshape_auto_2():
|
|||
net = GradWrap(NetWithLoss(Net()))
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x)
|
||||
|
||||
|
||||
|
@ -168,6 +172,7 @@ def test_reshape_auto_3():
|
|||
net = GradWrap(NetWithLoss(Net()))
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x)
|
||||
|
||||
|
||||
|
@ -194,6 +199,7 @@ def test_reshape_auto_4():
|
|||
net = GradWrap(NetWithLoss(Net()))
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x)
|
||||
|
||||
|
||||
|
@ -244,6 +250,7 @@ def test_reshape_auto_5():
|
|||
net = GradWrap5(NetWithLoss5(Net()))
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
def test_reshape_auto_6():
|
||||
|
@ -291,6 +298,7 @@ def test_reshape_auto_6():
|
|||
net = GradWrap6(NetWithLoss6(Net()))
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
def test_reshape_auto_7():
|
||||
|
@ -313,4 +321,5 @@ def test_reshape_auto_7():
|
|||
net = GradWrap(NetWithLoss(Net()))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x)
|
||||
|
|
|
@ -49,6 +49,7 @@ class GradWrap(nn.Cell):
|
|||
|
||||
def compile_net(net, x, y, b):
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, b)
|
||||
|
||||
|
||||
|
|
|
@ -66,4 +66,5 @@ def test_softmax_cross_entropy_loss_auto_parallel():
|
|||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, b)
|
||||
|
|
|
@ -88,6 +88,7 @@ def test_star_strategy_consistency1():
|
|||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
reset_op_id()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, phase='train')
|
||||
|
||||
|
||||
|
@ -102,6 +103,7 @@ def test_star_strategy_consistency2():
|
|||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
reset_op_id()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, phase='train')
|
||||
|
||||
|
||||
|
@ -116,6 +118,7 @@ def test_star_strategy_consistency3():
|
|||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
reset_op_id()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, phase='train')
|
||||
|
||||
|
||||
|
@ -131,4 +134,5 @@ def test_star_strategy_consistency4():
|
|||
net.set_auto_parallel()
|
||||
reset_op_id()
|
||||
with pytest.raises(RuntimeError):
|
||||
net.set_train()
|
||||
_executor.compile(net, x, phase='train')
|
||||
|
|
|
@ -112,4 +112,5 @@ def test_dmnet_train_step():
|
|||
net = GradWrap(NetWithLoss(MultiTransformer()))
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, input_)
|
||||
|
|
|
@ -76,6 +76,7 @@ def test_two_matmul_transpose():
|
|||
net.set_auto_parallel()
|
||||
reset_op_id()
|
||||
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, b, phase='train')
|
||||
strategies = _executor._get_shard_strategy(net)
|
||||
expected_strategies = {'Default/network-Net/Transpose-op3': [[1, 16]],
|
||||
|
|
|
@ -70,4 +70,5 @@ def test_triangle_strategy_consistency():
|
|||
net.set_auto_parallel()
|
||||
reset_op_id()
|
||||
|
||||
net.set_train()
|
||||
_executor.compile(net, x, phase='train')
|
||||
|
|
|
@ -78,4 +78,5 @@ def test_virtual_dataset_3_input():
|
|||
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||
b = Tensor(np.ones([64, 2048]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, b)
|
||||
|
|
|
@ -134,6 +134,7 @@ def test_two_matmul():
|
|||
net.set_auto_parallel()
|
||||
reset_op_id()
|
||||
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, b, phase='train')
|
||||
strategies = _executor._get_shard_strategy(net)
|
||||
expected_strategies = {'Default/network-Net/MatMul-op0': [[16, 1], [1, 1]],
|
||||
|
|
|
@ -71,4 +71,5 @@ def test_four_matmul_linear():
|
|||
net = GradWrap(NetWithLoss(Net(strategy1)))
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
|
|
@ -77,4 +77,5 @@ def test_zig_zag_graph():
|
|||
net = GradWrap(NetWithLoss(Net()))
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, z, w, a)
|
||||
|
|
|
@ -89,4 +89,5 @@ def test_marin_loss():
|
|||
net = GradWrap(NetWithLoss(MarginCE()))
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
|
|
@ -45,6 +45,7 @@ def compile_net(net):
|
|||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
train_net.set_auto_parallel()
|
||||
train_net.set_train()
|
||||
_executor.compile(train_net, _x, _b)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
|
|
@ -108,6 +108,7 @@ def test_batch():
|
|||
x = Tensor(np.ones([128, 16, 34, 34]), dtype=ms.float32)
|
||||
w1 = Tensor(np.ones([128, 8, 32, 32]), dtype=ms.float32)
|
||||
w2 = Tensor(np.ones([128, 64, 24, 24]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, w1, w2)
|
||||
|
||||
|
||||
|
|
|
@ -70,4 +70,5 @@ def test_batch_parallel_dropout():
|
|||
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, b)
|
||||
|
|
|
@ -68,4 +68,5 @@ def test_matmul_add():
|
|||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||
b = Tensor(np.ones([64]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, b)
|
||||
|
|
|
@ -73,4 +73,5 @@ def test_two_matmul_batchnorm_ex():
|
|||
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, b)
|
||||
|
|
|
@ -68,6 +68,7 @@ def compile_net(net):
|
|||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
train_net.set_auto_parallel()
|
||||
train_net.set_train()
|
||||
_executor.compile(train_net, _x1)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
@ -77,6 +78,7 @@ def compile_net2(net):
|
|||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
train_net.set_auto_parallel()
|
||||
train_net.set_train()
|
||||
_executor.compile(train_net, _x1, _x2)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
|
|
@ -49,6 +49,7 @@ class GradWrap(nn.Cell):
|
|||
|
||||
def compile_net(net, x, y, b):
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, b)
|
||||
|
||||
|
||||
|
|
|
@ -84,6 +84,7 @@ def compile_net(net):
|
|||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
train_net.set_auto_parallel()
|
||||
train_net.set_train()
|
||||
_executor.compile(train_net, _x, _b)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
|
|
@ -51,4 +51,5 @@ def test_dmnet_train_step():
|
|||
label = Tensor(np.zeros([32, 768]).astype(np.float32))
|
||||
net = DenseMutMulNet()
|
||||
net = train_step_with_loss_warp(DenseMutMulNet())
|
||||
net.set_train()
|
||||
_executor.compile(net, input_, label)
|
||||
|
|
|
@ -37,6 +37,7 @@ class GradWrap(nn.Cell):
|
|||
|
||||
def compile_net(net, x, y):
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
|
|
|
@ -54,6 +54,7 @@ def compile_net(net):
|
|||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
train_net.set_auto_parallel()
|
||||
train_net.set_train()
|
||||
_executor.compile(train_net, _x, _b)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
|
|
@ -49,6 +49,7 @@ class GradWrap(nn.Cell):
|
|||
|
||||
def compile_net(net, x, y, b):
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, b)
|
||||
|
||||
|
||||
|
|
|
@ -66,6 +66,7 @@ def test_embeddinglookup_reducescatter_false():
|
|||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([8, 32, 8]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
|
@ -77,6 +78,7 @@ def test_embeddinglookup_reducescatter_true():
|
|||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([8, 32, 8]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
|
@ -88,6 +90,7 @@ def test_embeddinglookup_reducescatter_false_grad():
|
|||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([8, 32, 8]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
|
@ -100,6 +103,7 @@ def test_embeddinglookup_reducescatter_true_grad():
|
|||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([8, 32, 8]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
|
@ -114,6 +118,7 @@ def test_embeddinglookup_semi_auto1():
|
|||
net.set_auto_parallel()
|
||||
x = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
|
@ -128,4 +133,5 @@ def test_embeddinglookup_semi_auto2():
|
|||
net.set_auto_parallel()
|
||||
x = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
|
|
@ -0,0 +1,69 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
|
||||
import mindspore as ms
|
||||
from mindspore import context, Tensor, Parameter
|
||||
from mindspore.common.api import _executor
|
||||
from mindspore.nn import Cell
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class Net(Cell):
|
||||
def __init__(self, mul_weight, strategy1=None, strategy2=None):
|
||||
super().__init__()
|
||||
self.mul = P.Mul().shard(strategy1)
|
||||
self.neg = P.Neg().shard(strategy2)
|
||||
self.mul_weight = Parameter(mul_weight, "w1")
|
||||
|
||||
def construct(self, x, b):
|
||||
out = self.mul(x, self.mul_weight)
|
||||
out = self.neg(out)
|
||||
return out
|
||||
|
||||
|
||||
class EvalNet(Cell):
|
||||
def __init__(self, network, strategy2=None):
|
||||
super().__init__()
|
||||
self.network = network
|
||||
self.relu = P.ReLU().shard(strategy2)
|
||||
|
||||
def construct(self, x, b):
|
||||
out = self.network(x, b)
|
||||
out1 = self.relu(out)
|
||||
return out, out1
|
||||
|
||||
|
||||
_x = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
_w1 = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
_b = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
|
||||
|
||||
def test_train_and_eval():
|
||||
context.set_context(save_graphs=True, mode=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16)
|
||||
strategy1 = ((4, 4), (4, 4))
|
||||
strategy2 = ((4, 4),)
|
||||
net = Net(_w1, strategy1, strategy2)
|
||||
eval_net = EvalNet(net, strategy2=strategy2)
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, _x, _b, phase='train', auto_parallel_mode=True)
|
||||
|
||||
eval_net.set_train(mode=False)
|
||||
eval_net.set_auto_parallel()
|
||||
_executor.compile(eval_net, _x, _b, phase='eval', auto_parallel_mode=True)
|
||||
|
||||
context.reset_auto_parallel_context()
|
|
@ -58,6 +58,7 @@ def compile_net(net):
|
|||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
train_net.set_auto_parallel()
|
||||
train_net.set_train()
|
||||
_executor.compile(train_net, _x, _b)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
|
|
@ -41,6 +41,7 @@ _b = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
|
|||
|
||||
def compile_net(net):
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, _x, _b)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
|
|
@ -71,6 +71,7 @@ def test_gatherv2_semi_auto0():
|
|||
|
||||
x = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
|
@ -83,6 +84,7 @@ def test_gatherv2_semi_auto1():
|
|||
|
||||
x = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
|
@ -95,6 +97,7 @@ def test_gatherv2_semi_auto2():
|
|||
|
||||
x = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
|
@ -107,6 +110,7 @@ def test_gatherv2_semi_auto3():
|
|||
|
||||
x = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
|
@ -119,6 +123,7 @@ def test_gatherv2_semi_auto4():
|
|||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
|
@ -131,6 +136,7 @@ def test_gatherv2_semi_auto5():
|
|||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
|
@ -142,6 +148,7 @@ def test_gatherv2_semi_auto6():
|
|||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([64, 64, 32]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
|
@ -153,6 +160,7 @@ def test_gatherv2_semi_auto7():
|
|||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
|
@ -165,6 +173,7 @@ def test_gatherv2_semi_auto8():
|
|||
|
||||
x = Tensor(np.ones([64]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
|
@ -174,6 +183,7 @@ def test_gatherv2_auto0():
|
|||
net.set_auto_parallel()
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([64, 64, 32]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
|
@ -183,4 +193,5 @@ def test_gatherv2_auto1():
|
|||
net.set_auto_parallel()
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
|
|
@ -65,6 +65,7 @@ def test_dropout_semi_auto():
|
|||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 128]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
|
@ -77,6 +78,7 @@ def test_dropout_semi_auto2():
|
|||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 128]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
|
@ -89,6 +91,7 @@ def test_dropout_semi_auto3():
|
|||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 128]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
|
@ -99,4 +102,5 @@ def test_dropout_auto():
|
|||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 128]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
|
|
@ -49,6 +49,7 @@ class GradWrap(nn.Cell):
|
|||
|
||||
def compile_net(net, x, y, b):
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, b)
|
||||
|
||||
|
||||
|
|
|
@ -53,6 +53,7 @@ def check_initializer_weight_slice(init_name="Uniform"):
|
|||
weight = initializer(init_name, [64, 32], ms.float32)
|
||||
net = Net(strategy1, strategy2, weight)
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
exe.compile(net, x, auto_parallel_mode=True, phase='train')
|
||||
hccl.rank_id = rank_save
|
||||
return net.parameters_dict()['w1'].data.asnumpy()
|
||||
|
@ -131,6 +132,7 @@ def test_check_initializer_weight_slice_seed(init_name="Uniform"):
|
|||
weight = initializer(init_name, [64, 32], ms.float32)
|
||||
net = Net(strategy1, strategy2, weight)
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
exe.compile(net, x, auto_parallel_mode=True, phase='train')
|
||||
hccl.rank_id = rank_save
|
||||
return net.parameters_dict()['w1'].data.asnumpy()
|
||||
|
|
|
@ -75,4 +75,5 @@ def test_l2normalize_matmul():
|
|||
x = Tensor(np.ones([128, 32, 64]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([128, 32, 64]), dtype=ms.float32)
|
||||
b = Tensor(np.ones([128, 32, 64]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, b)
|
||||
|
|
|
@ -52,6 +52,7 @@ def compile_net(net):
|
|||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
train_net.set_auto_parallel()
|
||||
train_net.set_train()
|
||||
_executor.compile(train_net, _x, _b)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
|
|
@ -73,4 +73,5 @@ def test_linear():
|
|||
y = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
bias = Tensor(np.ones([64]), dtype=ms.float32)
|
||||
label = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, bias, label)
|
||||
|
|
|
@ -95,5 +95,6 @@ def test_two_matmul():
|
|||
net = GradWrap(NetWithLoss(Net(strategy1, strategy2)))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, b)
|
||||
count = count + 1
|
||||
|
|
|
@ -37,6 +37,7 @@ class NetWithLoss(nn.Cell):
|
|||
|
||||
def compile_net(net, x, b):
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, b)
|
||||
|
||||
|
||||
|
|
|
@ -67,6 +67,7 @@ def compile_net(net):
|
|||
optimizer.sparse_opt.add_prim_attr("primitive_target", "CPU")
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
train_net.set_auto_parallel()
|
||||
train_net.set_train()
|
||||
_executor.compile(train_net, _x, _b, auto_parallel_mode=True)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
|
|
@ -64,6 +64,7 @@ def compile_net(net):
|
|||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
train_net.set_auto_parallel()
|
||||
train_net.set_train()
|
||||
_executor.compile(train_net, _x, _b, auto_parallel_mode=True)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
|
|
@ -75,4 +75,5 @@ def test_two_matmul_dropout():
|
|||
x = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||
b = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, b)
|
||||
|
|
|
@ -51,6 +51,7 @@ class GradWrap(nn.Cell):
|
|||
|
||||
def compile_net(net, x, y):
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
|
|
|
@ -87,4 +87,5 @@ def test_two_matmul():
|
|||
b = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||
z = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, b, z)
|
||||
|
|
|
@ -43,6 +43,7 @@ def compile_net(net):
|
|||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
train_net.set_auto_parallel()
|
||||
train_net.set_train()
|
||||
_executor.compile(train_net, _x, _b)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
|
|
@ -278,6 +278,7 @@ def test_bn_reshape_dense_bn_train_loss():
|
|||
net = GradWrap(NetWithLoss(BNReshapeDenseBNNet()))
|
||||
net.set_auto_parallel()
|
||||
|
||||
net.set_train()
|
||||
_executor.compile(net, input_, label)
|
||||
|
||||
|
||||
|
@ -292,6 +293,7 @@ def test_semi_one_hot_net_batch():
|
|||
net = GradWrap(NetWithLoss(net))
|
||||
net.set_auto_parallel()
|
||||
|
||||
net.set_train()
|
||||
_executor.compile(net, input_, label)
|
||||
|
||||
|
||||
|
|
|
@ -76,4 +76,5 @@ def test_one_weight_parameter():
|
|||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
train_net.set_auto_parallel()
|
||||
|
||||
train_net.set_train()
|
||||
_executor.compile(train_net, x, b)
|
||||
|
|
|
@ -78,6 +78,7 @@ def compile_graph(strategy1, strategy2, strategy3, strategy4, auto=False, onthot
|
|||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([32, 64]), dtype=ms.float32)
|
||||
b = Tensor(np.ones([64]), dtype=ms.int32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, b)
|
||||
|
||||
|
||||
|
|
|
@ -84,6 +84,7 @@ def compile_net(net):
|
|||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
train_net.set_auto_parallel()
|
||||
train_net.set_train()
|
||||
_executor.compile(train_net, _x)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
@ -93,6 +94,7 @@ def compile_net1(net):
|
|||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
train_net.set_auto_parallel()
|
||||
train_net.set_train()
|
||||
_executor.compile(train_net, _x1)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
@ -102,6 +104,7 @@ def compile_net2(net):
|
|||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
train_net.set_auto_parallel()
|
||||
train_net.set_train()
|
||||
_executor.compile(train_net, _x2)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
|
|
@ -76,6 +76,7 @@ def auto_parallel_compile_net(mode, dev_num, strategy1=None, strategy2=None):
|
|||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_network = TrainOneStepCell(net, optimizer)
|
||||
train_network.set_auto_parallel()
|
||||
train_network.set_train()
|
||||
_executor.compile(train_network, inputs, label)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
|
|
@ -56,6 +56,7 @@ def compile_net(net):
|
|||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
train_net.set_auto_parallel()
|
||||
train_net.set_train()
|
||||
_executor.compile(train_net, _x, _b)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
|
|
@ -74,6 +74,7 @@ def test_gatherv2_semi_samestage1():
|
|||
|
||||
x = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
def test_gatherv2_semi_samestage2():
|
||||
|
@ -86,4 +87,5 @@ def test_gatherv2_semi_samestage2():
|
|||
|
||||
x = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
|
|
@ -49,6 +49,7 @@ class GradWrap(nn.Cell):
|
|||
|
||||
def compile_net(net, x, y):
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
|
@ -166,6 +167,7 @@ def test_prelu_parallel_success3():
|
|||
w = Tensor(np.random.rand(16), dtype=ms.float32)
|
||||
net = GradWrap3(NetWithLoss3(Net(strategy1, strategy2)))
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, w)
|
||||
|
||||
|
||||
|
|
|
@ -69,11 +69,13 @@ class GradWrap(nn.Cell):
|
|||
|
||||
def compile_net_no_bias(net, x, y):
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
def compile_net(net, x, y, b):
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, b)
|
||||
|
||||
|
||||
|
|
|
@ -49,6 +49,7 @@ class GradWrap(nn.Cell):
|
|||
|
||||
def compile_net(net, x, y, b):
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, b)
|
||||
|
||||
|
||||
|
|
|
@ -317,6 +317,7 @@ class ReshapeNet6(nn.Cell):
|
|||
|
||||
def compile_net(net, input_):
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, input_)
|
||||
|
||||
|
||||
|
|
|
@ -44,6 +44,7 @@ def compile_net(net):
|
|||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
train_net.set_auto_parallel()
|
||||
train_net.set_train()
|
||||
_executor.compile(train_net, _x, _b)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
|
|
@ -63,6 +63,7 @@ class Net(nn.Cell):
|
|||
|
||||
def compile_net(net, x, y):
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
|
|
|
@ -47,6 +47,7 @@ def compile_net(net):
|
|||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
train_net.set_auto_parallel()
|
||||
train_net.set_train()
|
||||
_executor.compile(train_net, _x, _b)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
|
|
@ -67,6 +67,7 @@ def test_reshape_unexpand():
|
|||
net = GradWrap(NetWithLoss(Net()))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x)
|
||||
|
||||
def test_reshape_unexpand_1():
|
||||
|
@ -89,6 +90,7 @@ def test_reshape_unexpand_1():
|
|||
net = GradWrap(NetWithLoss(Net()))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x)
|
||||
|
||||
def test_reshape_unexpand_2():
|
||||
|
@ -111,6 +113,7 @@ def test_reshape_unexpand_2():
|
|||
net = GradWrap(NetWithLoss(Net()))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x)
|
||||
|
||||
def test_reshape_unexpand_3():
|
||||
|
@ -134,6 +137,7 @@ def test_reshape_unexpand_3():
|
|||
net = GradWrap(NetWithLoss(Net()))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x)
|
||||
|
||||
def test_reshape_unexpand_4():
|
||||
|
@ -157,6 +161,7 @@ def test_reshape_unexpand_4():
|
|||
net = GradWrap(NetWithLoss(Net()))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x)
|
||||
|
||||
def test_reshape_unexpand_5():
|
||||
|
@ -180,6 +185,7 @@ def test_reshape_unexpand_5():
|
|||
net = GradWrap(NetWithLoss(Net()))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x)
|
||||
|
||||
def test_reshape_unexpand_6():
|
||||
|
@ -203,6 +209,7 @@ def test_reshape_unexpand_6():
|
|||
net = GradWrap(NetWithLoss(Net()))
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x)
|
||||
|
||||
def test_reshape_unexpand_7():
|
||||
|
@ -235,6 +242,7 @@ def test_reshape_unexpand_7():
|
|||
x = Tensor(np.ones([32, 3, 224, 224]), dtype=ms.float32)
|
||||
net = GradWrap(NetWithLoss(Net()))
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x)
|
||||
|
||||
def test_reshape_unexpand_8():
|
||||
|
@ -257,4 +265,5 @@ def test_reshape_unexpand_8():
|
|||
net = GradWrap(NetWithLoss(Net()))
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x)
|
||||
|
|
|
@ -60,4 +60,5 @@ def test_sum_as_loss():
|
|||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
|
|
@ -52,6 +52,7 @@ class GradWrap(nn.Cell):
|
|||
|
||||
def compile_net(net, x):
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x)
|
||||
|
||||
|
||||
|
|
|
@ -107,4 +107,5 @@ def test_two_subgraphs():
|
|||
net = TrainStepWrap(NetWithLoss(Net()))
|
||||
input_x = Tensor(np.ones([8, 8, 8, 8]), dtype=ms.float32)
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, input_x)
|
||||
|
|
|
@ -43,6 +43,7 @@ def compile_net(net):
|
|||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
train_net.set_auto_parallel()
|
||||
train_net.set_train()
|
||||
_executor.compile(train_net, _x, _b)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
|
|
@ -48,6 +48,7 @@ class GradWrap(nn.Cell):
|
|||
|
||||
def compile_net(net, x, y, b):
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, b)
|
||||
|
||||
|
||||
|
|
|
@ -60,6 +60,7 @@ def test_bprop_with_sparse_feature_allreduce():
|
|||
net = GradWrap(Net())
|
||||
x = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
|
||||
net.set_train()
|
||||
_executor.compile(net, x)
|
||||
|
||||
|
||||
|
@ -87,6 +88,7 @@ def test_bprop_with_sparse_feature_mirror():
|
|||
def compile_net(net):
|
||||
optimizer = Adam(net.trainable_params(), learning_rate=0.1, loss_scale=1024.0, weight_decay=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
train_net.set_train()
|
||||
_executor.compile(train_net, _x, _b)
|
||||
|
||||
net = Net()
|
||||
|
@ -119,6 +121,7 @@ def test_bprop_with_sparse_feature_dataparallel():
|
|||
def compile_net(net):
|
||||
optimizer = Adam(net.trainable_params(), learning_rate=0.1, loss_scale=1024.0, weight_decay=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
train_net.set_train()
|
||||
_executor.compile(train_net, _x, _b)
|
||||
|
||||
net = Net()
|
||||
|
|
|
@ -72,6 +72,7 @@ def test_gatherv2_semi_auto0():
|
|||
|
||||
x = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
|
@ -84,6 +85,7 @@ def test_gatherv2_semi_auto1():
|
|||
|
||||
x = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
|
@ -96,6 +98,7 @@ def test_gatherv2_semi_auto2():
|
|||
|
||||
x = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
|
@ -108,6 +111,7 @@ def test_gatherv2_semi_auto3():
|
|||
|
||||
x = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
|
@ -120,6 +124,7 @@ def test_gatherv2_semi_auto4():
|
|||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
|
@ -132,6 +137,7 @@ def test_gatherv2_semi_auto5():
|
|||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
|
@ -143,6 +149,7 @@ def test_gatherv2_semi_auto6():
|
|||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([64, 64, 32]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
|
@ -154,6 +161,7 @@ def test_gatherv2_semi_auto7():
|
|||
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
|
@ -163,6 +171,7 @@ def test_gatherv2_auto0():
|
|||
net.set_auto_parallel()
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([64, 64, 32]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
|
@ -172,6 +181,7 @@ def test_gatherv2_auto1():
|
|||
net.set_auto_parallel()
|
||||
x = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
|
@ -184,6 +194,7 @@ def test_gatherv2_cpu0():
|
|||
|
||||
x = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
|
@ -196,6 +207,7 @@ def test_gatherv2_cpu1():
|
|||
|
||||
x = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
|
@ -208,4 +220,5 @@ def test_gatherv2_cpu2():
|
|||
|
||||
x = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
y = Tensor(np.ones([64, 64, 64]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
|
|
@ -79,6 +79,7 @@ def compile_net(net):
|
|||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
train_net.set_auto_parallel()
|
||||
train_net.set_train()
|
||||
_executor.compile(train_net, _x)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
@ -88,6 +89,7 @@ def compile_net1(net):
|
|||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
train_net.set_auto_parallel()
|
||||
train_net.set_train()
|
||||
_executor.compile(train_net, _x1)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
|
|
@ -66,10 +66,12 @@ class GradWrap4(nn.Cell):
|
|||
|
||||
def compile_net(net, x, y, b):
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, b)
|
||||
|
||||
def compile_net_no_bias(net, x, y):
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
def test_no_grad():
|
||||
|
@ -120,6 +122,7 @@ def test_grad_sens_parameter_type():
|
|||
|
||||
sens = Tensor(np.ones([128, 64]), dtype=ms.float32)
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, b, sens, phase='train', auto_parallel_mode=True)
|
||||
x_layout = ([8, 8], [1, -1], [16, 32], 0, True, '')
|
||||
y_layout = ([8, 8], [-1, 0], [32, 8], 0, True, '')
|
||||
|
|
|
@ -45,6 +45,7 @@ def compile_net(net):
|
|||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
train_net.set_auto_parallel()
|
||||
train_net.set_train()
|
||||
_executor.compile(train_net, _x, _b)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
|
|
@ -39,6 +39,7 @@ _b = Tensor(np.ones([64, 32]), dtype=ms.float32)
|
|||
|
||||
def compile_net(net):
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, _x, _b)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
|
|
@ -76,4 +76,5 @@ def test_two_matmul():
|
|||
b = Tensor(np.ones([128, 128]), dtype=ms.float32)
|
||||
a = Tensor(np.ones([128, 128]), dtype=ms.float32)
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, b, a)
|
||||
|
|
|
@ -87,6 +87,7 @@ def test_six_matmul_save():
|
|||
net.set_auto_parallel()
|
||||
x1 = Tensor(np.ones([32, 32]), dtype=ms.float32)
|
||||
x6 = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x1, x6)
|
||||
|
||||
|
||||
|
@ -149,6 +150,7 @@ def test_six_matmul_load():
|
|||
x1 = Tensor(np.ones([32, 32]), dtype=ms.float32)
|
||||
x6 = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
||||
x7 = Tensor(np.ones([32, 32]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x1, x6, x7)
|
||||
|
||||
|
||||
|
@ -205,6 +207,7 @@ def test_six_matmul_save_auto():
|
|||
net.set_auto_parallel()
|
||||
x1 = Tensor(np.ones([32, 32]), dtype=ms.float32)
|
||||
x6 = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x1, x6)
|
||||
|
||||
|
||||
|
@ -265,4 +268,5 @@ def test_six_matmul_load_auto():
|
|||
x1 = Tensor(np.ones([32, 32]), dtype=ms.float32)
|
||||
x6 = Tensor(np.ones([128, 32]), dtype=ms.float32)
|
||||
x7 = Tensor(np.ones([32, 32]), dtype=ms.float32)
|
||||
net.set_train()
|
||||
_executor.compile(net, x1, x6, x7)
|
||||
|
|
|
@ -71,6 +71,7 @@ def compile_net(net):
|
|||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
train_net.set_auto_parallel()
|
||||
train_net.set_train()
|
||||
_executor.compile(train_net, _x, _b)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
|
|
@ -37,6 +37,7 @@ class GradWrap(nn.Cell):
|
|||
|
||||
def compile_net(net, x, y):
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y)
|
||||
|
||||
|
||||
|
|
|
@ -64,6 +64,7 @@ def compile_net(net):
|
|||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
train_net.set_auto_parallel()
|
||||
train_net.set_train()
|
||||
_executor.compile(train_net, _x, _b)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
|
|
@ -46,9 +46,9 @@ class EvalNet(Cell):
|
|||
return out
|
||||
|
||||
|
||||
_x = Tensor(np.ones([8, 8]), dtype=ms.float32)
|
||||
_w1 = Tensor(np.ones([8, 8]), dtype=ms.float32)
|
||||
_b = Tensor(np.ones([8, 8]), dtype=ms.float32)
|
||||
_x = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
_w1 = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
_b = Tensor(np.ones([64, 64]), dtype=ms.float32)
|
||||
|
||||
|
||||
def test_train_and_eval():
|
||||
|
@ -58,8 +58,8 @@ def test_train_and_eval():
|
|||
strategy2 = ((4, 4),)
|
||||
net = Net(_w1, strategy1, strategy2)
|
||||
eval_net = EvalNet(net, strategy2=strategy2)
|
||||
net.set_train()
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, _x, _b, phase='train', auto_parallel_mode=True)
|
||||
|
||||
eval_net.set_train(mode=False)
|
||||
|
|
|
@ -49,6 +49,7 @@ class GradWrap(nn.Cell):
|
|||
|
||||
def compile_net(net, x, y, b):
|
||||
net.set_auto_parallel()
|
||||
net.set_train()
|
||||
_executor.compile(net, x, y, b)
|
||||
|
||||
|
||||
|
|
|
@ -80,4 +80,5 @@ def test_two_weights_parameter():
|
|||
train_net = OneStepCell(net_with_loss)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
train_net.set_auto_parallel()
|
||||
train_net.set_train()
|
||||
_executor.compile(train_net, x, b)
|
||||
|
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue