forked from mindspore-Ecosystem/mindspore
!12796 AIpp config file generator bug fix
From: @lizhenglong1992 Reviewed-by: @liucunwei,@heleiwang Signed-off-by: @liucunwei
This commit is contained in:
commit
4b7e76b4fb
|
@ -390,13 +390,21 @@ Status Execute::operator()(const std::vector<MSTensor> &input_tensor_list, std::
|
|||
|
||||
std::vector<uint32_t> AippSizeFilter(const std::vector<uint32_t> &resize_para, const std::vector<uint32_t> &crop_para) {
|
||||
std::vector<uint32_t> aipp_size;
|
||||
// Special condition where (no Crop and no Resize) or (no Crop and resize with fixed ratio) will lead to dynamic input
|
||||
if ((resize_para.size() == 0 || resize_para.size() == 1) && crop_para.size() == 0) {
|
||||
aipp_size = {0, 0};
|
||||
MS_LOG(WARNING) << "Dynamic input shape is not supported, incomplete aipp config file will be generated. Please "
|
||||
"checkout your TensorTransform input, both src_image_size_h and src_image_size will be 0";
|
||||
return aipp_size;
|
||||
}
|
||||
|
||||
if (resize_para.size() == 0) { // If only Crop operator exists
|
||||
aipp_size = crop_para;
|
||||
} else if (crop_para.size() == 0) { // If only Resize operator exists
|
||||
} else if (crop_para.size() == 0) { // If only Resize operator with 2 parameters exists
|
||||
aipp_size = resize_para;
|
||||
} else { // If both of them exist
|
||||
if (resize_para.size() == 1) {
|
||||
aipp_size = *min_element(crop_para.begin(), crop_para.end()) < *resize_para.begin() ? crop_para : resize_para;
|
||||
aipp_size = crop_para;
|
||||
} else {
|
||||
aipp_size =
|
||||
*min_element(resize_para.begin(), resize_para.end()) < *min_element(crop_para.begin(), crop_para.end())
|
||||
|
@ -440,7 +448,7 @@ Status AippInfoCollection(std::map<std::string, std::string> *aipp_options, cons
|
|||
// Several aipp config parameters
|
||||
aipp_options->insert(std::make_pair("related_input_rank", "0"));
|
||||
aipp_options->insert(std::make_pair("src_image_size_w", std::to_string(aipp_size[1])));
|
||||
aipp_options->insert(std::make_pair("src_image_size_h", std::to_string(aipp_size[1])));
|
||||
aipp_options->insert(std::make_pair("src_image_size_h", std::to_string(aipp_size[0])));
|
||||
aipp_options->insert(std::make_pair("crop", "false"));
|
||||
aipp_options->insert(std::make_pair("input_format", "YUV420SP_U8"));
|
||||
aipp_options->insert(std::make_pair("aipp_mode", "static"));
|
||||
|
@ -526,18 +534,27 @@ std::string Execute::AippCfgGenerator() {
|
|||
// Process resize parameters and crop parameters to find out the final size of input data
|
||||
std::vector<uint32_t> resize_paras;
|
||||
std::vector<uint32_t> crop_paras;
|
||||
|
||||
// Find resize parameters
|
||||
auto iter = info_->aipp_cfg_.find(vision::kDvppResizeJpegOperation);
|
||||
if (iter != info_->aipp_cfg_.end()) {
|
||||
std::map<std::string, std::vector<uint32_t>>::iterator iter;
|
||||
if (info_->aipp_cfg_.find(vision::kDvppResizeJpegOperation) != info_->aipp_cfg_.end()) {
|
||||
iter = info_->aipp_cfg_.find(vision::kDvppResizeJpegOperation);
|
||||
resize_paras = iter->second;
|
||||
} else if (info_->aipp_cfg_.find(vision::kDvppDecodeResizeOperation) != info_->aipp_cfg_.end()) {
|
||||
iter = info_->aipp_cfg_.find(vision::kDvppDecodeResizeOperation);
|
||||
resize_paras = iter->second;
|
||||
}
|
||||
|
||||
// Find crop parameters
|
||||
iter = info_->aipp_cfg_.find(vision::kDvppCropJpegOperation);
|
||||
if (iter != info_->aipp_cfg_.end()) {
|
||||
if (info_->aipp_cfg_.find(vision::kDvppCropJpegOperation) != info_->aipp_cfg_.end()) {
|
||||
iter = info_->aipp_cfg_.find(vision::kDvppCropJpegOperation);
|
||||
crop_paras = iter->second;
|
||||
if (crop_paras.size() == 1) {
|
||||
crop_paras.emplace_back(crop_paras[0]);
|
||||
}
|
||||
} else if (info_->aipp_cfg_.find(vision::kDvppDecodeResizeCropOperation) != info_->aipp_cfg_.end()) {
|
||||
iter = info_->aipp_cfg_.find(vision::kDvppDecodeResizeCropOperation);
|
||||
crop_paras = iter->second;
|
||||
}
|
||||
if (crop_paras.size() == 1) {
|
||||
crop_paras.emplace_back(crop_paras[0]);
|
||||
}
|
||||
|
||||
std::vector<uint32_t> aipp_size = AippSizeFilter(resize_paras, crop_paras);
|
||||
|
|
|
@ -283,8 +283,14 @@ std::shared_ptr<TensorOp> DvppNormalizeOperation::Build() {
|
|||
|
||||
Status DvppNormalizeOperation::to_json(nlohmann::json *out_json) {
|
||||
nlohmann::json args;
|
||||
args["mean"] = mean_;
|
||||
args["std"] = std_;
|
||||
std::vector<uint32_t> enlarge_mean_;
|
||||
std::vector<uint32_t> enlarge_std_;
|
||||
std::transform(mean_.begin(), mean_.end(), std::back_inserter(enlarge_mean_),
|
||||
[](float i) -> uint32_t { return static_cast<uint32_t>(10000 * i); });
|
||||
std::transform(std_.begin(), std_.end(), std::back_inserter(enlarge_std_),
|
||||
[](float j) -> uint32_t { return static_cast<uint32_t>(10000 * j); });
|
||||
args["mean"] = enlarge_mean_;
|
||||
args["std"] = enlarge_std_;
|
||||
*out_json = args;
|
||||
return Status::OK();
|
||||
}
|
||||
|
|
|
@ -78,6 +78,8 @@ TEST_F(TestDE, TestDvpp) {
|
|||
|
||||
// Apply transform on images
|
||||
Status rc = Transform(image, &image);
|
||||
std::string aipp_cfg = Transform.AippCfgGenerator();
|
||||
ASSERT_EQ(aipp_cfg, "./aipp.cfg");
|
||||
|
||||
// Check image info
|
||||
ASSERT_TRUE(rc.IsOk());
|
||||
|
|
Loading…
Reference in New Issue