forked from mindspore-Ecosystem/mindspore
!7330 integrate_export
Merge pull request !7330 from baiyangfan/integrate_export
This commit is contained in:
commit
3ff18d9856
|
@ -21,6 +21,6 @@ operations. Note that the entire computation is carried out in floating point. A
|
|||
aware training, MindSpore provides conversion functions to convert the trained model into lower precision.
|
||||
"""
|
||||
|
||||
from .quant import convert_quant_network, export
|
||||
from .quant import convert_quant_network, export, manual_export
|
||||
|
||||
__all__ = ["convert_quant_network", "export"]
|
||||
__all__ = ["convert_quant_network", "export", "manual_export"]
|
||||
|
|
|
@ -634,7 +634,7 @@ class ExportManualQuantNetwork:
|
|||
"""
|
||||
__quant_op_name__ = ["TensorAdd", "Sub", "Mul", "RealDiv"]
|
||||
|
||||
def __init__(self, network, mean, std_dev, *inputs, is_mindir):
|
||||
def __init__(self, network, mean, std_dev, *inputs, is_mindir=False):
|
||||
network = Validator.check_isinstance('network', network, (nn.Cell,))
|
||||
self.input_scale = 1 / std_dev
|
||||
self.input_zero_point = round(mean)
|
||||
|
|
|
@ -30,6 +30,9 @@ from mindspore.common.parameter import Parameter
|
|||
from mindspore.common.api import _executor
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore._checkparam import check_input_data
|
||||
from mindspore.train.quant import quant
|
||||
import mindspore.context as context
|
||||
from .._checkparam import Validator
|
||||
|
||||
__all__ = ["save_checkpoint", "load_checkpoint", "load_param_into_net", "export", "parse_print",
|
||||
"build_searched_strategy", "merge_sliced_parameter"]
|
||||
|
@ -461,7 +464,7 @@ def _fill_param_into_net(net, parameter_list):
|
|||
load_param_into_net(net, parameter_dict)
|
||||
|
||||
|
||||
def export(net, *inputs, file_name, file_format='AIR'):
|
||||
def export(net, *inputs, file_name, file_format='AIR', quant_export=None, **kwargs):
|
||||
"""
|
||||
Export the MindSpore prediction model to a file in the specified format.
|
||||
|
||||
|
@ -470,7 +473,6 @@ def export(net, *inputs, file_name, file_format='AIR'):
|
|||
inputs (Tensor): Inputs of the `net`.
|
||||
file_name (str): File name of the model to be exported.
|
||||
file_format (str): MindSpore currently supports 'AIR', 'ONNX' and 'MINDIR' format for exported model.
|
||||
|
||||
- AIR: Ascend Intermidiate Representation. An intermidiate representation format of Ascend model.
|
||||
Recommended suffix for output file is '.air'.
|
||||
- ONNX: Open Neural Network eXchange. An open format built to represent machine learning models.
|
||||
|
@ -478,44 +480,103 @@ def export(net, *inputs, file_name, file_format='AIR'):
|
|||
- MINDIR: MindSpore Native Intermidiate Representation for Anf. An intermidiate representation format
|
||||
for MindSpore models.
|
||||
Recommended suffix for output file is '.mindir'.
|
||||
quant_export (str): Quantitative export choise. Default: None.
|
||||
"""
|
||||
logger.info("exporting model file:%s format:%s.", file_name, file_format)
|
||||
check_input_data(*inputs, data_class=Tensor)
|
||||
if quant_export == 'MANUAL':
|
||||
mean = kwargs.get('mean', None)
|
||||
std_dev = kwargs.get('std_dev', None)
|
||||
QuantExport(net, *inputs, file_name, mean, std_dev, file_format='AIR', quant_manual_export=True)
|
||||
elif quant_export == 'AUTO':
|
||||
mean = kwargs.get('mean', None)
|
||||
std_dev = kwargs.get('std_dev', None)
|
||||
QuantExport(net, *inputs, file_name, mean, std_dev, file_format='AIR')
|
||||
else:
|
||||
logger.info("exporting model file:%s format:%s.", file_name, file_format)
|
||||
check_input_data(*inputs, data_class=Tensor)
|
||||
|
||||
if file_format == 'GEIR':
|
||||
logger.warning(f"Format 'GEIR' is deprecated, it would be removed in future release, use 'AIR' instead.")
|
||||
file_format = 'AIR'
|
||||
if file_format == 'GEIR':
|
||||
logger.warning(f"Format 'GEIR' is deprecated, it would be removed in future release, use 'AIR' instead.")
|
||||
file_format = 'AIR'
|
||||
|
||||
supported_formats = ['AIR', 'ONNX', 'MINDIR']
|
||||
if file_format not in supported_formats:
|
||||
raise ValueError(f'Illegal file format {file_format}, it must be one of {supported_formats}')
|
||||
# When dumping ONNX file, switch network mode to infer when it is training(NOTE: ONNX only designed for prediction)
|
||||
is_dump_onnx_in_training = net.training and file_format == 'ONNX'
|
||||
if is_dump_onnx_in_training:
|
||||
net.set_train(mode=False)
|
||||
# export model
|
||||
net.init_parameters_data()
|
||||
if file_format == 'AIR':
|
||||
phase_name = 'export.air'
|
||||
graph_id, _ = _executor.compile(net, *inputs, phase=phase_name)
|
||||
_executor.export(file_name, graph_id)
|
||||
elif file_format == 'ONNX': # file_format is 'ONNX'
|
||||
phase_name = 'export.onnx'
|
||||
graph_id, _ = _executor.compile(net, *inputs, phase=phase_name, do_convert=False)
|
||||
onnx_stream = _executor._get_func_graph_proto(graph_id)
|
||||
with open(file_name, 'wb') as f:
|
||||
os.chmod(file_name, stat.S_IWUSR | stat.S_IRUSR)
|
||||
f.write(onnx_stream)
|
||||
elif file_format == 'MINDIR': # file_format is 'MINDIR'
|
||||
phase_name = 'export.mindir'
|
||||
graph_id, _ = _executor.compile(net, *inputs, phase=phase_name, do_convert=False)
|
||||
onnx_stream = _executor._get_func_graph_proto(graph_id, 'mind_ir')
|
||||
with open(file_name, 'wb') as f:
|
||||
os.chmod(file_name, stat.S_IWUSR | stat.S_IRUSR)
|
||||
f.write(onnx_stream)
|
||||
# restore network training mode
|
||||
if is_dump_onnx_in_training:
|
||||
net.set_train(mode=True)
|
||||
|
||||
def QuantExport(network, file_name, mean, std_dev, *inputs, file_format='AIR', quant_manual_export=False):
|
||||
"""
|
||||
Exports MindSpore quantization predict model to deploy with AIR and MINDIR.
|
||||
|
||||
Args:
|
||||
network (Cell): MindSpore network produced by `convert_quant_network`.
|
||||
file_name (str): File name of model to export.
|
||||
mean (int, float): Input data mean. Default: 127.5.
|
||||
std_dev (int, float): Input data variance. Default: 127.5.
|
||||
inputs (Tensor): Inputs of the `quantization aware training network`.
|
||||
file_format (str): MindSpore currently supports 'AIR' and 'MINDIR' format for exported
|
||||
quantization aware model. Default: 'AIR'.
|
||||
|
||||
- AIR: Graph Engine Intermidiate Representation. An intermidiate representation format of
|
||||
Ascend model.
|
||||
- MINDIR: MindSpore Native Intermidiate Representation for Anf. An intermidiate representation format
|
||||
for MindSpore models.
|
||||
Recommended suffix for output file is '.mindir'.
|
||||
quant_manual_export (bool): Is it manual quantitative export. Default: False.
|
||||
"""
|
||||
supported_device = ["Ascend", "GPU"]
|
||||
supported_formats = ['AIR', 'MINDIR']
|
||||
|
||||
mean = mean if mean else 127.5
|
||||
std_dev = std_dev if std_dev else 127.5
|
||||
|
||||
mean = Validator.check_type("mean", mean, (int, float))
|
||||
std_dev = Validator.check_type("std_dev", std_dev, (int, float))
|
||||
|
||||
if context.get_context('device_target') not in supported_device:
|
||||
raise KeyError("Unsupported {} device target.".format(context.get_context('device_target')))
|
||||
|
||||
supported_formats = ['AIR', 'ONNX', 'MINDIR']
|
||||
if file_format not in supported_formats:
|
||||
raise ValueError(f'Illegal file format {file_format}, it must be one of {supported_formats}')
|
||||
# When dumping ONNX file, switch network mode to infer when it is training(NOTE: ONNX only designed for prediction)
|
||||
is_dump_onnx_in_training = net.training and file_format == 'ONNX'
|
||||
if is_dump_onnx_in_training:
|
||||
net.set_train(mode=False)
|
||||
# export model
|
||||
net.init_parameters_data()
|
||||
if file_format == 'AIR':
|
||||
phase_name = 'export.air'
|
||||
graph_id, _ = _executor.compile(net, *inputs, phase=phase_name)
|
||||
_executor.export(file_name, graph_id)
|
||||
elif file_format == 'ONNX': # file_format is 'ONNX'
|
||||
phase_name = 'export.onnx'
|
||||
graph_id, _ = _executor.compile(net, *inputs, phase=phase_name, do_convert=False)
|
||||
onnx_stream = _executor._get_func_graph_proto(graph_id)
|
||||
with open(file_name, 'wb') as f:
|
||||
os.chmod(file_name, stat.S_IWUSR | stat.S_IRUSR)
|
||||
f.write(onnx_stream)
|
||||
elif file_format == 'MINDIR': # file_format is 'MINDIR'
|
||||
phase_name = 'export.mindir'
|
||||
graph_id, _ = _executor.compile(net, *inputs, phase=phase_name, do_convert=False)
|
||||
onnx_stream = _executor._get_func_graph_proto(graph_id, 'mind_ir')
|
||||
with open(file_name, 'wb') as f:
|
||||
os.chmod(file_name, stat.S_IWUSR | stat.S_IRUSR)
|
||||
f.write(onnx_stream)
|
||||
# restore network training mode
|
||||
if is_dump_onnx_in_training:
|
||||
net.set_train(mode=True)
|
||||
raise ValueError('Illegal file format {}.'.format(file_format))
|
||||
|
||||
network.set_train(False)
|
||||
if file_format == "MINDIR":
|
||||
if quant_manual_export:
|
||||
exporter = quant.ExportManualQuantNetwork(network, mean, std_dev, *inputs, is_mindir=True)
|
||||
else:
|
||||
exporter = quant.ExportToQuantInferNetwork(network, mean, std_dev, *inputs, is_mindir=True)
|
||||
else:
|
||||
if quant_manual_export:
|
||||
exporter = quant.ExportManualQuantNetwork(network, mean, std_dev, *inputs)
|
||||
else:
|
||||
exporter = quant.ExportToQuantInferNetwork(network, mean, std_dev, *inputs)
|
||||
deploy_net = exporter.run()
|
||||
export(deploy_net, *inputs, file_name=file_name, file_format=file_format)
|
||||
|
||||
|
||||
def parse_print(print_file_name):
|
||||
|
|
Loading…
Reference in New Issue