!4869 Add ci for quant

Merge pull request !4869 from chenfei_mindspore/master
This commit is contained in:
mindspore-ci-bot 2020-08-21 15:57:43 +08:00 committed by Gitee
commit 46429a98bf
8 changed files with 386 additions and 11 deletions

View File

@ -45,7 +45,6 @@ args = parser.parse_args()
if __name__ == "__main__":
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
ds_eval = create_dataset(os.path.join(args.data_path, "test"), cfg.batch_size, 1)
step_size = ds_eval.get_dataset_size()
# define fusion network
network = LeNet5Fusion(cfg.num_classes)

View File

@ -17,7 +17,7 @@
import os
import argparse
from src.config import quant_set, config_quant, config_noquant
from src.config import config_quant
from src.dataset import create_dataset
from src.crossentropy import CrossEntropy
from models.resnet_quant import resnet50_quant
@ -34,7 +34,7 @@ parser.add_argument('--device_target', type=str, default='Ascend', help='Device
args_opt = parser.parse_args()
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, save_graphs=False)
config = config_quant if quant_set.quantization_aware else config_noquant
config = config_quant
if args_opt.device_target == "Ascend":
device_id = int(os.getenv('DEVICE_ID'))
@ -43,12 +43,11 @@ if args_opt.device_target == "Ascend":
if __name__ == '__main__':
# define fusion network
net = resnet50_quant(class_num=config.class_num)
if quant_set.quantization_aware:
# convert fusion network to quantization aware network
net = quant.convert_quant_network(net,
bn_fold=True,
per_channel=[True, False],
symmetric=[True, False])
# convert fusion network to quantization aware network
net = quant.convert_quant_network(net,
bn_fold=True,
per_channel=[True, False],
symmetric=[True, False])
# define network loss
if not config.use_label_smooth:
config.label_smooth_factor = 0.0

View File

@ -23,9 +23,9 @@ import mindspore.dataset.transforms.vision.c_transforms as C
import mindspore.dataset.transforms.c_transforms as C2
import mindspore.dataset.transforms.vision.py_transforms as P
from mindspore.communication.management import init, get_rank, get_group_size
from src.config import quant_set, config_quant, config_noquant
from src.config import config_quant
config = config_quant if quant_set.quantization_aware else config_noquant
config = config_quant
def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target="Ascend"):

View File

@ -0,0 +1,44 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
network config setting, will be used in test_lenet_quant.py
"""
from easydict import EasyDict as edict
nonquant_cfg = edict({
'num_classes': 10,
'lr': 0.01,
'momentum': 0.9,
'epoch_size': 10,
'batch_size': 32,
'buffer_size': 1000,
'image_height': 32,
'image_width': 32,
'save_checkpoint_steps': 1875,
'keep_checkpoint_max': 10,
})
quant_cfg = edict({
'num_classes': 10,
'lr': 0.01,
'momentum': 0.9,
'epoch_size': 10,
'batch_size': 64,
'buffer_size': 1000,
'image_height': 32,
'image_width': 32,
'keep_checkpoint_max': 10,
})

View File

@ -0,0 +1,60 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Produce the dataset
"""
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as CV
import mindspore.dataset.transforms.c_transforms as C
from mindspore.dataset.transforms.vision import Inter
from mindspore.common import dtype as mstype
def create_dataset(data_path, batch_size=32, repeat_size=1,
num_parallel_workers=1):
"""
create dataset for train or test
"""
# define dataset
mnist_ds = ds.MnistDataset(data_path)
resize_height, resize_width = 32, 32
rescale = 1.0 / 255.0
shift = 0.0
rescale_nml = 1 / 0.3081
shift_nml = -1 * 0.1307 / 0.3081
# define map operations
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
rescale_op = CV.Rescale(rescale, shift)
hwc2chw_op = CV.HWC2CHW()
type_cast_op = C.TypeCast(mstype.int32)
# apply map operations on images
mnist_ds = mnist_ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(input_columns="image", operations=resize_op, num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_op, num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(input_columns="image", operations=rescale_nml_op, num_parallel_workers=num_parallel_workers)
mnist_ds = mnist_ds.map(input_columns="image", operations=hwc2chw_op, num_parallel_workers=num_parallel_workers)
# apply DatasetOps
buffer_size = 10000
mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size) # 10000 as in LeNet train script
mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True)
mnist_ds = mnist_ds.repeat(repeat_size)
return mnist_ds

View File

@ -0,0 +1,79 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""LeNet."""
import mindspore.nn as nn
from mindspore.common.initializer import TruncatedNormal
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
"""weight initial for conv layer"""
weight = weight_variable()
return nn.Conv2d(in_channels, out_channels,
kernel_size=kernel_size, stride=stride, padding=padding,
weight_init=weight, has_bias=False, pad_mode="valid")
def fc_with_initialize(input_channels, out_channels):
"""weight initial for fc layer"""
weight = weight_variable()
bias = weight_variable()
return nn.Dense(input_channels, out_channels, weight, bias)
def weight_variable():
"""weight initial"""
return TruncatedNormal(0.02)
class LeNet5(nn.Cell):
"""
Lenet network
Args:
num_class (int): Num classes. Default: 10.
Returns:
Tensor, output tensor
Examples:
>>> LeNet(num_class=10)
"""
def __init__(self, num_class=10, channel=1):
super(LeNet5, self).__init__()
self.num_class = num_class
self.conv1 = conv(channel, 6, 5)
self.conv2 = conv(6, 16, 5)
self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
self.fc2 = fc_with_initialize(120, 84)
self.fc3 = fc_with_initialize(84, self.num_class)
self.relu = nn.ReLU()
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = nn.Flatten()
def construct(self, x):
x = self.conv1(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.conv2(x)
x = self.relu(x)
x = self.max_pool2d(x)
x = self.flatten(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.fc3(x)
return x

View File

@ -0,0 +1,58 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""LeNet."""
import mindspore.nn as nn
class LeNet5(nn.Cell):
"""
Lenet network
Args:
num_class (int): Num classes. Default: 10.
Returns:
Tensor, output tensor
Examples:
>>> LeNet(num_class=10)
"""
def __init__(self, num_class=10, channel=1):
super(LeNet5, self).__init__()
self.type = "fusion"
self.num_class = num_class
# change `nn.Conv2d` to `nn.Conv2dBnAct`
self.conv1 = nn.Conv2dBnAct(channel, 6, 5, pad_mode='valid', activation='relu')
self.conv2 = nn.Conv2dBnAct(6, 16, 5, pad_mode='valid', activation='relu')
# change `nn.Dense` to `nn.DenseBnAct`
self.fc1 = nn.DenseBnAct(16 * 5 * 5, 120, activation='relu')
self.fc2 = nn.DenseBnAct(120, 84, activation='relu')
self.fc3 = nn.DenseBnAct(84, self.num_class)
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = nn.Flatten()
def construct(self, x):
x = self.conv1(x)
x = self.max_pool2d(x)
x = self.conv2(x)
x = self.max_pool2d(x)
x = self.flatten(x)
x = self.fc1(x)
x = self.fc2(x)
x = self.fc3(x)
return x

View File

@ -0,0 +1,136 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
train and infer lenet quantization network
"""
import os
import pytest
from mindspore import context
import mindspore.nn as nn
from mindspore.nn.metrics import Accuracy
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.train import Model
from mindspore.train.quant import quant
from mindspore.train.quant.quant_utils import load_nonquant_param_into_quant_net
from dataset import create_dataset
from config import nonquant_cfg, quant_cfg
from lenet import LeNet5
from lenet_fusion import LeNet5 as LeNet5Fusion
device_target = 'GPU'
data_path = "/home/workspace/mindspore_dataset/mnist"
def train_lenet():
context.set_context(mode=context.GRAPH_MODE, device_target=device_target)
cfg = nonquant_cfg
ds_train = create_dataset(os.path.join(data_path, "train"),
cfg.batch_size)
network = LeNet5(cfg.num_classes)
net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
time_cb = TimeMonitor(data_size=ds_train.get_dataset_size())
config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_checkpoint_steps,
keep_checkpoint_max=cfg.keep_checkpoint_max)
ckpoint_cb = ModelCheckpoint(prefix="checkpoint_lenet", config=config_ck)
model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
print("============== Starting Training Lenet==============")
model.train(cfg['epoch_size'], ds_train, callbacks=[time_cb, ckpoint_cb, LossMonitor()],
dataset_sink_mode=True)
def train_lenet_quant():
context.set_context(mode=context.GRAPH_MODE, device_target=device_target)
cfg = quant_cfg
ckpt_path = './checkpoint_lenet-10_1875.ckpt'
ds_train = create_dataset(os.path.join(data_path, "train"), cfg.batch_size, 1)
step_size = ds_train.get_dataset_size()
# define fusion network
network = LeNet5Fusion(cfg.num_classes)
# load quantization aware network checkpoint
param_dict = load_checkpoint(ckpt_path)
load_nonquant_param_into_quant_net(network, param_dict)
# convert fusion network to quantization aware network
network = quant.convert_quant_network(network, quant_delay=900, bn_fold=False, per_channel=[True, False],
symmetric=[False, False])
# define network loss
net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
# define network optimization
net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
# call back and monitor
config_ckpt = CheckpointConfig(save_checkpoint_steps=cfg.epoch_size * step_size,
keep_checkpoint_max=cfg.keep_checkpoint_max)
ckpt_callback = ModelCheckpoint(prefix="checkpoint_lenet", config=config_ckpt)
# define model
model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
print("============== Starting Training ==============")
model.train(cfg['epoch_size'], ds_train, callbacks=[ckpt_callback, LossMonitor()],
dataset_sink_mode=True)
print("============== End Training ==============")
def eval_quant():
context.set_context(mode=context.GRAPH_MODE, device_target=device_target)
cfg = quant_cfg
ds_eval = create_dataset(os.path.join(data_path, "test"), cfg.batch_size, 1)
ckpt_path = './checkpoint_lenet_1-10_937.ckpt'
# define fusion network
network = LeNet5Fusion(cfg.num_classes)
# convert fusion network to quantization aware network
network = quant.convert_quant_network(network, quant_delay=0, bn_fold=False, freeze_bn=10000,
per_channel=[True, False])
# define loss
net_loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction="mean")
# define network optimization
net_opt = nn.Momentum(network.trainable_params(), cfg.lr, cfg.momentum)
# call back and monitor
model = Model(network, net_loss, net_opt, metrics={"Accuracy": Accuracy()})
# load quantization aware network checkpoint
param_dict = load_checkpoint(ckpt_path)
not_load_param = load_param_into_net(network, param_dict)
if not_load_param:
raise ValueError("Load param into net fail!")
print("============== Starting Testing ==============")
acc = model.eval(ds_eval, dataset_sink_mode=True)
print("============== {} ==============".format(acc))
assert acc['Accuracy'] > 0.98
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_lenet_quant():
train_lenet()
train_lenet_quant()
eval_quant()
if __name__ == "__main__":
train_lenet_quant()