forked from mindspore-Ecosystem/mindspore
update API in tensor.py
This commit is contained in:
parent
4364abc7ee
commit
5b986fa419
|
@ -252,22 +252,22 @@ class Tensor(Tensor_):
|
|||
|
||||
@property
|
||||
def shape(self):
|
||||
"""The shape of tensor is a tuple."""
|
||||
"""Returns the shape of the tensor as a tuple."""
|
||||
return self._shape
|
||||
|
||||
@property
|
||||
def dtype(self):
|
||||
"""The dtype of tensor is a mindspore type."""
|
||||
"""Returns the dtype of the tensor (:class:`mindspore.dtype`)."""
|
||||
return self._dtype
|
||||
|
||||
@property
|
||||
def size(self):
|
||||
"""The size reflects the total number of elements in tensor."""
|
||||
"""Returns the total number of elements in tensor."""
|
||||
return self._size
|
||||
|
||||
@property
|
||||
def ndim(self):
|
||||
"""The ndim of tensor is an integer."""
|
||||
"""Returns the number of tensor dimensions."""
|
||||
return len(self._shape)
|
||||
|
||||
@property
|
||||
|
@ -277,22 +277,22 @@ class Tensor(Tensor_):
|
|||
|
||||
@property
|
||||
def itemsize(self):
|
||||
"""The length of one tensor element in bytes."""
|
||||
"""Returns the length of one tensor element in bytes."""
|
||||
return self._itemsize
|
||||
|
||||
@property
|
||||
def strides(self):
|
||||
"""The tuple of bytes to step in each dimension when traversing a tensor."""
|
||||
"""Returns the tuple of bytes to step in each dimension when traversing a tensor."""
|
||||
return self._strides
|
||||
|
||||
@property
|
||||
def nbytes(self):
|
||||
"""The total number of bytes taken by the tensor."""
|
||||
"""Returns the total number of bytes taken by the tensor."""
|
||||
return self._nbytes
|
||||
|
||||
@property
|
||||
def T(self):
|
||||
"""The transposed tensor."""
|
||||
"""Returns the transposed tensor."""
|
||||
return self.transpose()
|
||||
|
||||
@property
|
||||
|
@ -425,22 +425,21 @@ class Tensor(Tensor_):
|
|||
return tensor_operator_registry.get('mean')(keep_dims)(self, axis)
|
||||
|
||||
def transpose(self, *axes):
|
||||
"""
|
||||
Returns a view of the array with axes transposed.
|
||||
r"""
|
||||
Returns a view of the tensor with axes transposed.
|
||||
|
||||
For a 1-D array this has no effect, as a transposed vector is simply the
|
||||
same vector. For a 2-D array, this is a standard matrix transpose. For an
|
||||
n-D array, if axes are given, their order indicates how the axes are permuted
|
||||
(see Examples). If axes are not provided and a.shape = (i[0], i[1],...
|
||||
i[n-2], i[n-1]), then a.transpose().shape = (i[n-1], i[n-2], ... i[1], i[0]).
|
||||
For a 1-D tensor this has no effect, as a transposed vector is simply the
|
||||
same vector. For a 2-D tensor, this is a standard matrix transpose. For a
|
||||
n-D tensor, if axes are given, their order indicates how the axes are permuted.
|
||||
If axes are not provided and tensor.shape = (i[0], i[1],...i[n-2], i[n-1]),
|
||||
then tensor.transpose().shape = (i[n-1], i[n-2], ... i[1], i[0]).
|
||||
|
||||
Args:
|
||||
axes(Union[None, tuple(int), list(int), n ints], optional):
|
||||
None or no argument: reverses the order of the axes.
|
||||
Tuple of ints: i in the j-th place in the tuple means a’s i-th
|
||||
axis becomes a.transpose()’s j-th axis.
|
||||
n ints: this form is intended simply as a `convenience alternative
|
||||
to the tuple form.
|
||||
axes(Union[None, tuple(int), list(int), \*int], optional): If axes is None or
|
||||
blank, tensor.transpose() will reverse the order of the axes. If axes is tuple(int)
|
||||
or list(int), tensor.transpose() will transpose the tensor to the new axes order.
|
||||
If axes is \*int, this form is simply intended as a convenience alternative to the
|
||||
tuple/list form.
|
||||
|
||||
Returns:
|
||||
Tensor, has the same dimension as input tensor, with axes suitably permuted.
|
||||
|
@ -451,17 +450,16 @@ class Tensor(Tensor_):
|
|||
|
||||
def reshape(self, *shape):
|
||||
"""
|
||||
Gives a new shape to an array without changing its data.
|
||||
Gives a new shape to a tensor without changing its data.
|
||||
|
||||
Args:
|
||||
shape(Union[int, tuple(int), list(int)]): The new shape should be compatible
|
||||
with the original shape. If an integer, then the result will be a 1-D
|
||||
array of that length. One shape dimension can be -1. In this case, the
|
||||
value is inferred from the length of the array and remaining dimensions.
|
||||
with the original shape. If an integer, then the result will be a 1-D
|
||||
array of that length. One shape dimension can be -1. In this case, the
|
||||
value is inferred from the length of the array and remaining dimensions.
|
||||
|
||||
Returns:
|
||||
reshaped_tensor(Tensor): This will be a new view object if possible;
|
||||
otherwise, it will be a copy.
|
||||
Tensor, with new specified shape.
|
||||
"""
|
||||
self.init_check()
|
||||
new_shape = validator.check_reshape_shp(shape)
|
||||
|
@ -470,10 +468,9 @@ class Tensor(Tensor_):
|
|||
def ravel(self):
|
||||
"""
|
||||
Returns a contiguous flattened tensor.
|
||||
A 1-D tensor, containing the elements of the input, is returned.
|
||||
|
||||
Returns:
|
||||
Tensor, has the same data type as x.
|
||||
Tensor, a 1-D tensor, containing the same elements of the input.
|
||||
"""
|
||||
self.init_check()
|
||||
reshape_op = tensor_operator_registry.get('reshape')()
|
||||
|
@ -481,15 +478,15 @@ class Tensor(Tensor_):
|
|||
|
||||
def flatten(self, order='C'):
|
||||
"""
|
||||
Returns a copy of the array collapsed into one dimension.
|
||||
Returns a copy of the tensor collapsed into one dimension.
|
||||
|
||||
Args:
|
||||
order (str, optional): Can choose between `C` and `F`. `C` means to
|
||||
flatten in row-major (C-style) order. ‘F’ means to flatten in column-major
|
||||
(Fortran- style) order. Only `C` and `F` are supported.
|
||||
order (str, optional): Can choose between \'C\' and \'F\'. \'C\' means to
|
||||
flatten in row-major (C-style) order. \'F\' means to flatten in column-major
|
||||
(Fortran- style) order. Only \'C\' and \'F\' are supported.
|
||||
|
||||
Returns:
|
||||
Tensor, has the same data type as x.
|
||||
Tensor, has the same data type as input.
|
||||
"""
|
||||
self.init_check()
|
||||
reshape_op = tensor_operator_registry.get('reshape')()
|
||||
|
@ -511,7 +508,7 @@ class Tensor(Tensor_):
|
|||
axis2 (int): Second axis.
|
||||
|
||||
Returns:
|
||||
Transposed tensor, has the same data type as the original tensor x.
|
||||
Transposed tensor, has the same data type as the input.
|
||||
"""
|
||||
self.init_check()
|
||||
axis1, axis2 = validator.check_swapaxes_axis((axis1, axis2), self.ndim)
|
||||
|
@ -534,10 +531,10 @@ class Tensor(Tensor_):
|
|||
|
||||
def squeeze(self, axis=None):
|
||||
"""
|
||||
Removes single-dimensional entries from the shape of an tensor.
|
||||
Removes single-dimensional entries from the shape of a tensor.
|
||||
|
||||
Args:
|
||||
axis: Union[None, int, list(int), tuple(list)]. Default is None.
|
||||
axis (Union[None, int, list(int), tuple(list)], optional): Default is None.
|
||||
|
||||
Returns:
|
||||
Tensor, with all or a subset of the dimensions of length 1 removed.
|
||||
|
@ -550,14 +547,13 @@ class Tensor(Tensor_):
|
|||
|
||||
def astype(self, dtype, copy=True):
|
||||
"""
|
||||
Returns a copy of the array, cast to a specified type.
|
||||
Returns a copy of the tensor, casted to a specified type.
|
||||
|
||||
Args:
|
||||
dtype(Union[mstype.dtype, numpy.dtype, str]): Designated tensor dtype,
|
||||
can be in format of np.float32, mstype.float32 or `float32`. Default
|
||||
is mstype.float32.
|
||||
dtype (Union[:class:`mindspore.dtype`, str]): Designated tensor dtype, can be in format
|
||||
of :class:`mindspore.dtype.float32` or \'float32\'. Default is :class:`mindspore.dtype.float32`
|
||||
|
||||
copy(bool, optional): By default, astype always returns a newly allocated
|
||||
copy (bool, optional): By default, astype always returns a newly allocated
|
||||
tensor. If this is set to false, the input tensor is returned instead
|
||||
of a copy if possible.
|
||||
|
||||
|
|
Loading…
Reference in New Issue