forked from mindspore-Ecosystem/mindspore
!15577 [ME][ControlFlow] Add some control sink testcases
From: @Margaret_wangrui Reviewed-by: @ginfung,@zh_qh Signed-off-by: @zh_qh
This commit is contained in:
commit
5a48a08e34
|
@ -12,8 +12,10 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
from mindspore import context
|
||||
from mindspore import Tensor, nn
|
||||
from mindspore.common.parameter import Parameter
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common import dtype as mstype
|
||||
|
@ -107,3 +109,105 @@ def test_single_for_02():
|
|||
|
||||
assert graph_forward_res == pynative_forward_res
|
||||
assert graph_backward_res == pynative_backward_res
|
||||
|
||||
|
||||
def test_single_for_03():
|
||||
class SingleForNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.mul = P.Mul()
|
||||
self.add = P.Add()
|
||||
self.sub = P.Sub()
|
||||
self.assign = P.Assign()
|
||||
param_a = np.full((1,), 5, dtype=np.float32)
|
||||
self.param_a = Parameter(Tensor(param_a), name='a')
|
||||
param_b = np.full((1,), 2, dtype=np.float32)
|
||||
self.param_b = Parameter(Tensor(param_b), name='b')
|
||||
|
||||
def func(self, x):
|
||||
x = self.mul(x, 2)
|
||||
for _ in range(0, 5):
|
||||
x = self.add(x, x)
|
||||
self.param_b = self.param_b + 1
|
||||
return x - self.param_b
|
||||
|
||||
def construct(self, x, y):
|
||||
self.assign(self.param_a, x + self.param_a)
|
||||
z = self.func(x)
|
||||
x = self.param_a + y + z
|
||||
return x, self.param_b
|
||||
|
||||
class GradNet(nn.Cell):
|
||||
def __init__(self, net):
|
||||
super(GradNet, self).__init__()
|
||||
self.net = net
|
||||
|
||||
def construct(self, *inputs):
|
||||
return grad_all(self.net)(*inputs)
|
||||
|
||||
x = Tensor([2], mstype.int32)
|
||||
y = Tensor([5], mstype.int32)
|
||||
|
||||
# graph mode
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
single_for_net = SingleForNet()
|
||||
net = GradNet(single_for_net)
|
||||
graph_forward_res = single_for_net(x, y)
|
||||
graph_backward_res = net(x, y)
|
||||
|
||||
# pynative mode
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
single_for_net = SingleForNet()
|
||||
net = GradNet(single_for_net)
|
||||
pynative_forward_res = single_for_net(x, y)
|
||||
pynative_backward_res = net(x, y)
|
||||
|
||||
assert graph_forward_res == pynative_forward_res
|
||||
assert graph_backward_res == pynative_backward_res
|
||||
|
||||
|
||||
def test_single_for_04():
|
||||
class SingleForNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.mul = P.Mul()
|
||||
self.add = P.Add()
|
||||
self.sub = P.Sub()
|
||||
self.assign = P.Assign()
|
||||
param_a = np.full((1,), 5, dtype=np.float32)
|
||||
self.param_a = Parameter(Tensor(param_a), name='a')
|
||||
param_b = np.full((1,), 2, dtype=np.float32)
|
||||
self.param_b = Parameter(Tensor(param_b), name='b')
|
||||
|
||||
def construct(self, x):
|
||||
self.assign(self.param_a, x + self.param_a)
|
||||
for _ in range(1):
|
||||
self.param_b = x - self.param_a
|
||||
return self.param_b
|
||||
|
||||
class GradNet(nn.Cell):
|
||||
def __init__(self, net):
|
||||
super(GradNet, self).__init__()
|
||||
self.net = net
|
||||
|
||||
def construct(self, *inputs):
|
||||
return grad_all(self.net)(*inputs)
|
||||
|
||||
x = Tensor([2], mstype.int32)
|
||||
|
||||
# graph mode
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
single_for_net = SingleForNet()
|
||||
net = GradNet(single_for_net)
|
||||
graph_forward_res = single_for_net(x)
|
||||
graph_backward_res = net(x)
|
||||
|
||||
# pynative mode
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
single_for_net = SingleForNet()
|
||||
net = GradNet(single_for_net)
|
||||
pynative_forward_res = single_for_net(x)
|
||||
pynative_backward_res = net(x)
|
||||
|
||||
assert graph_forward_res == pynative_forward_res
|
||||
assert graph_backward_res == pynative_backward_res
|
||||
|
|
|
@ -118,3 +118,55 @@ def test_for_in_if_02():
|
|||
|
||||
assert graph_forward_res == pynative_forward_res
|
||||
assert graph_backward_res == pynative_backward_res
|
||||
|
||||
|
||||
def test_for_in_if_03():
|
||||
class ForInIfNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.mul = P.Mul()
|
||||
self.add = P.Add()
|
||||
param_a = np.full((1,), 5, dtype=np.float32)
|
||||
self.param_a = Parameter(Tensor(param_a), name='a')
|
||||
param_b = np.full((1,), 4, dtype=np.float32)
|
||||
self.param_b = Parameter(Tensor(param_b), name='b')
|
||||
|
||||
def construct(self, x):
|
||||
y = x + self.param_b
|
||||
if self.param_a > self.param_b:
|
||||
x = self.mul(x, 2)
|
||||
for i in range(-1, 5):
|
||||
x = self.add(i, x)
|
||||
self.param_b += 1
|
||||
elif y > x:
|
||||
y = self.param_a * y
|
||||
else:
|
||||
x = self.param_b * x
|
||||
return x, y
|
||||
|
||||
class GradNet(nn.Cell):
|
||||
def __init__(self, net):
|
||||
super(GradNet, self).__init__()
|
||||
self.net = net
|
||||
|
||||
def construct(self, *inputs):
|
||||
return grad_all(self.net)(*inputs)
|
||||
|
||||
x = Tensor([10], mstype.int32)
|
||||
|
||||
# graph mode
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
for_in_if_net = ForInIfNet()
|
||||
net = GradNet(for_in_if_net)
|
||||
graph_forward_res = for_in_if_net(x)
|
||||
graph_backward_res = net(x)
|
||||
|
||||
# pynative mode
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
for_in_if_net = ForInIfNet()
|
||||
net = GradNet(for_in_if_net)
|
||||
pynative_forward_res = for_in_if_net(x)
|
||||
pynative_backward_res = net(x)
|
||||
|
||||
assert graph_forward_res == pynative_forward_res
|
||||
assert graph_backward_res == pynative_backward_res
|
||||
|
|
Loading…
Reference in New Issue