forked from mindspore-Ecosystem/mindspore
sparse gather v2
This commit is contained in:
parent
95c8de970e
commit
562c2b8d3d
|
@ -53,6 +53,7 @@ static std::map<string, string> tbe_func_adapter_map = {
|
|||
{"scatter_nd", "scatter_nd_d"},
|
||||
{"tile", "tile_d"},
|
||||
{"gather_v2", "gather_v2_d"},
|
||||
{"sparse_gather_v2", "gather_v2_d"},
|
||||
{"batch_mat_mul", "batch_matmul"},
|
||||
{"b_n_training_reduce", "bn_training_reduce"},
|
||||
{"b_n_training_update", "bn_training_update"},
|
||||
|
|
|
@ -47,6 +47,7 @@ ConstInputToAttrInfoRegistry::ConstInputToAttrInfoRegistry() {
|
|||
Register(prim::kPrimCumProd->name(), {1});
|
||||
Register(prim::kPrimReduceAll->name(), {1});
|
||||
Register(prim::kPrimUnsortedSegmentMin->name(), {2});
|
||||
Register(kSparseGatherV2, {2});
|
||||
Register(kUnsortedSegmentProdOpName, {2});
|
||||
Register(kSimpleMeanGradOpName, {1});
|
||||
Register(kMeanGradOpName, {1});
|
||||
|
|
|
@ -65,6 +65,7 @@ constexpr auto kScatterNdOpName = "ScatterNd";
|
|||
constexpr auto kStridedSliceAssignOpName = "StridedSliceAssign";
|
||||
constexpr auto kStridedSliceOpName = "StridedSlice";
|
||||
constexpr auto kStridedSliceGradOpName = "StridedSliceGrad";
|
||||
constexpr auto kSparseGatherV2 = "SparseGatherV2";
|
||||
constexpr auto kUnsortedSegmentProdOpName = "UnsortedSegmentProd";
|
||||
constexpr auto kUnsortedSegmentMinOpName = "UnsortedSegmentMin";
|
||||
constexpr auto kFlattenGradOpName = "FlattenGrad";
|
||||
|
|
|
@ -248,3 +248,4 @@ from .range import _range_tbe
|
|||
from .fused_mul_add_n_l2loss import _fused_mul_add_n_l2loss_tbe
|
||||
from .fused_mul_apply_momentum_extern import _fused_mul_apply_momentum_extern_tbe
|
||||
from .lamb_next_right import _lamb_next_right_tbe
|
||||
from .sparse_gather_v2 import _sparse_gather_v2_tbe
|
||||
|
|
|
@ -0,0 +1,66 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""SparseGatherV2 op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||
|
||||
sparse_gather_v2_op_info = TBERegOp("SparseGatherV2") \
|
||||
.fusion_type("OPAQUE") \
|
||||
.async_flag(False) \
|
||||
.binfile_name("gather_v2_d.so") \
|
||||
.compute_cost(10) \
|
||||
.kernel_name("gather_v2_d") \
|
||||
.partial_flag(True) \
|
||||
.attr("axis", "optional", "int", "all") \
|
||||
.input(0, "x", False, "required", "all") \
|
||||
.input(1, "indices", False, "required", "all") \
|
||||
.output(0, "y", False, "required", "all") \
|
||||
.dtype_format(DataType.I8_Default, DataType.I32_Default, DataType.I8_Default) \
|
||||
.dtype_format(DataType.I8_Default, DataType.I64_Default, DataType.I8_Default) \
|
||||
.dtype_format(DataType.I8_5HD, DataType.I32_5HD, DataType.I8_5HD) \
|
||||
.dtype_format(DataType.I8_5HD, DataType.I64_5HD, DataType.I8_5HD) \
|
||||
.dtype_format(DataType.I8_FracZ, DataType.I32_FracZ, DataType.I8_FracZ) \
|
||||
.dtype_format(DataType.I8_FracZ, DataType.I64_FracZ, DataType.I8_FracZ) \
|
||||
.dtype_format(DataType.U8_Default, DataType.I32_Default, DataType.U8_Default) \
|
||||
.dtype_format(DataType.U8_Default, DataType.I64_Default, DataType.U8_Default) \
|
||||
.dtype_format(DataType.U8_5HD, DataType.I32_5HD, DataType.U8_5HD) \
|
||||
.dtype_format(DataType.U8_5HD, DataType.I64_5HD, DataType.U8_5HD) \
|
||||
.dtype_format(DataType.U8_FracZ, DataType.I32_FracZ, DataType.U8_FracZ) \
|
||||
.dtype_format(DataType.U8_FracZ, DataType.I64_FracZ, DataType.U8_FracZ) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I32_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I32_Default, DataType.I64_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.I32_5HD, DataType.I32_5HD, DataType.I32_5HD) \
|
||||
.dtype_format(DataType.I32_5HD, DataType.I64_5HD, DataType.I32_5HD) \
|
||||
.dtype_format(DataType.I32_FracZ, DataType.I32_FracZ, DataType.I32_FracZ) \
|
||||
.dtype_format(DataType.I32_FracZ, DataType.I64_FracZ, DataType.I32_FracZ) \
|
||||
.dtype_format(DataType.F16_Default, DataType.I32_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.F16_Default, DataType.I64_Default, DataType.F16_Default) \
|
||||
.dtype_format(DataType.F16_5HD, DataType.I32_5HD, DataType.F16_5HD) \
|
||||
.dtype_format(DataType.F16_5HD, DataType.I64_5HD, DataType.F16_5HD) \
|
||||
.dtype_format(DataType.F16_FracZ, DataType.I32_FracZ, DataType.F16_FracZ) \
|
||||
.dtype_format(DataType.F16_FracZ, DataType.I64_FracZ, DataType.F16_FracZ) \
|
||||
.dtype_format(DataType.F32_Default, DataType.I32_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.I64_Default, DataType.F32_Default) \
|
||||
.dtype_format(DataType.F32_5HD, DataType.I32_5HD, DataType.F32_5HD) \
|
||||
.dtype_format(DataType.F32_5HD, DataType.I64_5HD, DataType.F32_5HD) \
|
||||
.dtype_format(DataType.F32_FracZ, DataType.I32_FracZ, DataType.F32_FracZ) \
|
||||
.dtype_format(DataType.F32_FracZ, DataType.I64_FracZ, DataType.F32_FracZ) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(sparse_gather_v2_op_info)
|
||||
def _sparse_gather_v2_tbe():
|
||||
"""SparseGatherV2 TBE register"""
|
||||
return
|
|
@ -956,6 +956,11 @@ test_case_nn_ops = [
|
|||
'desc_const': [0],
|
||||
'desc_inputs': [[1152], Tensor(np.array(10).astype(np.int32))],
|
||||
'desc_bprop': [Tensor(np.array(10).astype(np.float32))]}),
|
||||
('SparseGatherV2_0', {
|
||||
'block': P.SparseGatherV2(),
|
||||
'desc_const': [0],
|
||||
'desc_inputs': [[3, 1, 2], Tensor(np.array([0, 1]).astype(np.int32))],
|
||||
'desc_bprop': [[2, 1, 2]]}),
|
||||
('Range', {
|
||||
'block': P.Range(1.0, 5.0),
|
||||
'desc_inputs': [Tensor(np.ones([10]).astype(np.float32))],
|
||||
|
|
Loading…
Reference in New Issue