forked from mindspore-Ecosystem/mindspore
fix api error format showing on website.
This commit is contained in:
parent
4278813832
commit
49045e168b
|
@ -119,7 +119,7 @@ class WithGradCell(Cell):
|
|||
|
||||
Wraps the network with backward cell to compute gradients. A network with a loss function is necessary
|
||||
as argument. If loss function in None, the network must be a wrapper of network and loss function. This
|
||||
Cell accepts '*inputs' as inputs and returns gradients for each trainable parameter.
|
||||
Cell accepts '\*inputs' as inputs and returns gradients for each trainable parameter.
|
||||
|
||||
Note:
|
||||
Run in PyNative mode.
|
||||
|
@ -132,7 +132,7 @@ class WithGradCell(Cell):
|
|||
output value. Default: None.
|
||||
|
||||
Inputs:
|
||||
- **(*inputs)** (Tuple(Tensor)) - Tuple of input tensors with shape :math:`(N, \ldots)`.
|
||||
- **(\*inputs)** (Tuple(Tensor)) - Tuple of input tensors with shape :math:`(N, \ldots)`.
|
||||
|
||||
Outputs:
|
||||
list, a list of Tensors with identical shapes as trainable weights.
|
||||
|
@ -178,7 +178,7 @@ class TrainOneStepCell(Cell):
|
|||
r"""
|
||||
Network training package class.
|
||||
|
||||
Wraps the network with an optimizer. The resulting Cell is trained with input *inputs.
|
||||
Wraps the network with an optimizer. The resulting Cell is trained with input '\*inputs'.
|
||||
The backward graph will be created in the construct function to update the parameter. Different
|
||||
parallel modes are available for training.
|
||||
|
||||
|
@ -188,7 +188,7 @@ class TrainOneStepCell(Cell):
|
|||
sens (Number): The scaling number to be filled as the input of backpropagation. Default value is 1.0.
|
||||
|
||||
Inputs:
|
||||
- **(*inputs)** (Tuple(Tensor)) - Tuple of input tensors with shape :math:`(N, \ldots)`.
|
||||
- **(\*inputs)** (Tuple(Tensor)) - Tuple of input tensors with shape :math:`(N, \ldots)`.
|
||||
|
||||
Outputs:
|
||||
Tensor, a scalar Tensor with shape :math:`()`.
|
||||
|
|
|
@ -38,7 +38,7 @@ def _check_validate_keepdims(keep_dims, name):
|
|||
|
||||
|
||||
def count_nonzero(x, axis=(), keep_dims=False, dtype=mstype.int32):
|
||||
"""
|
||||
r"""
|
||||
Count number of nonzero elements across axis of input tensor
|
||||
|
||||
Args:
|
||||
|
@ -47,7 +47,7 @@ def count_nonzero(x, axis=(), keep_dims=False, dtype=mstype.int32):
|
|||
Default: (), reduce all dimensions.
|
||||
keep_dims (bool): If true, keep these reduced dimensions and the length is 1.
|
||||
If false, don't keep these dimensions. Default: False.
|
||||
dtype (Union[Number, mstype.bool_]): The data type of the output tensor. Only constant value is allowed.
|
||||
dtype (Union[Number, mstype.bool\_]): The data type of the output tensor. Only constant value is allowed.
|
||||
Default: mstype.int32
|
||||
|
||||
Returns:
|
||||
|
|
Loading…
Reference in New Issue