forked from mindspore-Ecosystem/mindspore
Add MobileNetV1 CPU Script
This commit is contained in:
parent
12a29ce040
commit
421c31858c
|
@ -99,6 +99,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
|
|||
You can start training using python or shell scripts. The usage of shell scripts as follows:
|
||||
|
||||
- Ascend: sh run_distribute_train.sh [cifar10|imagenet2012] [RANK_TABLE_FILE] [DATASET_PATH] [PRETRAINED_CKPT_PATH] (optional)
|
||||
- CPU: sh run_train_CPU.sh [cifar10|imagenet2012] [DATASET_PATH] [PRETRAINED_CKPT_PATH] (optional)
|
||||
|
||||
For distributed training, a hccl configuration file with JSON format needs to be created in advance.
|
||||
|
||||
|
@ -109,10 +110,12 @@ Please follow the instructions in the link [hccn_tools](https://gitee.com/mindsp
|
|||
```shell
|
||||
# training example
|
||||
python:
|
||||
Ascend: python train.py --platform Ascend --dataset_path [TRAIN_DATASET_PATH]
|
||||
Ascend: python train.py --device_target Ascend --dataset_path [TRAIN_DATASET_PATH]
|
||||
CPU: python train.py --device_target CPU --dataset_path [TRAIN_DATASET_PATH]
|
||||
|
||||
shell:
|
||||
Ascend: sh run_distribute_train.sh [cifar10|imagenet2012] [RANK_TABLE_FILE] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)
|
||||
CPU: sh run_train_CPU.sh [cifar10|imagenet2012] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)
|
||||
```
|
||||
|
||||
### Result
|
||||
|
@ -133,6 +136,7 @@ Epoch time: 150950.623, per step time: 120.664
|
|||
You can start training using python or shell scripts.If the train method is train or fine tune, should not input the `[CHECKPOINT_PATH]` The usage of shell scripts as follows:
|
||||
|
||||
- Ascend: sh run_eval.sh [cifar10|imagenet2012] [DATASET_PATH] [CHECKPOINT_PATH]
|
||||
- CPU: sh run_eval_CPU.sh [cifar10|imagenet2012] [DATASET_PATH] [CHECKPOINT_PATH]
|
||||
|
||||
### Launch
|
||||
|
||||
|
@ -140,9 +144,11 @@ You can start training using python or shell scripts.If the train method is trai
|
|||
# eval example
|
||||
python:
|
||||
Ascend: python eval.py --dataset [cifar10|imagenet2012] --dataset_path [VAL_DATASET_PATH] --pretrain_ckpt [CHECKPOINT_PATH]
|
||||
CPU: python eval.py --dataset [cifar10|imagenet2012] --dataset_path [VAL_DATASET_PATH] --pretrain_ckpt [CHECKPOINT_PATH] --device_target CPU
|
||||
|
||||
shell:
|
||||
Ascend: sh run_eval.sh [cifar10|imagenet2012] [DATASET_PATH] [CHECKPOINT_PATH]
|
||||
CPU: sh run_eval_CPU.sh [cifar10|imagenet2012] [DATASET_PATH] [CHECKPOINT_PATH]
|
||||
```
|
||||
|
||||
> checkpoint can be produced in training process.
|
||||
|
|
|
@ -45,7 +45,7 @@ if __name__ == '__main__':
|
|||
|
||||
# init context
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target=target, save_graphs=False)
|
||||
if target != "GPU":
|
||||
if target == "Ascend":
|
||||
device_id = int(os.getenv('DEVICE_ID'))
|
||||
context.set_context(device_id=device_id)
|
||||
|
||||
|
|
|
@ -0,0 +1,64 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
if [ $# != 3 ]
|
||||
then
|
||||
echo "Usage: bash run_eval_cpu.sh [cifar10|imagenet2012] [DATASET_PATH] [CHECKPOINT_PATH]"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ $1 != "cifar10" ] && [ $1 != "imagenet2012" ]
|
||||
then
|
||||
echo "error: the selected dataset is neither cifar10 nor imagenet2012"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
get_real_path(){
|
||||
if [ "${1:0:1}" == "/" ]; then
|
||||
echo "$1"
|
||||
else
|
||||
echo "$(realpath -m $PWD/$1)"
|
||||
fi
|
||||
}
|
||||
|
||||
PATH1=$(get_real_path $2)
|
||||
PATH2=$(get_real_path $3)
|
||||
|
||||
|
||||
if [ ! -d $PATH1 ]
|
||||
then
|
||||
echo "error: DATASET_PATH=$PATH1 is not a directory"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ ! -f $PATH2 ]
|
||||
then
|
||||
echo "error: CHECKPOINT_PATH=$PATH2 is not a file"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ -d "eval" ];
|
||||
then
|
||||
rm -rf ./eval
|
||||
fi
|
||||
mkdir ./eval
|
||||
cp ../*.py ./eval
|
||||
cp *.sh ./eval
|
||||
cp -r ../src ./eval
|
||||
cd ./eval || exit
|
||||
env > env.log
|
||||
python eval.py --dataset=$1 --dataset_path=$PATH1 --checkpoint_path=$PATH2 --device_target=CPU &> log &
|
||||
cd ..
|
|
@ -0,0 +1,75 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
if [ $# != 2 ] && [ $# != 3 ]
|
||||
then
|
||||
echo "Usage: bash run_train_cpu.sh [cifar10|imagenet2012] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ $1 != "cifar10" ] && [ $1 != "imagenet2012" ]
|
||||
then
|
||||
echo "error: the selected dataset is neither cifar10 nor imagenet2012"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
get_real_path(){
|
||||
if [ "${1:0:1}" == "/" ]; then
|
||||
echo "$1"
|
||||
else
|
||||
echo "$(realpath -m $PWD/$1)"
|
||||
fi
|
||||
}
|
||||
|
||||
PATH1=$(get_real_path $2)
|
||||
|
||||
if [ $# == 3 ]
|
||||
then
|
||||
PATH2=$(get_real_path $3)
|
||||
fi
|
||||
|
||||
if [ ! -d $PATH1 ]
|
||||
then
|
||||
echo "error: DATASET_PATH=$PATH1 is not a directory"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ $# == 3 ] && [ ! -f $PATH2 ]
|
||||
then
|
||||
echo "error: PRETRAINED_CKPT_PATH=$PATH2 is not a file"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ -d "train" ];
|
||||
then
|
||||
rm -rf ./train
|
||||
fi
|
||||
mkdir ./train
|
||||
cp ../*.py ./train
|
||||
cp *.sh ./train
|
||||
cp -r ../src ./train
|
||||
cd ./train || exit
|
||||
env > env.log
|
||||
if [ $# == 2 ]
|
||||
then
|
||||
python train.py --dataset=$1 --dataset_path=$PATH1 --device_target=CPU &> log &
|
||||
fi
|
||||
|
||||
if [ $# == 3 ]
|
||||
then
|
||||
python train.py --dataset=$1 --dataset_path=$PATH1 --pre_trained=$PATH2 --device_target=CPU &> log &
|
||||
fi
|
||||
cd ..
|
|
@ -16,12 +16,15 @@
|
|||
create train or eval dataset.
|
||||
"""
|
||||
import os
|
||||
from multiprocessing import cpu_count
|
||||
import mindspore.common.dtype as mstype
|
||||
import mindspore.dataset as ds
|
||||
import mindspore.dataset.vision.c_transforms as C
|
||||
import mindspore.dataset.transforms.c_transforms as C2
|
||||
from mindspore.communication.management import init, get_rank, get_group_size
|
||||
|
||||
THREAD_NUM = 12 if cpu_count() >= 12 else 8
|
||||
|
||||
|
||||
def create_dataset1(dataset_path, do_train, repeat_num=1, batch_size=32, target="Ascend"):
|
||||
"""
|
||||
|
@ -38,15 +41,17 @@ def create_dataset1(dataset_path, do_train, repeat_num=1, batch_size=32, target=
|
|||
"""
|
||||
if target == "Ascend":
|
||||
device_num, rank_id = _get_rank_info()
|
||||
else:
|
||||
elif target == "GPU":
|
||||
init()
|
||||
rank_id = get_rank()
|
||||
device_num = get_group_size()
|
||||
else:
|
||||
device_num = 1
|
||||
|
||||
if device_num == 1:
|
||||
data_set = ds.Cifar10Dataset(dataset_path, num_parallel_workers=12, shuffle=True)
|
||||
data_set = ds.Cifar10Dataset(dataset_path, num_parallel_workers=THREAD_NUM, shuffle=True)
|
||||
else:
|
||||
data_set = ds.Cifar10Dataset(dataset_path, num_parallel_workers=12, shuffle=True,
|
||||
data_set = ds.Cifar10Dataset(dataset_path, num_parallel_workers=THREAD_NUM, shuffle=True,
|
||||
num_shards=device_num, shard_id=rank_id)
|
||||
|
||||
# define map operations
|
||||
|
@ -66,8 +71,8 @@ def create_dataset1(dataset_path, do_train, repeat_num=1, batch_size=32, target=
|
|||
|
||||
type_cast_op = C2.TypeCast(mstype.int32)
|
||||
|
||||
data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=12)
|
||||
data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=12)
|
||||
data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=THREAD_NUM)
|
||||
data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=THREAD_NUM)
|
||||
|
||||
# apply batch operations
|
||||
data_set = data_set.batch(batch_size, drop_remainder=True)
|
||||
|
@ -99,9 +104,9 @@ def create_dataset2(dataset_path, do_train, repeat_num=1, batch_size=32, target=
|
|||
device_num = get_group_size()
|
||||
|
||||
if device_num == 1:
|
||||
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=12, shuffle=True)
|
||||
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=THREAD_NUM, shuffle=True)
|
||||
else:
|
||||
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=12, shuffle=True,
|
||||
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=THREAD_NUM, shuffle=True,
|
||||
num_shards=device_num, shard_id=rank_id)
|
||||
|
||||
image_size = 224
|
||||
|
@ -127,8 +132,8 @@ def create_dataset2(dataset_path, do_train, repeat_num=1, batch_size=32, target=
|
|||
|
||||
type_cast_op = C2.TypeCast(mstype.int32)
|
||||
|
||||
data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=12)
|
||||
data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=12)
|
||||
data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=THREAD_NUM)
|
||||
data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=THREAD_NUM)
|
||||
|
||||
# apply batch operations
|
||||
data_set = data_set.batch(batch_size, drop_remainder=True)
|
||||
|
|
|
@ -116,38 +116,28 @@ if __name__ == '__main__':
|
|||
else:
|
||||
no_decayed_params.append(param)
|
||||
|
||||
group_params = [{'params': decayed_params, 'weight_decay': config.weight_decay},
|
||||
{'params': no_decayed_params},
|
||||
{'order_params': net.trainable_params()}]
|
||||
opt = Momentum(group_params, lr, config.momentum, loss_scale=config.loss_scale)
|
||||
# define loss, model
|
||||
if target == "Ascend":
|
||||
if args_opt.dataset == "imagenet2012":
|
||||
if not config.use_label_smooth:
|
||||
config.label_smooth_factor = 0.0
|
||||
loss = CrossEntropySmooth(sparse=True, reduction="mean",
|
||||
smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
|
||||
else:
|
||||
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
|
||||
group_params = [{'params': decayed_params, 'weight_decay': config.weight_decay},
|
||||
{'params': no_decayed_params},
|
||||
{'order_params': net.trainable_params()}]
|
||||
opt = Momentum(group_params, lr, config.momentum, loss_scale=config.loss_scale)
|
||||
else:
|
||||
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, config.weight_decay,
|
||||
config.loss_scale)
|
||||
# define loss, model
|
||||
if args_opt.dataset == "imagenet2012":
|
||||
if not config.use_label_smooth:
|
||||
config.label_smooth_factor = 0.0
|
||||
loss = CrossEntropySmooth(sparse=True, reduction="mean",
|
||||
smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
|
||||
else:
|
||||
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
|
||||
if target != "CPU":
|
||||
model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'},
|
||||
amp_level="O2", keep_batchnorm_fp32=False)
|
||||
else:
|
||||
# GPU target
|
||||
if args_opt.dataset == "imagenet2012":
|
||||
if not config.use_label_smooth:
|
||||
config.label_smooth_factor = 0.0
|
||||
loss = CrossEntropySmooth(sparse=True, reduction="mean",
|
||||
smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
|
||||
else:
|
||||
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
|
||||
|
||||
opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, config.weight_decay,
|
||||
config.loss_scale)
|
||||
loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
|
||||
# Mixed precision
|
||||
model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'},
|
||||
amp_level="O2", keep_batchnorm_fp32=False)
|
||||
model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'})
|
||||
|
||||
# define callbacks
|
||||
time_cb = TimeMonitor(data_size=step_size)
|
||||
|
|
Loading…
Reference in New Issue