diff --git a/mindspore/nn/probability/toolbox/anomaly_detection.py b/mindspore/nn/probability/toolbox/anomaly_detection.py index 87a635dfc8a..ba92269b792 100644 --- a/mindspore/nn/probability/toolbox/anomaly_detection.py +++ b/mindspore/nn/probability/toolbox/anomaly_detection.py @@ -15,6 +15,7 @@ """Toolbox for anomaly detection by using VAE.""" import numpy as np +from mindspore._checkparam import Validator from ..dpn import VAE from ..infer import ELBO, SVI from ...optim import Adam @@ -26,7 +27,7 @@ class VAEAnomalyDetection: Toolbox for anomaly detection by using VAE. Variational Auto-Encoder(VAE) can be used for Unsupervised Anomaly Detection. The anomaly score is the error - between the X and the reconstruction. If the score is high, the X is mostly outlier. + between the X and the reconstruction of X. If the score is high, the X is mostly outlier. Args: encoder(Cell): The Deep Neural Network (DNN) model defined as encoder. @@ -84,6 +85,7 @@ class VAEAnomalyDetection: Returns: Bool, whether the sample is an outlier. """ + threshold = Validator.check_positive_float(threshold) score = self.predict_outlier_score(sample_x) return score >= threshold