modify dis_load_ckpt for master

This commit is contained in:
changzherui 2021-05-08 22:11:38 +08:00
parent d7554bbbd3
commit 422614c558
1 changed files with 63 additions and 27 deletions

View File

@ -22,6 +22,7 @@ import shutil
import time
import copy
from threading import Thread, Lock
from collections import defaultdict
import numpy as np
import mindspore.nn as nn
@ -1138,19 +1139,18 @@ def merge_sliced_parameter(sliced_parameters, strategy=None):
return merged_parameter
def load_distributed_checkpoint(network, checkpoint_filenames, predict_strategy=None, dec_key=None, dec_mode='AES-GCM'):
def load_distributed_checkpoint(network, checkpoint_filenames, predict_strategy=None,
train_strategy_filename=None, dec_key=None, dec_mode='AES-GCM'):
"""
Load checkpoint into net for distributed predication.
Args:
network (Cell): Network for distributed predication.
checkpoint_filenames (list(str)): The name of Checkpoint files
in order of rank id.
predict_strategy (Optional(dict)): Strategy of predication process, whose key
is parameter name, and value is a list or a tuple that the first four
elements are [dev_matrix, tensor_map, param_split_shape, field]. If None,
it means that the predication process just uses single device.
Default: None.
checkpoint_filenames (list[str]): The name of Checkpoint files in order of rank id.
predict_strategy (dict): Strategy of predication process, whose key is parameter name, and value is a list or
a tuple that the first four elements are [dev_matrix, tensor_map, param_split_shape, field]. If None,
it means that the predication process just uses single device. Default: None.
train_strategy_filename (str): Train strategy file. Default: None.
dec_key (Union[None, bytes]): Byte type key used for decryption. If the value is None, the decryption
is not required. Default: None.
dec_mode (str): This parameter is valid only when dec_key is not set to None. Specifies the decryption
@ -1161,35 +1161,34 @@ def load_distributed_checkpoint(network, checkpoint_filenames, predict_strategy=
ValueError: Failed to load checkpoint into net.
"""
network = Validator.check_isinstance("network", network, nn.Cell)
for index, filename in enumerate(checkpoint_filenames):
if not isinstance(filename, str) or not os.path.exists(filename) \
or filename[-5:] != ".ckpt" or os.path.getsize(filename) == 0:
raise ValueError(f"Please make sure that the {filename} at index {index} is a valid checkpoint file.")
if not _check_predict_strategy(predict_strategy):
raise ValueError(f"Please make sure that the key of predict_strategy is str, "
f"and the value is a list or a tuple that the first four elements are "
f"dev_matrix (list[int]), tensor_map (list[int]), "
f"param_split_shape (list[int]) and field_size (zero).")
_check_checkpoint_file(checkpoint_filenames)
_check_predict_strategy(predict_strategy)
dec_key = Validator.check_isinstance('dec_key', dec_key, (type(None), bytes))
dec_mode = Validator.check_isinstance('dec_mode', dec_mode, str)
train_strategy_filename = context.get_auto_parallel_context("strategy_ckpt_load_file")
if train_strategy_filename is None:
train_strategy_filename = context.get_auto_parallel_context("strategy_ckpt_load_file")
_train_strategy = build_searched_strategy(train_strategy_filename)
train_strategy = _convert_to_list(_train_strategy)
train_dev_count = 1
ckpt_file_len = len(checkpoint_filenames)
for dim in train_strategy[list(train_strategy.keys())[0]][0]:
train_dev_count *= dim
if train_dev_count != len(checkpoint_filenames):
if train_dev_count != ckpt_file_len:
raise ValueError(
f"The length of checkpoint_filenames should be equal to the device count of training process. "
f"The length is {len(checkpoint_filenames)} but the device count is {train_dev_count}.")
f"The length is {ckpt_file_len} but the device count is {train_dev_count}.")
rank_list = _infer_rank_list(train_strategy, predict_strategy)
param_total_dict = defaultdict(dict)
for file_index, file_name in enumerate(checkpoint_filenames):
ckpt_dict = load_checkpoint(file_name, dec_key, dec_mode)
for param_name, param in ckpt_dict.items():
param_total_dict[param_name][file_index] = param
param_dict = {}
for _, param in network.parameters_and_names():
sliced_params = []
@ -1197,8 +1196,31 @@ def load_distributed_checkpoint(network, checkpoint_filenames, predict_strategy=
continue
param_rank = rank_list[param.name][0]
skip_merge_split = rank_list[param.name][1]
shard_stride = train_strategy[param.name][4]
if train_strategy[param.name][5]:
shard_size = ckpt_file_len / shard_stride / train_strategy[param.name][5]
else:
shard_size = 0
for rank in param_rank:
sliced_param = load_checkpoint(checkpoint_filenames[rank], dec_key=dec_key, dec_mode=dec_mode)[param.name]
param_total_list = list(range(0, ckpt_file_len))
if shard_size > 0:
shard_total_list = [param_total_list[i:i + shard_size] for i in
range(0, ckpt_file_len, shard_size)]
param_total_list = shard_total_list[rank // shard_size]
if shard_stride > 0:
param_stride = []
# merge pre parameter
param_index = param_total_list[0:param_total_list.index(rank) + 1][::-1][::shard_stride]
param_index.extend(param_total_list[param_total_list.index(rank):][::shard_stride])
param_index = list(set(param_index))
param_index.sort()
for rank_num in param_index:
param_stride.append(param_total_dict[param.name][rank_num].data.asnumpy())
sliced_param = Parameter(Tensor(np.concatenate(param_stride)), name=param.name)
else:
sliced_param = param_total_dict[param.name][rank]
sliced_params.append(sliced_param)
if skip_merge_split:
split_param = sliced_params[0]
@ -1222,19 +1244,33 @@ def _check_predict_strategy(predict_strategy):
return True
if predict_strategy is None:
return True
return
flag = True
predict_strategy = Validator.check_isinstance("predict_strategy", predict_strategy, dict)
for key in predict_strategy.keys():
if not isinstance(key, str) or not isinstance(predict_strategy[key], (list, tuple)) \
or len(predict_strategy[key]) < 4:
return False
flag = False
dev_matrix, tensor_map, param_split_shape, field_size = predict_strategy[key][:4]
if not _check_int_list(dev_matrix) or not _check_int_list(tensor_map) or \
not (_check_int_list(param_split_shape) or not param_split_shape) or \
not (isinstance(field_size, int) and field_size == 0):
return False
return True
flag = False
if not flag:
raise ValueError(f"Please make sure that the key of predict_strategy is str, "
f"and the value is a list or a tuple that the first four elements are "
f"dev_matrix (list[int]), tensor_map (list[int]), "
f"param_split_shape (list[int]) and field_size (zero).")
def _check_checkpoint_file(checkpoint_filenames):
"""Check checkpoint file name."""
for index, filename in enumerate(checkpoint_filenames):
if not isinstance(filename, str) or not os.path.exists(filename) \
or filename[-5:] != ".ckpt" or os.path.getsize(filename) == 0:
raise ValueError(f"Please make sure that the {filename} at index {index} is a valid checkpoint file.")
def _convert_to_list(strategy):