diff --git a/mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/base/slice_base.c b/mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/base/slice_base.c index 93222048a3d..3353f4ad274 100644 --- a/mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/base/slice_base.c +++ b/mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/base/slice_base.c @@ -15,11 +15,11 @@ */ #include "nnacl/base/slice_base.h" #include -void PadSliceParameterTo4D(SliceParameter *param) { - int32_t begin[DIMENSION_4D]; - int32_t end[DIMENSION_4D]; - int32_t slice_size[DIMENSION_4D]; - int32_t data_shape[DIMENSION_4D]; +void PadSliceParameterTo8D(SliceParameter *param) { + int32_t begin[DIMENSION_8D]; + int32_t end[DIMENSION_8D]; + int32_t slice_size[DIMENSION_8D]; + int32_t data_shape[DIMENSION_8D]; for (int32_t i = 0; i < param->param_length_; ++i) { begin[i] = param->begin_[i]; end[i] = param->end_[i]; @@ -27,7 +27,7 @@ void PadSliceParameterTo4D(SliceParameter *param) { data_shape[i] = param->shape_[i]; } int32_t real_index = param->param_length_ - 1; - for (int32_t i = DIMENSION_4D - 1; i >= 0; --i) { + for (int32_t i = DIMENSION_8D - 1; i >= 0; --i) { if (real_index >= 0) { param->begin_[i] = begin[real_index]; param->end_[i] = end[real_index]; @@ -40,39 +40,55 @@ void PadSliceParameterTo4D(SliceParameter *param) { param->shape_[i] = 1; } } - param->param_length_ = DIMENSION_4D; + param->param_length_ = DIMENSION_8D; } void DoSlice(const void *input, void *output, SliceParameter *param, int thread_id, int data_size) { int8_t *int8_in = (int8_t *)input; int8_t *int8_out = (int8_t *)output; - int32_t out_dim1 = param->size_[1]; - int32_t out_dim2 = param->size_[2]; - int32_t out_dim3 = param->size_[3]; - size_t out_stride2 = out_dim3; - size_t out_stride1 = out_stride2 * out_dim2; - size_t out_stride0 = out_stride1 * out_dim1; - size_t count_per_thread = UP_DIV(out_dim1, param->op_parameter_.thread_num_); - size_t thread_stride = thread_id * count_per_thread; - size_t copy_size = param->size_[3] * data_size; - size_t in_stride2 = param->shape_[3]; - size_t in_stride1 = param->shape_[2] * in_stride2; - size_t in_stride0 = param->shape_[1] * in_stride1; - for (int i = 0; i < param->size_[0]; ++i) { - size_t out_offset0 = i * out_stride0; - size_t in_offset0 = (i + param->begin_[0]) * in_stride0 + param->begin_[3]; - for (size_t j = 0; j < count_per_thread; ++j) { - size_t k = j + thread_stride; - if (k >= out_dim1) { - break; - } - size_t out_offset1 = k * out_stride1 + out_offset0; - size_t in_offset1 = (k + param->begin_[1]) * in_stride1 + in_offset0; - for (int l = 0; l < out_dim2; ++l) { - size_t out_offset = out_offset1 + l * out_stride2; - size_t in_offset = in_offset1 + (l + param->begin_[2]) * in_stride2; - memcpy(int8_out + out_offset * data_size, int8_in + in_offset * data_size, copy_size); + size_t out_stride[8]; + out_stride[7] = 1; + for (int i = 6; i >= 0; --i) { + out_stride[i] = out_stride[i + 1] * param->size_[i + 1]; + } + + size_t count_per_thread = UP_DIV(param->size_[5], param->op_parameter_.thread_num_); + size_t thread_begin = thread_id * count_per_thread; + size_t thread_end = MSMIN(param->size_[5], thread_begin + count_per_thread); + size_t copy_size = param->size_[7] * data_size; + size_t in_stride[8]; + in_stride[7] = 1; + for (int i = 6; i >= 0; --i) { + in_stride[i] = param->shape_[i + 1] * in_stride[i + 1]; + } + + for (int ii = 0; ii < param->size_[0]; ++ii) { + size_t out_offset0 = ii * out_stride[0]; + size_t in_offset0 = (ii + param->begin_[0]) * in_stride[0] + param->begin_[7]; + for (int jj = 0; jj < param->size_[1]; ++jj) { + size_t out_offset1 = jj * out_stride[1] + out_offset0; + size_t in_offset1 = (jj + param->begin_[1]) * in_stride[1] + in_offset0; + for (int kk = 0; kk < param->size_[2]; ++kk) { + size_t out_offset2 = kk * out_stride[2] + out_offset1; + size_t in_offset2 = (kk + param->begin_[2]) * in_stride[2] + in_offset1; + for (int ll = 0; ll < param->size_[3]; ++ll) { + size_t out_offset3 = ll * out_stride[3] + out_offset2; + size_t in_offset3 = (ll + param->begin_[3]) * in_stride[3] + in_offset2; + for (int i = 0; i < param->size_[4]; ++i) { + size_t out_offset4 = i * out_stride[4] + out_offset3; + size_t in_offset4 = (i + param->begin_[4]) * in_stride[4] + in_offset3; + for (size_t j = thread_begin; j < thread_end; ++j) { + size_t out_offset5 = j * out_stride[5] + out_offset4; + size_t in_offset5 = (j + param->begin_[5]) * in_stride[5] + in_offset4; + for (int k = 0; k < param->size_[6]; ++k) { + size_t out_offset6 = k * out_stride[6] + out_offset5; + size_t in_offset6 = (k + param->begin_[6]) * in_stride[6] + in_offset5; + memcpy(int8_out + out_offset6 * data_size, int8_in + in_offset6 * data_size, copy_size); + } + } + } + } } } } @@ -82,19 +98,34 @@ void DoSliceNoParallel(const void *input, void *output, SliceParameter *param, i int8_t *int8_in = (int8_t *)input; int8_t *int8_out = (int8_t *)output; - size_t copy_size = param->size_[3] * data_size; - size_t in_stride2 = param->shape_[3]; - size_t in_stride1 = param->shape_[2] * in_stride2; - size_t in_stride0 = param->shape_[1] * in_stride1; + size_t copy_size = param->size_[7] * data_size; + size_t in_stride[8]; + in_stride[7] = 1; + for (int i = 6; i >= 0; --i) { + in_stride[i] = param->shape_[i + 1] * in_stride[i + 1]; + } + size_t out_offset = 0; for (int32_t dim0 = param->begin_[0]; dim0 < param->end_[0]; ++dim0) { - size_t in_offset0 = dim0 * in_stride0 + param->begin_[3]; + size_t in_offset0 = dim0 * in_stride[0] + param->begin_[7]; for (size_t dim1 = param->begin_[1]; dim1 < param->end_[1]; ++dim1) { - size_t in_offset1 = dim1 * in_stride1 + in_offset0; + size_t in_offset1 = dim1 * in_stride[1] + in_offset0; for (int32_t dim2 = param->begin_[2]; dim2 < param->end_[2]; ++dim2) { - size_t in_offset = in_offset1 + dim2 * in_stride2; - memcpy(int8_out + out_offset * data_size, int8_in + in_offset * data_size, copy_size); - out_offset += param->size_[3]; + size_t in_offset2 = in_offset1 + dim2 * in_stride[2]; + for (int32_t dim3 = param->begin_[3]; dim3 < param->end_[3]; ++dim3) { + size_t in_offset3 = in_offset2 + dim3 * in_stride[3]; + for (int32_t dim4 = param->begin_[4]; dim4 < param->end_[4]; ++dim4) { + size_t in_offset4 = in_offset3 + dim4 * in_stride[4]; + for (int32_t dim5 = param->begin_[5]; dim5 < param->end_[5]; ++dim5) { + size_t in_offset5 = in_offset4 + dim5 * in_stride[5]; + for (int32_t dim6 = param->begin_[6]; dim6 < param->end_[6]; ++dim6) { + size_t in_offset6 = in_offset5 + dim6 * in_stride[6]; + memcpy(int8_out + out_offset * data_size, int8_in + in_offset6 * data_size, copy_size); + out_offset += param->size_[7]; + } + } + } + } } } } diff --git a/mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/base/slice_base.h b/mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/base/slice_base.h index ab2b876ef69..bfe91f02da6 100644 --- a/mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/base/slice_base.h +++ b/mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/base/slice_base.h @@ -23,7 +23,7 @@ #ifdef __cplusplus extern "C" { #endif -void PadSliceParameterTo4D(SliceParameter *param); +void PadSliceParameterTo8D(SliceParameter *param); void DoSlice(const void *input, void *output, SliceParameter *param, int thread_id, int data_size); void DoSliceNoParallel(const void *input, void *output, SliceParameter *param, int data_size); diff --git a/mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/int8/slice_int8.c b/mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/int8/slice_int8.c index 9604e4c8693..d7c93167bbd 100644 --- a/mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/int8/slice_int8.c +++ b/mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/int8/slice_int8.c @@ -16,104 +16,77 @@ #include "nnacl/int8/slice_int8.h" -int SliceInt8NoParallel(const int8_t *input, int8_t *output, SliceParameter *param) { - double input_scale = param->quant_arg_.in_args_.scale_; - int input_zp = param->quant_arg_.in_args_.zp_; - double output_scale = param->quant_arg_.out_args_.scale_; - int output_zp = param->quant_arg_.out_args_.zp_; - int act_min = param->quant_arg_.output_activation_min_; - int act_max = param->quant_arg_.output_activation_max_; - - int equal_quant = 0; - double multiplier = input_scale / output_scale; - if (input_scale == output_scale && input_zp == output_zp) { - equal_quant = 1; - } - - int32_t end_n = param->begin_[0] + param->size_[0]; - int32_t end_h = param->begin_[1] + param->size_[1]; - int32_t end_w = param->begin_[2] + param->size_[2]; - - int unit_count = param->size_[3]; - int unit_size = unit_count * sizeof(int8_t); - int in_stride2 = param->shape_[3]; - int in_stride1 = param->shape_[2] * in_stride2; - int in_stride0 = param->shape_[1] * in_stride1; - int out_offset = 0; - int n, h, w, c; - - for (n = param->begin_[0]; n < end_n; ++n) { - size_t in_offset0 = n * in_stride0; - for (h = param->begin_[1]; h < end_h; ++h) { - size_t in_offset1 = h * in_stride1 + in_offset0; - for (w = param->begin_[2]; w < end_w; ++w) { - size_t in_offset = in_offset1 + w * in_stride2; - if (equal_quant == 1) { - memcpy(output + out_offset, input + in_offset, unit_size); - } else { - for (c = 0; c < unit_count; ++c) { - int32_t output_val = round(multiplier * (input[in_offset + c] - input_zp)) + output_zp; - output[c + out_offset] = (int8_t)MSMAX(act_min, MSMIN(output_val, act_max)); - } - } - out_offset += unit_count; - } - } - } - return 0; -} - int SliceInt8(const int8_t *input, int8_t *output, SliceParameter *param, int thread_id) { double input_scale = param->quant_arg_.in_args_.scale_; int input_zp = param->quant_arg_.in_args_.zp_; double output_scale = param->quant_arg_.out_args_.scale_; int output_zp = param->quant_arg_.out_args_.zp_; + const int base_offset = 20; int act_min = param->quant_arg_.output_activation_min_; int act_max = param->quant_arg_.output_activation_max_; - int32_t out_dim1 = param->size_[1]; - int32_t out_dim2 = param->size_[2]; - int32_t out_dim3 = param->size_[3]; - int out_stride2 = out_dim3; - int out_stride1 = out_stride2 * out_dim2; - int out_stride0 = out_stride1 * out_dim1; - int count_per_thread = UP_DIV(out_dim1, param->op_parameter_.thread_num_); - int thread_stride = thread_id * count_per_thread; - int unit_size = param->size_[3] * sizeof(int8_t); - int in_stride2 = param->shape_[3]; - int in_stride1 = param->shape_[2] * in_stride2; - int in_stride0 = param->shape_[1] * in_stride1; - int n, h, w, c; + size_t out_stride[8]; + out_stride[7] = 1; + for (int i = 6; i >= 0; --i) { + out_stride[i] = out_stride[i + 1] * param->size_[i + 1]; + } + int count_per_thread = UP_DIV(param->size_[5], param->op_parameter_.thread_num_); + size_t thread_begin = thread_id * count_per_thread; + size_t thread_end = MSMIN(param->size_[5], thread_begin + count_per_thread); + int unit_size = param->size_[7] * sizeof(int8_t); + size_t in_stride[8]; + in_stride[7] = 1; + for (int i = 6; i >= 0; --i) { + in_stride[i] = param->shape_[i + 1] * in_stride[i + 1]; + } + int i, j, k, l, n, h, w, c; int equal_quant = 0; - double multiplier = input_scale / output_scale; if (input_scale == output_scale && input_zp == output_zp) { equal_quant = 1; } - for (n = 0; n < param->size_[0]; ++n) { - size_t out_offset0 = n * out_stride0; - size_t in_offset0 = (n + param->begin_[0]) * in_stride0 + param->begin_[3]; - for (h = 0; h < count_per_thread; ++h) { - size_t k = h + thread_stride; - if (k >= out_dim1) { - break; - } - size_t out_offset1 = k * out_stride1 + out_offset0; - size_t in_offset1 = (k + param->begin_[1]) * in_stride1 + in_offset0; - for (w = 0; w < out_dim2; ++w) { - size_t out_offset = out_offset1 + w * out_stride2; - size_t in_offset = in_offset1 + (w + param->begin_[2]) * in_stride2; - if (equal_quant == 1) { - memcpy(output + out_offset, input + in_offset, unit_size); - } else { - for (c = 0; c < out_dim3; ++c) { - int32_t output_val = round(multiplier * (input[in_offset + c] - input_zp)) + output_zp; - output[c + out_offset] = (int8_t)MSMAX(act_min, MSMIN(output_val, act_max)); + for (i = 0; i < param->size_[0]; ++i) { + size_t out_offset0 = i * out_stride[0]; + size_t in_offset0 = (i + param->begin_[0]) * in_stride[0] + param->begin_[7]; + for (j = 0; j < param->size_[1]; ++j) { + size_t out_offset1 = j * out_stride[1] + out_offset0; + size_t in_offset1 = (j + param->begin_[1]) * in_stride[1] + in_offset0; + for (k = 0; k < param->size_[2]; ++k) { + size_t out_offset2 = k * out_stride[2] + out_offset1; + size_t in_offset2 = (k + param->begin_[2]) * in_stride[2] + in_offset1; + for (l = 0; l < param->size_[3]; ++l) { + size_t out_offset3 = l * out_stride[3] + out_offset2; + size_t in_offset3 = (l + param->begin_[3]) * in_stride[3] + in_offset2; + for (n = 0; n < param->size_[4]; ++n) { + size_t out_offset4 = n * out_stride[4] + out_offset3; + size_t in_offset4 = (n + param->begin_[4]) * in_stride[4] + in_offset3; + for (h = thread_begin; h < thread_end; ++h) { + size_t out_offset5 = h * out_stride[5] + out_offset4; + size_t in_offset5 = (h + param->begin_[5]) * in_stride[5] + in_offset4; + for (w = 0; w < param->size_[6]; ++w) { + size_t out_offset = w * out_stride[6] + out_offset5; + size_t in_offset = (w + param->begin_[6]) * in_stride[6] + in_offset5; + if (equal_quant == 1) { + memcpy(output + out_offset, input + in_offset, unit_size); + } else { + for (c = 0; c < param->size_[7]; ++c) { + int32_t output_val = MultiplyByQuantizedMultiplier( + input[in_offset + c] - input_zp, param->quant_arg_.multiplier_.multiplier_, + param->quant_arg_.multiplier_.left_shift_ + base_offset, + param->quant_arg_.multiplier_.right_shift_ - base_offset) + + output_zp; + output_val = MSMAX(INT8_MIN, MSMIN(output_val, INT8_MAX)); + output[c + out_offset] = (int8_t)MSMAX(act_min, MSMIN(output_val, act_max)); + } + } + } + } } } } } } + return 0; } diff --git a/mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/int8/slice_int8.h b/mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/int8/slice_int8.h index b1b38923a0a..85f10a6f3a0 100644 --- a/mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/int8/slice_int8.h +++ b/mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/int8/slice_int8.h @@ -25,7 +25,7 @@ #ifdef __cplusplus extern "C" { #endif -int SliceInt8NoParallel(const int8_t *input, int8_t *output, SliceParameter *param); +int SliceInt8NoParallel(const int8_t *input, int8_t *output, SliceParameter *param, const QuantMulArg *multiplier); int SliceInt8(const int8_t *input, int8_t *output, SliceParameter *param, int thread_id); #ifdef __cplusplus } diff --git a/mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/op_base.h b/mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/op_base.h index c75f9be8436..a08ce6e2529 100644 --- a/mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/op_base.h +++ b/mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/op_base.h @@ -49,6 +49,7 @@ #define DIMENSION_4D 4 #define DIMENSION_6D 6 #define DIMENSION_7D 7 +#define DIMENSION_8D 8 #define kInputIndex 0 #define kWeightIndex 1 #define kBiasIndex 2 diff --git a/mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/slice_parameter.h b/mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/slice_parameter.h index 0a99214bdd7..c83ccf6bdf1 100644 --- a/mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/slice_parameter.h +++ b/mindspore/ccsrc/backend/kernel_compiler/cpu/nnacl/slice_parameter.h @@ -24,6 +24,7 @@ typedef struct SliceQuantArg { QuantArg out_args_; int output_activation_min_; int output_activation_max_; + QuantMulArg multiplier_; } SliceQuantArg; typedef struct SliceParameter { @@ -31,11 +32,11 @@ typedef struct SliceParameter { OpParameter op_parameter_; // shape correlative - int32_t shape_[COMM_SHAPE_SIZE]; - int32_t begin_[COMM_SHAPE_SIZE]; - int32_t end_[COMM_SHAPE_SIZE]; - int32_t size_[COMM_SHAPE_SIZE]; - int32_t axis_[COMM_SHAPE_SIZE]; + int32_t shape_[DIMENSION_8D]; + int32_t begin_[DIMENSION_8D]; + int32_t end_[DIMENSION_8D]; + int32_t size_[DIMENSION_8D]; + int32_t axis_[DIMENSION_8D]; // other parameter SliceQuantArg quant_arg_; diff --git a/mindspore/lite/src/runtime/kernel/arm/base/slice_base.cc b/mindspore/lite/src/runtime/kernel/arm/base/slice_base.cc index 266a15a9be9..b51d05cbed2 100644 --- a/mindspore/lite/src/runtime/kernel/arm/base/slice_base.cc +++ b/mindspore/lite/src/runtime/kernel/arm/base/slice_base.cc @@ -40,14 +40,14 @@ int SliceCPUKernel::ReSize() { MS_ASSERT(in_tensor->shape().size() == begin_tensor->ElementsNum()); MS_ASSERT(in_tensor->shape().size() == size_tensor->ElementsNum()); - MS_ASSERT(in_tensor->shape().size() <= DIMENSION_4D); + MS_ASSERT(in_tensor->shape().size() <= DIMENSION_8D); auto begin = reinterpret_cast(begin_tensor->data_c()); auto size = reinterpret_cast(size_tensor->data_c()); param_->param_length_ = in_tensor->shape().size(); - if (param_->param_length_ > DIMENSION_4D) { - MS_LOG(ERROR) << "input dimension num should <= " << DIMENSION_4D; + if (param_->param_length_ > DIMENSION_8D) { + MS_LOG(ERROR) << "input dimension num should <= " << DIMENSION_8D; return RET_ERROR; } for (int i = 0; i < param_->param_length_; ++i) { @@ -56,8 +56,8 @@ int SliceCPUKernel::ReSize() { param_->size_[i] = size[i] < 0 ? param_->shape_[i] - param_->begin_[i] : size[i]; param_->end_[i] = param_->begin_[i] + param_->size_[i]; } - if (param_->param_length_ < DIMENSION_4D) { - PadSliceParameterTo4D(param_); + if (param_->param_length_ < DIMENSION_8D) { + PadSliceParameterTo8D(param_); } return RET_OK; } @@ -76,7 +76,8 @@ int SliceCPUKernel::SliceParallelRun(int thread_id) { } int SliceCPUKernel::Run() { - if (param_->size_[1] < op_parameter_->thread_num_) { + // param_ shape info has already been extended to 8d + if (param_->size_[5] < op_parameter_->thread_num_) { DoSliceNoParallel(in_tensors_.at(0)->data_c(), out_tensors_.at(0)->data_c(), param_, lite::DataTypeSize(in_tensors_.at(0)->data_type())); return RET_OK; diff --git a/mindspore/lite/src/runtime/kernel/arm/int8/slice_int8.cc b/mindspore/lite/src/runtime/kernel/arm/int8/slice_int8.cc index bf99e613243..fef53765b0c 100644 --- a/mindspore/lite/src/runtime/kernel/arm/int8/slice_int8.cc +++ b/mindspore/lite/src/runtime/kernel/arm/int8/slice_int8.cc @@ -42,6 +42,11 @@ int SliceInt8CPUKernel::Init() { param_->quant_arg_.out_args_.scale_ = out_quant_args.front().scale; param_->quant_arg_.out_args_.zp_ = out_quant_args.front().zeroPoint; + QuantizeRoundParameterWithDoublePrecision(param_->quant_arg_.in_args_.scale_ / param_->quant_arg_.out_args_.scale_, + ¶m_->quant_arg_.multiplier_.multiplier_, + ¶m_->quant_arg_.multiplier_.left_shift_, + ¶m_->quant_arg_.multiplier_.right_shift_); + param_->quant_arg_.output_activation_max_ = std::numeric_limits::max(); param_->quant_arg_.output_activation_min_ = std::numeric_limits::min(); if (!InferShapeDone()) { @@ -51,9 +56,9 @@ int SliceInt8CPUKernel::Init() { } int SliceInt8CPUKernel::DoSlice(int task_id) { - const int8_t *input_data = reinterpret_cast(in_tensors_.at(0)->MutableData()); + const int8_t *input_data = reinterpret_cast(in_tensors_.at(0)->data_c()); MS_ASSERT(input_data); - int8_t *output_data = reinterpret_cast(out_tensors_.at(0)->MutableData()); + int8_t *output_data = reinterpret_cast(out_tensors_.at(0)->data_c()); MS_ASSERT(output_data); auto ret = SliceInt8(input_data, output_data, param_, task_id); @@ -73,17 +78,9 @@ int SliceInt8Run(void *cdata, int task_id) { } int SliceInt8CPUKernel::Run() { - const int8_t *input_data = reinterpret_cast(in_tensors_.at(0)->MutableData()); - MS_ASSERT(input_data); - int8_t *output_data = reinterpret_cast(out_tensors_.at(0)->MutableData()); - MS_ASSERT(output_data); - mindspore::lite::STATUS ret = RET_ERROR; - if (param_->size_[1] < param_->op_parameter_.thread_num_) { - ret = SliceInt8NoParallel(input_data, output_data, param_); - } else { - ret = ParallelLaunch(static_cast(this->context_)->thread_pool_, SliceInt8Run, this, - op_parameter_->thread_num_); - } + // param_ shape info has already been extended to 8d + auto ret = ParallelLaunch(static_cast(this->context_)->thread_pool_, SliceInt8Run, this, + op_parameter_->thread_num_); if (ret != RET_OK) { MS_LOG(ERROR) << "SliceInt8Run error, error_code[" << ret << "]"; diff --git a/mindspore/lite/test/ut/src/runtime/kernel/arm/int8/slice_int8_tests.cc b/mindspore/lite/test/ut/src/runtime/kernel/arm/int8/slice_int8_tests.cc index 19276d70aa0..7b51450f1de 100644 --- a/mindspore/lite/test/ut/src/runtime/kernel/arm/int8/slice_int8_tests.cc +++ b/mindspore/lite/test/ut/src/runtime/kernel/arm/int8/slice_int8_tests.cc @@ -30,29 +30,29 @@ class TestSliceInt8 : public mindspore::CommonTest { TEST_F(TestSliceInt8, SliceInt8) { lite::Tensor in_tensor(kNumberTypeInt8, {1, 3, 2, 3}); - lite::Tensor out_tensor(kNumberTypeInt8, {1, 1, 2, 3}); + lite::Tensor out_tensor(kNumberTypeInt8, {1, 2, 2, 3}); int8_t input_data[] = {105, 35, -27, 0, -63, 99, 16, 45, 67, -49, -115, 106, -98, 119, 103, 81, -114, 68}; int8_t output_data[12]; in_tensor.set_data(input_data); out_tensor.set_data(output_data); + lite::Tensor begin_tensor(kNumberTypeInt32, {4}); + int begin_data[4] = {0, 1, 0, 0}; + begin_tensor.set_data(begin_data); + lite::Tensor size_tensor(kNumberTypeInt32, {4}); + int size_data[4] = {1, 2, 2, 3}; + size_tensor.set_data(size_data); const lite::QuantArg quant_in0 = {0.00784314f, 0}; // -1.0--1.0 -> 0--255 const lite::QuantArg quant_out = {0.00784314f, 0}; in_tensor.AddQuantParam(quant_in0); out_tensor.AddQuantParam(quant_out); - std::vector inputs = {&in_tensor}; + std::vector inputs = {&in_tensor, &begin_tensor, &size_tensor}; std::vector outputs = {&out_tensor}; - SliceParameter parameter; - parameter.begin_[0] = 1; - parameter.begin_[1] = 0; - parameter.begin_[2] = 0; - parameter.size_[0] = -1; - parameter.size_[1] = -1; - parameter.size_[2] = -1; - parameter.param_length_ = 3; + SliceParameter *parameter = new (std::nothrow) SliceParameter; + parameter->op_parameter_.infer_flag_ = true; kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeInt8, schema::PrimitiveType_SliceFusion}; @@ -61,7 +61,58 @@ TEST_F(TestSliceInt8, SliceInt8) { auto ctx = std::make_shared(); ASSERT_EQ(lite::RET_OK, ctx->Init()); - auto kernel = creator(inputs, outputs, reinterpret_cast(¶meter), ctx.get(), desc); + auto kernel = creator(inputs, outputs, reinterpret_cast(parameter), ctx.get(), desc); + ASSERT_NE(kernel, nullptr); + auto ret = kernel->Run(); + EXPECT_EQ(0, ret); + + int8_t expect0[12] = {16, 45, 67, -49, -115, 106, -98, 119, 103, 81, -114, 68}; + for (int i = 0; i < 12; ++i) { + EXPECT_EQ(output_data[i], expect0[i]); + } + + in_tensor.set_data(nullptr); + begin_tensor.set_data(nullptr); + size_tensor.set_data(nullptr); + out_tensor.set_data(nullptr); + delete kernel; +} + +TEST_F(TestSliceInt8, Slice5D) { + lite::Tensor in_tensor(kNumberTypeInt8, {2, 1, 3, 2, 3}); + lite::Tensor out_tensor(kNumberTypeInt8, {1, 1, 2, 2, 3}); + + int8_t input_data[] = {105, 35, -27, 0, -63, 99, 16, 45, 67, -49, -115, 106, -98, 119, 103, 81, -114, 68, + 105, 35, -27, 0, -63, 99, 16, 45, 67, -49, -115, 106, -98, 119, 103, 81, -114, 68}; + int8_t output_data[12]; + in_tensor.set_data(input_data); + out_tensor.set_data(output_data); + lite::Tensor begin_tensor(kNumberTypeInt32, {5}); + int begin_data[5] = {0, 0, 1, 0, 0}; + begin_tensor.set_data(begin_data); + lite::Tensor size_tensor(kNumberTypeInt32, {5}); + int size_data[5] = {1, 1, 2, 2, 3}; + size_tensor.set_data(size_data); + + const lite::QuantArg quant_in0 = {0.00784314f, 0}; // -1.0--1.0 -> 0--255 + const lite::QuantArg quant_out = {0.00784314f, 0}; + in_tensor.AddQuantParam(quant_in0); + out_tensor.AddQuantParam(quant_out); + + std::vector inputs = {&in_tensor, &begin_tensor, &size_tensor}; + std::vector outputs = {&out_tensor}; + + SliceParameter *parameter = new (std::nothrow) SliceParameter; + parameter->op_parameter_.infer_flag_ = true; + + kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeInt8, schema::PrimitiveType_SliceFusion}; + + auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc); + ASSERT_NE(creator, nullptr); + + auto ctx = std::make_shared(); + ASSERT_EQ(lite::RET_OK, ctx->Init()); + auto kernel = creator(inputs, outputs, reinterpret_cast(parameter), ctx.get(), desc); ASSERT_NE(kernel, nullptr); auto ret = kernel->Run(); EXPECT_EQ(0, ret); @@ -73,5 +124,321 @@ TEST_F(TestSliceInt8, SliceInt8) { in_tensor.set_data(nullptr); out_tensor.set_data(nullptr); + begin_tensor.set_data(nullptr); + size_tensor.set_data(nullptr); + delete kernel; +} + +TEST_F(TestSliceInt8, Slice6D) { + lite::Tensor in_tensor(kNumberTypeInt8, {2, 1, 1, 3, 2, 3}); + lite::Tensor out_tensor(kNumberTypeInt8, {1, 1, 1, 2, 2, 3}); + + int8_t input_data[] = {105, 35, -27, 0, -63, 99, 16, 45, 67, -49, -115, 106, -98, 119, 103, 81, -114, 68, + 105, 35, -27, 0, -63, 99, 16, 45, 67, -49, -115, 106, -98, 119, 103, 81, -114, 68}; + int8_t output_data[12]; + in_tensor.set_data(input_data); + out_tensor.set_data(output_data); + lite::Tensor begin_tensor(kNumberTypeInt32, {6}); + int begin_data[6] = {0, 0, 0, 1, 0, 0}; + begin_tensor.set_data(begin_data); + lite::Tensor size_tensor(kNumberTypeInt32, {6}); + int size_data[6] = {1, 1, 1, 2, 2, 3}; + size_tensor.set_data(size_data); + + const lite::QuantArg quant_in0 = {0.00784314f, 0}; // -1.0--1.0 -> 0--255 + const lite::QuantArg quant_out = {0.00784314f, 0}; + in_tensor.AddQuantParam(quant_in0); + out_tensor.AddQuantParam(quant_out); + + std::vector inputs = {&in_tensor, &begin_tensor, &size_tensor}; + std::vector outputs = {&out_tensor}; + + SliceParameter *parameter = new (std::nothrow) SliceParameter; + parameter->op_parameter_.infer_flag_ = true; + + kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeInt8, schema::PrimitiveType_SliceFusion}; + + auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc); + ASSERT_NE(creator, nullptr); + + auto ctx = std::make_shared(); + ASSERT_EQ(lite::RET_OK, ctx->Init()); + auto kernel = creator(inputs, outputs, reinterpret_cast(parameter), ctx.get(), desc); + ASSERT_NE(kernel, nullptr); + auto ret = kernel->Run(); + EXPECT_EQ(0, ret); + + int8_t expect0[12] = {16, 45, 67, -49, -115, 106, -98, 119, 103, 81, -114, 68}; + for (int i = 0; i < 12; ++i) { + EXPECT_EQ(output_data[i], expect0[i]); + } + + in_tensor.set_data(nullptr); + out_tensor.set_data(nullptr); + begin_tensor.set_data(nullptr); + size_tensor.set_data(nullptr); + delete kernel; +} + +TEST_F(TestSliceInt8, Slice7D) { + lite::Tensor in_tensor(kNumberTypeInt8, {2, 1, 1, 1, 3, 2, 3}); + lite::Tensor out_tensor(kNumberTypeInt8, {1, 1, 1, 1, 2, 2, 3}); + + int8_t input_data[] = {105, 35, -27, 0, -63, 99, 16, 45, 67, -49, -115, 106, -98, 119, 103, 81, -114, 68, + 105, 35, -27, 0, -63, 99, 16, 45, 67, -49, -115, 106, -98, 119, 103, 81, -114, 68}; + int8_t output_data[12]; + in_tensor.set_data(input_data); + out_tensor.set_data(output_data); + lite::Tensor begin_tensor(kNumberTypeInt32, {7}); + int begin_data[7] = {0, 0, 0, 0, 1, 0, 0}; + begin_tensor.set_data(begin_data); + lite::Tensor size_tensor(kNumberTypeInt32, {7}); + int size_data[7] = {1, 1, 1, 1, 2, 2, 3}; + size_tensor.set_data(size_data); + + const lite::QuantArg quant_in0 = {0.00784314f, 0}; // -1.0--1.0 -> 0--255 + const lite::QuantArg quant_out = {0.00784314f, 0}; + in_tensor.AddQuantParam(quant_in0); + out_tensor.AddQuantParam(quant_out); + + std::vector inputs = {&in_tensor, &begin_tensor, &size_tensor}; + std::vector outputs = {&out_tensor}; + + SliceParameter *parameter = new (std::nothrow) SliceParameter; + parameter->op_parameter_.infer_flag_ = true; + + kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeInt8, schema::PrimitiveType_SliceFusion}; + + auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc); + ASSERT_NE(creator, nullptr); + + auto ctx = std::make_shared(); + ASSERT_EQ(lite::RET_OK, ctx->Init()); + auto kernel = creator(inputs, outputs, reinterpret_cast(parameter), ctx.get(), desc); + ASSERT_NE(kernel, nullptr); + auto ret = kernel->Run(); + EXPECT_EQ(0, ret); + + int8_t expect0[12] = {16, 45, 67, -49, -115, 106, -98, 119, 103, 81, -114, 68}; + for (int i = 0; i < 12; ++i) { + EXPECT_EQ(output_data[i], expect0[i]); + } + + in_tensor.set_data(nullptr); + out_tensor.set_data(nullptr); + begin_tensor.set_data(nullptr); + size_tensor.set_data(nullptr); + delete kernel; +} + +TEST_F(TestSliceInt8, Slice8D) { + lite::Tensor in_tensor(kNumberTypeInt8, {2, 1, 1, 1, 1, 3, 2, 3}); + lite::Tensor out_tensor(kNumberTypeInt8, {1, 1, 1, 1, 1, 1, 2, 3}); + + lite::Tensor begin_tensor(kNumberTypeInt32, {8}); + int begin_data[8] = {1, 0, 0, 0, 0, 1, 0, 0}; + begin_tensor.set_data(begin_data); + lite::Tensor size_tensor(kNumberTypeInt32, {8}); + int size_data[8] = {1, 1, 1, 1, 1, 2, 2, 3}; + size_tensor.set_data(size_data); + + int8_t input_data[] = {105, 35, -27, 0, -63, 99, 16, 45, 67, -49, -115, 106, -98, 119, 103, 81, -114, 68, + 105, 35, -27, 0, -63, 99, 16, 45, 67, -49, -115, 106, -98, 119, 103, 81, -114, 68}; + int8_t output_data[12]; + in_tensor.set_data(input_data); + out_tensor.set_data(output_data); + + const lite::QuantArg quant_in0 = {0.00784314f, 0}; // -1.0--1.0 -> 0--255 + const lite::QuantArg quant_out = {0.00784314f, 0}; + in_tensor.AddQuantParam(quant_in0); + out_tensor.AddQuantParam(quant_out); + + std::vector inputs = {&in_tensor, &begin_tensor, &size_tensor}; + std::vector outputs = {&out_tensor}; + + SliceParameter *parameter = new (std::nothrow) SliceParameter; + parameter->op_parameter_.infer_flag_ = true; + + kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeInt8, schema::PrimitiveType_SliceFusion}; + + auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc); + ASSERT_NE(creator, nullptr); + + auto ctx = std::make_shared(); + ASSERT_EQ(lite::RET_OK, ctx->Init()); + auto kernel = creator(inputs, outputs, reinterpret_cast(parameter), ctx.get(), desc); + ASSERT_NE(kernel, nullptr); + auto ret = kernel->Run(); + EXPECT_EQ(0, ret); + + int8_t expect0[12] = {16, 45, 67, -49, -115, 106, -98, 119, 103, 81, -114, 68}; + for (int i = 0; i < 12; ++i) { + EXPECT_EQ(output_data[i], expect0[i]); + } + + in_tensor.set_data(nullptr); + out_tensor.set_data(nullptr); + begin_tensor.set_data(nullptr); + size_tensor.set_data(nullptr); + delete kernel; +} + +TEST_F(TestSliceInt8, SliceDiffQuantArgs) { + lite::Tensor in_tensor(kNumberTypeInt8, {2, 1, 1, 1, 1, 3, 2, 3}); + lite::Tensor out_tensor(kNumberTypeInt8, {1, 1, 1, 1, 1, 1, 2, 3}); + + lite::Tensor begin_tensor(kNumberTypeInt32, {8}); + int begin_data[8] = {1, 0, 0, 0, 0, 1, 0, 0}; + begin_tensor.set_data(begin_data); + lite::Tensor size_tensor(kNumberTypeInt32, {8}); + int size_data[8] = {1, 1, 1, 1, 1, 2, 2, 3}; + size_tensor.set_data(size_data); + + int8_t input_data[] = {105, 35, -27, 0, -63, 99, 16, 45, 67, -49, -115, 106, -98, 119, 103, 81, -114, 68, + 105, 35, -27, 0, -63, 99, 16, 45, 67, -49, -115, 106, -98, 119, 103, 81, -114, 68}; + int8_t output_data[12]; + in_tensor.set_data(input_data); + out_tensor.set_data(output_data); + + const lite::QuantArg quant_in0 = {0.00784314f, 0}; // -1.0--1.0 -> 0--255 + const lite::QuantArg quant_out = {0.01568628f, 0}; + in_tensor.AddQuantParam(quant_in0); + out_tensor.AddQuantParam(quant_out); + + std::vector inputs = {&in_tensor, &begin_tensor, &size_tensor}; + std::vector outputs = {&out_tensor}; + + SliceParameter *parameter = new (std::nothrow) SliceParameter; + parameter->op_parameter_.infer_flag_ = true; + + kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeInt8, schema::PrimitiveType_SliceFusion}; + + auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc); + ASSERT_NE(creator, nullptr); + + auto ctx = std::make_shared(); + ASSERT_EQ(lite::RET_OK, ctx->Init()); + auto kernel = creator(inputs, outputs, reinterpret_cast(parameter), ctx.get(), desc); + ASSERT_NE(kernel, nullptr); + auto ret = kernel->Run(); + EXPECT_EQ(0, ret); + + int8_t expect0[12] = {8, 23, 34, -25, -58, 53, -49, 60, 52, 41, -57, 34}; + for (int i = 0; i < 12; ++i) { + EXPECT_EQ(output_data[i], expect0[i]); + } + + in_tensor.set_data(nullptr); + out_tensor.set_data(nullptr); + begin_tensor.set_data(nullptr); + size_tensor.set_data(nullptr); + delete kernel; +} + +TEST_F(TestSliceInt8, SliceSingleThread) { + lite::Tensor in_tensor(kNumberTypeInt8, {2, 1, 1, 1, 1, 3, 2, 3}); + lite::Tensor out_tensor(kNumberTypeInt8, {1, 1, 1, 1, 1, 1, 2, 3}); + + lite::Tensor begin_tensor(kNumberTypeInt32, {8}); + int begin_data[8] = {1, 0, 0, 0, 0, 1, 0, 0}; + begin_tensor.set_data(begin_data); + lite::Tensor size_tensor(kNumberTypeInt32, {8}); + int size_data[8] = {1, 1, 1, 1, 1, 2, 2, 3}; + size_tensor.set_data(size_data); + + int8_t input_data[] = {105, 35, -27, 0, -63, 99, 16, 45, 67, -49, -115, 106, -98, 119, 103, 81, -114, 68, + 105, 35, -27, 0, -63, 99, 16, 45, 67, -49, -115, 106, -98, 119, 103, 81, -114, 68}; + int8_t output_data[12]; + in_tensor.set_data(input_data); + out_tensor.set_data(output_data); + + const lite::QuantArg quant_in0 = {0.00784314f, 0}; // -1.0--1.0 -> 0--255 + const lite::QuantArg quant_out = {0.00784314f, 0}; + in_tensor.AddQuantParam(quant_in0); + out_tensor.AddQuantParam(quant_out); + + std::vector inputs = {&in_tensor, &begin_tensor, &size_tensor}; + std::vector outputs = {&out_tensor}; + + SliceParameter *parameter = new (std::nothrow) SliceParameter; + parameter->op_parameter_.infer_flag_ = true; + + kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeInt8, schema::PrimitiveType_SliceFusion}; + + auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc); + ASSERT_NE(creator, nullptr); + + auto ctx = std::make_shared(); + ctx->thread_num_ = 1; + + ASSERT_EQ(lite::RET_OK, ctx->Init()); + auto kernel = creator(inputs, outputs, reinterpret_cast(parameter), ctx.get(), desc); + ASSERT_NE(kernel, nullptr); + auto ret = kernel->Run(); + EXPECT_EQ(0, ret); + + int8_t expect0[12] = {16, 45, 67, -49, -115, 106, -98, 119, 103, 81, -114, 68}; + for (int i = 0; i < 12; ++i) { + EXPECT_EQ(output_data[i], expect0[i]); + } + + in_tensor.set_data(nullptr); + out_tensor.set_data(nullptr); + begin_tensor.set_data(nullptr); + size_tensor.set_data(nullptr); + delete kernel; +} + +TEST_F(TestSliceInt8, Slice4Thread) { + lite::Tensor in_tensor(kNumberTypeInt8, {2, 1, 1, 1, 1, 3, 2, 3}); + lite::Tensor out_tensor(kNumberTypeInt8, {1, 1, 1, 1, 1, 1, 2, 3}); + + lite::Tensor begin_tensor(kNumberTypeInt32, {8}); + int begin_data[8] = {1, 0, 0, 0, 0, 1, 0, 0}; + begin_tensor.set_data(begin_data); + lite::Tensor size_tensor(kNumberTypeInt32, {8}); + int size_data[8] = {1, 1, 1, 1, 1, 2, 2, 3}; + size_tensor.set_data(size_data); + + int8_t input_data[] = {105, 35, -27, 0, -63, 99, 16, 45, 67, -49, -115, 106, -98, 119, 103, 81, -114, 68, + 105, 35, -27, 0, -63, 99, 16, 45, 67, -49, -115, 106, -98, 119, 103, 81, -114, 68}; + int8_t output_data[12]; + in_tensor.set_data(input_data); + out_tensor.set_data(output_data); + + const lite::QuantArg quant_in0 = {0.00784314f, 0}; // -1.0--1.0 -> 0--255 + const lite::QuantArg quant_out = {0.00784314f, 0}; + in_tensor.AddQuantParam(quant_in0); + out_tensor.AddQuantParam(quant_out); + + std::vector inputs = {&in_tensor, &begin_tensor, &size_tensor}; + std::vector outputs = {&out_tensor}; + + SliceParameter *parameter = new (std::nothrow) SliceParameter; + parameter->op_parameter_.infer_flag_ = true; + + kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeInt8, schema::PrimitiveType_SliceFusion}; + + auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc); + ASSERT_NE(creator, nullptr); + + auto ctx = std::make_shared(); + ctx->thread_num_ = 4; + ASSERT_EQ(lite::RET_OK, ctx->Init()); + auto kernel = creator(inputs, outputs, reinterpret_cast(parameter), ctx.get(), desc); + ASSERT_NE(kernel, nullptr); + auto ret = kernel->Run(); + EXPECT_EQ(0, ret); + + int8_t expect0[12] = {16, 45, 67, -49, -115, 106, -98, 119, 103, 81, -114, 68}; + for (int i = 0; i < 12; ++i) { + EXPECT_EQ(output_data[i], expect0[i]); + } + + in_tensor.set_data(nullptr); + out_tensor.set_data(nullptr); + begin_tensor.set_data(nullptr); + size_tensor.set_data(nullptr); + delete kernel; } } // namespace mindspore