forked from mindspore-Ecosystem/mindspore
refactoring code directory for vgg16 and lstm
This commit is contained in:
parent
f48ba77648
commit
55b1d6feef
|
@ -21,8 +21,8 @@ import os
|
|||
|
||||
import numpy as np
|
||||
|
||||
from config import lstm_cfg as cfg
|
||||
from dataset import create_dataset, convert_to_mindrecord
|
||||
from src.config import lstm_cfg as cfg
|
||||
from src.dataset import lstm_create_dataset, convert_to_mindrecord
|
||||
from mindspore import Tensor, nn, Model, context
|
||||
from mindspore.model_zoo.lstm import SentimentNet
|
||||
from mindspore.nn import Accuracy
|
||||
|
@ -71,7 +71,7 @@ if __name__ == '__main__':
|
|||
model = Model(network, loss, opt, {'acc': Accuracy()})
|
||||
|
||||
print("============== Starting Testing ==============")
|
||||
ds_eval = create_dataset(args.preprocess_path, cfg.batch_size, training=False)
|
||||
ds_eval = lstm_create_dataset(args.preprocess_path, cfg.batch_size, training=False)
|
||||
param_dict = load_checkpoint(args.ckpt_path)
|
||||
load_param_into_net(network, param_dict)
|
||||
if args.device_target == "CPU":
|
|
@ -0,0 +1,14 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the License);
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# httpwww.apache.orglicensesLICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an AS IS BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
|
@ -19,12 +19,12 @@ import os
|
|||
|
||||
import numpy as np
|
||||
|
||||
from imdb import ImdbParser
|
||||
import mindspore.dataset as ds
|
||||
from mindspore.mindrecord import FileWriter
|
||||
from .imdb import ImdbParser
|
||||
|
||||
|
||||
def create_dataset(data_home, batch_size, repeat_num=1, training=True):
|
||||
def lstm_create_dataset(data_home, batch_size, repeat_num=1, training=True):
|
||||
"""Data operations."""
|
||||
ds.config.set_seed(1)
|
||||
data_dir = os.path.join(data_home, "aclImdb_train.mindrecord0")
|
|
@ -0,0 +1,93 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""LSTM."""
|
||||
|
||||
import numpy as np
|
||||
|
||||
from mindspore import Tensor, nn, context
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
# Initialize short-term memory (h) and long-term memory (c) to 0
|
||||
def lstm_default_state(batch_size, hidden_size, num_layers, bidirectional):
|
||||
"""init default input."""
|
||||
num_directions = 1
|
||||
if bidirectional:
|
||||
num_directions = 2
|
||||
|
||||
if context.get_context("device_target") == "CPU":
|
||||
h_list = []
|
||||
c_list = []
|
||||
i = 0
|
||||
while i < num_layers:
|
||||
hi = Tensor(np.zeros((num_directions, batch_size, hidden_size)).astype(np.float32))
|
||||
h_list.append(hi)
|
||||
ci = Tensor(np.zeros((num_directions, batch_size, hidden_size)).astype(np.float32))
|
||||
c_list.append(ci)
|
||||
i = i + 1
|
||||
h = tuple(h_list)
|
||||
c = tuple(c_list)
|
||||
return h, c
|
||||
|
||||
h = Tensor(
|
||||
np.zeros((num_layers * num_directions, batch_size, hidden_size)).astype(np.float32))
|
||||
c = Tensor(
|
||||
np.zeros((num_layers * num_directions, batch_size, hidden_size)).astype(np.float32))
|
||||
return h, c
|
||||
|
||||
|
||||
class SentimentNet(nn.Cell):
|
||||
"""Sentiment network structure."""
|
||||
|
||||
def __init__(self,
|
||||
vocab_size,
|
||||
embed_size,
|
||||
num_hiddens,
|
||||
num_layers,
|
||||
bidirectional,
|
||||
num_classes,
|
||||
weight,
|
||||
batch_size):
|
||||
super(SentimentNet, self).__init__()
|
||||
# Mapp words to vectors
|
||||
self.embedding = nn.Embedding(vocab_size,
|
||||
embed_size,
|
||||
embedding_table=weight)
|
||||
self.embedding.embedding_table.requires_grad = False
|
||||
self.trans = P.Transpose()
|
||||
self.perm = (1, 0, 2)
|
||||
self.encoder = nn.LSTM(input_size=embed_size,
|
||||
hidden_size=num_hiddens,
|
||||
num_layers=num_layers,
|
||||
has_bias=True,
|
||||
bidirectional=bidirectional,
|
||||
dropout=0.0)
|
||||
|
||||
self.h, self.c = lstm_default_state(batch_size, num_hiddens, num_layers, bidirectional)
|
||||
|
||||
self.concat = P.Concat(1)
|
||||
if bidirectional:
|
||||
self.decoder = nn.Dense(num_hiddens * 4, num_classes)
|
||||
else:
|
||||
self.decoder = nn.Dense(num_hiddens * 2, num_classes)
|
||||
|
||||
def construct(self, inputs):
|
||||
# input:(64,500,300)
|
||||
embeddings = self.embedding(inputs)
|
||||
embeddings = self.trans(embeddings, self.perm)
|
||||
output, _ = self.encoder(embeddings, (self.h, self.c))
|
||||
# states[i] size(64,200) -> encoding.size(64,400)
|
||||
encoding = self.concat((output[0], output[-1]))
|
||||
outputs = self.decoder(encoding)
|
||||
return outputs
|
|
@ -21,9 +21,9 @@ import os
|
|||
|
||||
import numpy as np
|
||||
|
||||
from config import lstm_cfg as cfg
|
||||
from dataset import convert_to_mindrecord
|
||||
from dataset import create_dataset
|
||||
from src.config import lstm_cfg as cfg
|
||||
from src.dataset import convert_to_mindrecord
|
||||
from src.dataset import lstm_create_dataset
|
||||
from mindspore import Tensor, nn, Model, context
|
||||
from mindspore.model_zoo.lstm import SentimentNet
|
||||
from mindspore.nn import Accuracy
|
||||
|
@ -71,7 +71,7 @@ if __name__ == '__main__':
|
|||
model = Model(network, loss, opt, {'acc': Accuracy()})
|
||||
|
||||
print("============== Starting Training ==============")
|
||||
ds_train = create_dataset(args.preprocess_path, cfg.batch_size, cfg.num_epochs)
|
||||
ds_train = lstm_create_dataset(args.preprocess_path, cfg.batch_size, cfg.num_epochs)
|
||||
config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps,
|
||||
keep_checkpoint_max=cfg.keep_checkpoint_max)
|
||||
ckpoint_cb = ModelCheckpoint(prefix="lstm", directory=args.ckpt_path, config=config_ck)
|
|
@ -98,7 +98,7 @@ parameters/options:
|
|||
### Distribute Training
|
||||
|
||||
```
|
||||
Usage: sh run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATA_PATH]
|
||||
Usage: sh script/run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATA_PATH]
|
||||
|
||||
parameters/options:
|
||||
MINDSPORE_HCCL_CONFIG_PATH HCCL configuration file path.
|
|
@ -17,14 +17,15 @@
|
|||
python eval.py --data_path=$DATA_HOME --device_id=$DEVICE_ID
|
||||
"""
|
||||
import argparse
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import context
|
||||
from mindspore.nn.optim.momentum import Momentum
|
||||
from mindspore.train.model import Model
|
||||
from mindspore import context
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
from mindspore.model_zoo.vgg import vgg16
|
||||
from config import cifar_cfg as cfg
|
||||
import dataset
|
||||
from src.config import cifar_cfg as cfg
|
||||
from src.dataset import vgg_create_dataset
|
||||
from src.vgg import vgg16
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Cifar10 classification')
|
||||
|
@ -47,6 +48,6 @@ if __name__ == '__main__':
|
|||
param_dict = load_checkpoint(args_opt.checkpoint_path)
|
||||
load_param_into_net(net, param_dict)
|
||||
net.set_train(False)
|
||||
dataset = dataset.create_dataset(args_opt.data_path, 1, False)
|
||||
dataset = vgg_create_dataset(args_opt.data_path, 1, False)
|
||||
res = model.eval(dataset)
|
||||
print("result: ", res)
|
|
@ -15,39 +15,38 @@
|
|||
# ============================================================================
|
||||
|
||||
if [ $# != 2 ]
|
||||
then
|
||||
then
|
||||
echo "Usage: sh run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATA_PATH]"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ ! -f $1 ]
|
||||
then
|
||||
then
|
||||
echo "error: MINDSPORE_HCCL_CONFIG_PATH=$1 is not a file"
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
|
||||
if [ ! -d $2 ]
|
||||
then
|
||||
then
|
||||
echo "error: DATA_PATH=$2 is not a directory"
|
||||
exit 1
|
||||
fi
|
||||
fi
|
||||
|
||||
ulimit -u unlimited
|
||||
export DEVICE_NUM=8
|
||||
export RANK_SIZE=8
|
||||
export MINDSPORE_HCCL_CONFIG_PATH=$1
|
||||
|
||||
for((i=0; i<${DEVICE_NUM}; i++))
|
||||
for((i=0;i<RANK_SIZE;i++))
|
||||
do
|
||||
export DEVICE_ID=$i
|
||||
export RANK_ID=$i
|
||||
rm -rf ./train_parallel$i
|
||||
mkdir ./train_parallel$i
|
||||
cp *.py ./train_parallel$i
|
||||
cp *.sh ./train_parallel$i
|
||||
cp -r src ./train_parallel$i
|
||||
cd ./train_parallel$i || exit
|
||||
echo "start training for rank $RANK_ID, device $DEVICE_ID"
|
||||
env > env.log
|
||||
python train.py --data_path=$2 --device_id=$i &> log &
|
||||
cd ..
|
||||
done
|
||||
done
|
|
@ -0,0 +1,14 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the License);
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# httpwww.apache.orglicensesLICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an AS IS BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
|
@ -16,13 +16,15 @@
|
|||
Data operations, will be used in train.py and eval.py
|
||||
"""
|
||||
import os
|
||||
|
||||
import mindspore.common.dtype as mstype
|
||||
import mindspore.dataset as ds
|
||||
import mindspore.dataset.transforms.c_transforms as C
|
||||
import mindspore.dataset.transforms.vision.c_transforms as vision
|
||||
import mindspore.common.dtype as mstype
|
||||
from config import cifar_cfg as cfg
|
||||
from .config import cifar_cfg as cfg
|
||||
|
||||
def create_dataset(data_home, repeat_num=1, training=True):
|
||||
|
||||
def vgg_create_dataset(data_home, repeat_num=1, training=True):
|
||||
"""Data operations."""
|
||||
ds.config.set_seed(1)
|
||||
data_dir = os.path.join(data_home, "cifar-10-batches-bin")
|
|
@ -0,0 +1,104 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""VGG."""
|
||||
import mindspore.nn as nn
|
||||
from mindspore.common.initializer import initializer
|
||||
import mindspore.common.dtype as mstype
|
||||
|
||||
def _make_layer(base, batch_norm):
|
||||
"""Make stage network of VGG."""
|
||||
layers = []
|
||||
in_channels = 3
|
||||
for v in base:
|
||||
if v == 'M':
|
||||
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
|
||||
else:
|
||||
weight_shape = (v, in_channels, 3, 3)
|
||||
weight = initializer('XavierUniform', shape=weight_shape, dtype=mstype.float32).to_tensor()
|
||||
conv2d = nn.Conv2d(in_channels=in_channels,
|
||||
out_channels=v,
|
||||
kernel_size=3,
|
||||
padding=0,
|
||||
pad_mode='same',
|
||||
weight_init=weight)
|
||||
if batch_norm:
|
||||
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU()]
|
||||
else:
|
||||
layers += [conv2d, nn.ReLU()]
|
||||
in_channels = v
|
||||
return nn.SequentialCell(layers)
|
||||
|
||||
|
||||
class Vgg(nn.Cell):
|
||||
"""
|
||||
VGG network definition.
|
||||
|
||||
Args:
|
||||
base (list): Configuration for different layers, mainly the channel number of Conv layer.
|
||||
num_classes (int): Class numbers. Default: 1000.
|
||||
batch_norm (bool): Whether to do the batchnorm. Default: False.
|
||||
batch_size (int): Batch size. Default: 1.
|
||||
|
||||
Returns:
|
||||
Tensor, infer output tensor.
|
||||
|
||||
Examples:
|
||||
>>> Vgg([64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
|
||||
>>> num_classes=1000, batch_norm=False, batch_size=1)
|
||||
"""
|
||||
|
||||
def __init__(self, base, num_classes=1000, batch_norm=False, batch_size=1):
|
||||
super(Vgg, self).__init__()
|
||||
_ = batch_size
|
||||
self.layers = _make_layer(base, batch_norm=batch_norm)
|
||||
self.flatten = nn.Flatten()
|
||||
self.classifier = nn.SequentialCell([
|
||||
nn.Dense(512 * 7 * 7, 4096),
|
||||
nn.ReLU(),
|
||||
nn.Dense(4096, 4096),
|
||||
nn.ReLU(),
|
||||
nn.Dense(4096, num_classes)])
|
||||
|
||||
def construct(self, x):
|
||||
x = self.layers(x)
|
||||
x = self.flatten(x)
|
||||
x = self.classifier(x)
|
||||
return x
|
||||
|
||||
|
||||
cfg = {
|
||||
'11': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
|
||||
'13': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
|
||||
'16': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
|
||||
'19': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
|
||||
}
|
||||
|
||||
|
||||
def vgg16(num_classes=1000):
|
||||
"""
|
||||
Get Vgg16 neural network with batch normalization.
|
||||
|
||||
Args:
|
||||
num_classes (int): Class numbers. Default: 1000.
|
||||
|
||||
Returns:
|
||||
Cell, cell instance of Vgg16 neural network with batch normalization.
|
||||
|
||||
Examples:
|
||||
>>> vgg16(num_classes=1000)
|
||||
"""
|
||||
|
||||
net = Vgg(cfg['16'], num_classes=num_classes, batch_norm=True)
|
||||
return net
|
|
@ -19,20 +19,24 @@ python train.py --data_path=$DATA_HOME --device_id=$DEVICE_ID
|
|||
import argparse
|
||||
import os
|
||||
import random
|
||||
|
||||
import numpy as np
|
||||
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
from mindspore.communication.management import init
|
||||
from mindspore.nn.optim.momentum import Momentum
|
||||
from mindspore.train.model import Model, ParallelMode
|
||||
from mindspore import context
|
||||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
|
||||
from mindspore.model_zoo.vgg import vgg16
|
||||
from dataset import create_dataset
|
||||
from config import cifar_cfg as cfg
|
||||
from mindspore.train.model import Model, ParallelMode
|
||||
from src.config import cifar_cfg as cfg
|
||||
from src.dataset import vgg_create_dataset
|
||||
from src.vgg import vgg16
|
||||
|
||||
random.seed(1)
|
||||
np.random.seed(1)
|
||||
|
||||
|
||||
def lr_steps(global_step, lr_max=None, total_epochs=None, steps_per_epoch=None):
|
||||
"""Set learning rate."""
|
||||
lr_each_step = []
|
||||
|
@ -72,12 +76,13 @@ if __name__ == '__main__':
|
|||
mirror_mean=True)
|
||||
init()
|
||||
|
||||
dataset = create_dataset(args_opt.data_path, cfg.epoch_size)
|
||||
dataset = vgg_create_dataset(args_opt.data_path, cfg.epoch_size)
|
||||
batch_num = dataset.get_dataset_size()
|
||||
|
||||
net = vgg16(num_classes=cfg.num_classes)
|
||||
lr = lr_steps(0, lr_max=cfg.lr_init, total_epochs=cfg.epoch_size, steps_per_epoch=batch_num)
|
||||
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), Tensor(lr), cfg.momentum, weight_decay=cfg.weight_decay)
|
||||
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), Tensor(lr), cfg.momentum,
|
||||
weight_decay=cfg.weight_decay)
|
||||
loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean', is_grad=False)
|
||||
model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'},
|
||||
amp_level="O2", keep_batchnorm_fp32=False, loss_scale_manager=None)
|
Loading…
Reference in New Issue