Merge pull request !6554 from jinyaohui/master
This commit is contained in:
mindspore-ci-bot 2020-09-21 19:09:21 +08:00 committed by Gitee
commit 428927bdff
3 changed files with 19 additions and 15 deletions

View File

@ -14,19 +14,20 @@
# ============================================================================
import math
import os
import random
import math
import cv2
import pyclipper
import numpy as np
from PIL import Image
import Polygon as plg
import cv2
import numpy as np
import pyclipper
from PIL import Image
from src.config import config
import mindspore.dataset.engine as de
import mindspore.dataset.vision.py_transforms as py_transforms
from src.config import config
__all__ = ['train_dataset_creator', 'test_dataset_creator']
def get_img(img_path):

View File

@ -15,14 +15,16 @@
import time
import numpy as np
import mindspore.nn as nn
from mindspore.ops import functional as F
from mindspore.ops import composite as C
from mindspore import ParameterTuple
from mindspore.common.tensor import Tensor
from mindspore.train.callback import Callback
from mindspore.nn.wrap.grad_reducer import DistributedGradReducer
import numpy as np
from mindspore.ops import composite as C
from mindspore.ops import functional as F
from mindspore.train.callback import Callback
__all__ = ['LossCallBack', 'WithLossCell', 'TrainOneStepCell']

View File

@ -13,12 +13,12 @@
# limitations under the License.
# ============================================================================
""" test dynamic shape """
from mindspore import Tensor, context, nn, Parameter
from mindspore.ops import operations as P
from mindspore import dtype as mstype
import numpy as np
from mindspore import Tensor, context, nn, Parameter
from mindspore import dtype as mstype
from mindspore.ops import operations as P
context.set_context(mode=context.GRAPH_MODE, save_graphs=False)
@ -32,6 +32,7 @@ def test_sparse_apply_proximal_ada_grad():
self.lr = 0.01
self.l1 = 0.0
self.l2 = 0.0
def construct(self, grad, indices):
out = self.sparse_apply_proximal_adagrad(self.var, self.accum, self.lr, self.l1, self.l2, grad, indices)
return out[0]