forked from mindspore-Ecosystem/mindspore
bert script for thor generalization
This commit is contained in:
parent
ac3ef289d8
commit
4c302c0c5b
|
@ -755,13 +755,13 @@ class ThorAscend(Optimizer):
|
|||
if self.conv_layer_count > 0:
|
||||
auto_parallel_context().set_all_reduce_fusion_split_indices(self.split_indices, "hccl_world_groupsum2")
|
||||
auto_parallel_context().set_all_reduce_fusion_split_indices(self.split_indices, "hccl_world_groupsum4")
|
||||
self.grad_reducer_amax = DistributedGradReducer(self.matrix_a_cov, mean, degree, fusion_type=3)
|
||||
self.grad_reducer_gmax = DistributedGradReducer(self.matrix_a_cov, mean, degree, fusion_type=5)
|
||||
self.grad_reducer_amax = DistributedGradReducer(self.matrix_a_cov, mean, degree, fusion_type=2)
|
||||
self.grad_reducer_gmax = DistributedGradReducer(self.matrix_a_cov, mean, degree, fusion_type=4)
|
||||
|
||||
auto_parallel_context().set_all_reduce_fusion_split_indices(self.split_indices, "hccl_world_groupsum6")
|
||||
auto_parallel_context().set_all_reduce_fusion_split_indices(self.split_indices, "hccl_world_groupsum8")
|
||||
self.grad_reducer_a = DistributedGradReducer(self.matrix_a_cov, mean, degree, fusion_type=9)
|
||||
self.grad_reducer_g = DistributedGradReducer(self.matrix_a_cov, mean, degree, fusion_type=17)
|
||||
self.grad_reducer_a = DistributedGradReducer(self.matrix_a_cov, mean, degree, fusion_type=6)
|
||||
self.grad_reducer_g = DistributedGradReducer(self.matrix_a_cov, mean, degree, fusion_type=8)
|
||||
|
||||
def _process_matrix_init_and_weight_idx_map(self, net):
|
||||
"""for Ascend, process matrix init shape, and get weight idx map"""
|
||||
|
|
|
@ -26,7 +26,7 @@ accumulation_steps: 1
|
|||
allreduce_post_accumulation: 'true'
|
||||
save_checkpoint_path: ''
|
||||
load_checkpoint_path: ''
|
||||
save_checkpoint_steps: 1000
|
||||
save_checkpoint_steps: 10000
|
||||
train_steps: -1
|
||||
save_checkpoint_num: 1
|
||||
data_dir: ''
|
||||
|
|
|
@ -0,0 +1,194 @@
|
|||
# Builtin Configurations(DO NOT CHANGE THESE CONFIGURATIONS unless you know exactly what you are doing)
|
||||
enable_modelarts: False
|
||||
# Url for modelarts
|
||||
data_url: ""
|
||||
train_url: ""
|
||||
checkpoint_url: ""
|
||||
# Path for local
|
||||
data_path: "/cache/data"
|
||||
output_path: "/cache/train"
|
||||
load_path: "/cache/checkpoint_path"
|
||||
device_target: "Ascend"
|
||||
enable_profiling: False
|
||||
|
||||
# ==============================================================================
|
||||
description: 'run_pretrain'
|
||||
distribute: 'false'
|
||||
epoch_size: 40
|
||||
device_id: 0
|
||||
device_num: 1
|
||||
enable_save_ckpt: 'true'
|
||||
enable_lossscale: 'false'
|
||||
do_shuffle: 'true'
|
||||
enable_data_sink: 'true'
|
||||
data_sink_steps: 100
|
||||
accumulation_steps: 1
|
||||
allreduce_post_accumulation: 'true'
|
||||
save_checkpoint_path: ''
|
||||
load_checkpoint_path: ''
|
||||
save_checkpoint_steps: 500
|
||||
train_steps: 2500
|
||||
save_checkpoint_num: 5
|
||||
data_dir: ''
|
||||
schema_dir: ''
|
||||
|
||||
# ==============================================================================
|
||||
# pretrain related
|
||||
batch_size: 20
|
||||
# Available: [base, nezha, large, large_acc]
|
||||
bert_network: 'large_acc'
|
||||
loss_scale_value: 65536
|
||||
scale_factor: 2
|
||||
scale_window: 1000
|
||||
optimizer: 'Thor'
|
||||
enable_global_norm: False
|
||||
# pretrain_eval related
|
||||
data_file: ""
|
||||
schema_file: null
|
||||
finetune_ckpt: ""
|
||||
# optimizer related
|
||||
AdamWeightDecay:
|
||||
learning_rate: 0.00003 # 3e-5
|
||||
end_learning_rate: 0.0
|
||||
power: 5.0
|
||||
weight_decay: 0.00001 # 1e-5
|
||||
decay_filter: ['layernorm', 'bias']
|
||||
eps: 0.000001 # 1e-6
|
||||
warmup_steps: 10000
|
||||
|
||||
Lamb:
|
||||
learning_rate: 0.0003 # 3e-4
|
||||
end_learning_rate: 0.0
|
||||
power: 2.0
|
||||
warmup_steps: 10000
|
||||
weight_decay: 0.01
|
||||
decay_filter: ['layernorm', 'bias']
|
||||
eps: 0.00000001 # 1e-8,
|
||||
|
||||
Momentum:
|
||||
learning_rate: 0.00002 # 2e-5
|
||||
momentum: 0.9
|
||||
|
||||
Thor:
|
||||
lr_max: 0.006464
|
||||
lr_min: 0.000001 # 1e-6
|
||||
lr_power: 2.0
|
||||
lr_total_steps: 30000
|
||||
damping_max: 0.007035
|
||||
damping_min: 0.000001 # 1e-6
|
||||
damping_power: 4.0
|
||||
damping_total_steps: 30000
|
||||
momentum: 0.9
|
||||
weight_decay: 0.00001 # 1e-5
|
||||
loss_scale: 1024.0
|
||||
frequency: 100
|
||||
# ==============================================================================
|
||||
# base
|
||||
base_batch_size: 256
|
||||
base_net_cfg:
|
||||
seq_length: 128
|
||||
vocab_size: 21128
|
||||
hidden_size: 768
|
||||
num_hidden_layers: 12
|
||||
num_attention_heads: 12
|
||||
intermediate_size: 3072
|
||||
hidden_act: "gelu"
|
||||
hidden_dropout_prob: 0.1
|
||||
attention_probs_dropout_prob: 0.1
|
||||
max_position_embeddings: 512
|
||||
type_vocab_size: 2
|
||||
initializer_range: 0.02
|
||||
use_relative_positions: False
|
||||
dtype: mstype.float32
|
||||
compute_type: mstype.float16
|
||||
# nezha
|
||||
nezha_batch_size: 96
|
||||
nezha_net_cfg:
|
||||
seq_length: 128
|
||||
vocab_size: 21128
|
||||
hidden_size: 1024
|
||||
num_hidden_layers: 24
|
||||
num_attention_heads: 16
|
||||
intermediate_size: 4096
|
||||
hidden_act: "gelu"
|
||||
hidden_dropout_prob: 0.1
|
||||
attention_probs_dropout_prob: 0.1
|
||||
max_position_embeddings: 512
|
||||
type_vocab_size: 2
|
||||
initializer_range: 0.02
|
||||
use_relative_positions: True
|
||||
dtype: mstype.float32
|
||||
compute_type: mstype.float16
|
||||
# large
|
||||
large_batch_size: 20
|
||||
large_net_cfg:
|
||||
seq_length: 512
|
||||
vocab_size: 30522
|
||||
hidden_size: 1024
|
||||
num_hidden_layers: 24
|
||||
num_attention_heads: 16
|
||||
intermediate_size: 4096
|
||||
hidden_act: "gelu"
|
||||
hidden_dropout_prob: 0.1
|
||||
attention_probs_dropout_prob: 0.1
|
||||
max_position_embeddings: 512
|
||||
type_vocab_size: 2
|
||||
initializer_range: 0.02
|
||||
use_relative_positions: False
|
||||
dtype: mstype.float32
|
||||
compute_type: mstype.float16
|
||||
# Accelerated large network which is only supported in Ascend yet.
|
||||
large_acc_batch_size: 20
|
||||
large_acc_net_cfg:
|
||||
seq_length: 512
|
||||
vocab_size: 30522
|
||||
hidden_size: 1024
|
||||
num_hidden_layers: 24
|
||||
num_attention_heads: 16
|
||||
intermediate_size: 4096
|
||||
hidden_act: "fast_gelu"
|
||||
hidden_dropout_prob: 0.1
|
||||
attention_probs_dropout_prob: 0.1
|
||||
max_position_embeddings: 512
|
||||
type_vocab_size: 2
|
||||
initializer_range: 0.02
|
||||
use_relative_positions: False
|
||||
dtype: mstype.float32
|
||||
compute_type: mstype.float16
|
||||
|
||||
|
||||
---
|
||||
# Help description for each configuration
|
||||
enable_modelarts: "Whether training on modelarts, default: False"
|
||||
data_url: "Url for modelarts"
|
||||
train_url: "Url for modelarts"
|
||||
data_path: "The location of the input data."
|
||||
output_path: "The location of the output file."
|
||||
device_target: "Running platform, choose from Ascend or CPU, and default is Ascend."
|
||||
enable_profiling: 'Whether enable profiling while training, default: False'
|
||||
|
||||
distribute: "Run distribute, default is 'false'."
|
||||
epoch_size: "Epoch size, default is 1."
|
||||
enable_save_ckpt: "Enable save checkpoint, default is true."
|
||||
enable_lossscale: "Use lossscale or not, default is not."
|
||||
do_shuffle: "Enable shuffle for dataset, default is true."
|
||||
enable_data_sink: "Enable data sink, default is true."
|
||||
data_sink_steps: "Sink steps for each epoch, default is 1."
|
||||
accumulation_steps: "Accumulating gradients N times before weight update, default is 1."
|
||||
allreduce_post_accumulation: "Whether to allreduce after accumulation of N steps or after each step, default is true."
|
||||
save_checkpoint_path: "Save checkpoint path"
|
||||
load_checkpoint_path: "Load checkpoint file path"
|
||||
save_checkpoint_steps: "Save checkpoint steps, default is 1000"
|
||||
train_steps: "Training Steps, default is -1, meaning run all steps according to epoch number."
|
||||
save_checkpoint_num: "Save checkpoint numbers, default is 1."
|
||||
data_dir: "Data path, it is better to use absolute path"
|
||||
schema_dir: "Schema path, it is better to use absolute path"
|
||||
---
|
||||
# chocies
|
||||
device_target: ['Ascend', 'GPU']
|
||||
distribute: ["true", "false"]
|
||||
enable_save_ckpt: ["true", "false"]
|
||||
enable_lossscale: ["true", "false"]
|
||||
do_shuffle: ["true", "false"]
|
||||
enable_data_sink: ["true", "false"]
|
||||
allreduce_post_accumulation: ["true", "false"]
|
|
@ -150,10 +150,11 @@ def MLM_eval():
|
|||
res = net.eval(dataset, dataset_sink_mode=False)
|
||||
print("==============================================================")
|
||||
for _, v in res.items():
|
||||
print("Accuracy is: ")
|
||||
print(v)
|
||||
print("Accuracy is: ", v)
|
||||
print("==============================================================")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
DEVICE_ID = 0
|
||||
os.environ['DEVICE_ID'] = str(DEVICE_ID)
|
||||
MLM_eval()
|
||||
|
|
|
@ -47,6 +47,8 @@ def parse_args():
|
|||
parser.add_argument("--hccl_time_out", type=int, default=120,
|
||||
help="Seconds to determine the hccl time out,"
|
||||
"default: 120, which is the same as hccl default config")
|
||||
parser.add_argument("--hccn_config_file", type=str, default="/etc/hccn.conf",
|
||||
help="Path of the hccn.conf file.")
|
||||
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
@ -128,7 +130,7 @@ def distribute_pretrain():
|
|||
# get device_ips
|
||||
device_ips = {}
|
||||
physic_logic_ids = {}
|
||||
with open('/etc/hccn.conf', 'r') as fin:
|
||||
with open(args.hccn_config_file, 'r') as fin:
|
||||
for hccn_item in fin.readlines():
|
||||
if hccn_item.strip().startswith('address_'):
|
||||
device_id, device_ip = hccn_item.split('=')
|
||||
|
@ -136,7 +138,7 @@ def distribute_pretrain():
|
|||
device_ips[device_id] = device_ip.strip()
|
||||
|
||||
if not device_ips:
|
||||
raise ValueError("There is no address in /etc/hccn.conf")
|
||||
raise ValueError("There is no address in hccn.conf file.")
|
||||
|
||||
for logic_id, device_id in enumerate(sorted(device_ips.keys())):
|
||||
physic_logic_ids[device_id] = logic_id
|
||||
|
|
|
@ -2,12 +2,11 @@
|
|||
distribute=true
|
||||
epoch_size=40
|
||||
enable_save_ckpt=true
|
||||
enable_lossscale=true
|
||||
do_shuffle=true
|
||||
enable_data_sink=true
|
||||
data_sink_steps=100
|
||||
accumulation_steps=1
|
||||
allreduce_post_accumulation=true
|
||||
save_checkpoint_path=./
|
||||
save_checkpoint_steps=10000
|
||||
save_checkpoint_num=1
|
||||
config_path=../../pretrain_config.yaml
|
||||
|
|
|
@ -30,6 +30,7 @@ python ${CUR_DIR}/scripts/ascend_distributed_launcher/get_distribute_pretrain_cm
|
|||
--data_dir=$1 \
|
||||
--hccl_config_dir=$2 \
|
||||
--hccl_time_out=600 \
|
||||
--hccn_config_file='/etc/hccn.conf' \
|
||||
--cmd_file=distributed_cmd.sh
|
||||
|
||||
bash distributed_cmd.sh
|
||||
|
|
|
@ -53,10 +53,10 @@ bert_net_cfg = BertConfig(
|
|||
seq_length=512,
|
||||
vocab_size=30522,
|
||||
hidden_size=1024,
|
||||
num_hidden_layers=4,
|
||||
num_hidden_layers=6,
|
||||
num_attention_heads=16,
|
||||
intermediate_size=4096,
|
||||
hidden_act="gelu",
|
||||
hidden_act="fast_gelu",
|
||||
hidden_dropout_prob=0.1,
|
||||
attention_probs_dropout_prob=0.1,
|
||||
max_position_embeddings=512,
|
||||
|
@ -166,7 +166,7 @@ def train_process_bert_thor(q, device_id, epoch_size, device_num):
|
|||
|
||||
lr = get_bert_thor_lr()
|
||||
damping = get_bert_thor_damping()
|
||||
split_indices = None
|
||||
split_indices = [13, 37, 41]
|
||||
optimizer = thor(net_with_loss, lr, damping, momentum, weight_decay, loss_scale, batch_size,
|
||||
decay_filter=lambda x: 'layernorm' not in x.name.lower() and 'bias' not in x.name.lower(),
|
||||
split_indices=split_indices, enable_clip_grad=True, frequency=frequency)
|
||||
|
@ -233,7 +233,7 @@ def test_bert_thor_8p():
|
|||
os.system("rm -rf " + str(i))
|
||||
|
||||
print("End training...")
|
||||
assert mean_cost < 69
|
||||
assert mean_cost < 96
|
||||
assert mean_loss < 8.125
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue