diff --git a/mindspore/ccsrc/frontend/parallel/ops_info/reshape_info.h b/mindspore/ccsrc/frontend/parallel/ops_info/reshape_info.h index 4583dc981e5..91e43827260 100644 --- a/mindspore/ccsrc/frontend/parallel/ops_info/reshape_info.h +++ b/mindspore/ccsrc/frontend/parallel/ops_info/reshape_info.h @@ -97,7 +97,7 @@ class ReshapeInfo : public OperatorInfo { TensorLayout output_layout_; bool input_layout_set_flag_; bool output_layout_set_flag_; - bool is_generating_costs_; + bool is_generating_costs_ = false; bool is_skip_ = false; std::string pre_operator_name_; std::string next_operator_name_; diff --git a/model_zoo/wide_and_deep/README.md b/model_zoo/official/recommend/wide_and_deep/README.md similarity index 88% rename from model_zoo/wide_and_deep/README.md rename to model_zoo/official/recommend/wide_and_deep/README.md index b91c39ab304..75e9bac0836 100644 --- a/model_zoo/wide_and_deep/README.md +++ b/model_zoo/official/recommend/wide_and_deep/README.md @@ -16,7 +16,7 @@ Arguments: * `--data_path`: Dataset storage path (Default: ./criteo_data/). ## Dataset -The Criteo datasets are used for model training and evaluation. +The common used benchmark datasets are used for model training and evaluation. ## Running Code @@ -63,6 +63,7 @@ Arguments: * `--ckpt_path`:The location of the checkpoint file. * `--eval_file_name` : Eval output file. * `--loss_file_name` : Loss output file. + * `--dataset_type` : tfrecord/mindrecord/hd5. To train the model in one device, command as follows: ``` @@ -84,6 +85,7 @@ Arguments: * `--ckpt_path`:The location of the checkpoint file. * `--eval_file_name` : Eval output file. * `--loss_file_name` : Loss output file. + * `--dataset_type` : tfrecord/mindrecord/hd5. To train the model in distributed, command as follows: ``` @@ -95,6 +97,19 @@ bash run_multinpu_train.sh RANK_SIZE EPOCHS DATASET RANK_TABLE_FILE bash run_auto_parallel_train.sh RANK_SIZE EPOCHS DATASET RANK_TABLE_FILE ``` +To train the model in clusters, command as follows:''' +``` +# deploy wide&deep script in clusters +# CLUSTER_CONFIG is a json file, the sample is in script/. +# EXECUTE_PATH is the scripts path after the deploy. +bash deploy_cluster.sh CLUSTER_CONFIG_PATH EXECUTE_PATH + +# enter EXECUTE_PATH, and execute start_cluster.sh as follows. +# MODE: "host_device_mix" +bash start_cluster.sh CLUSTER_CONFIG_PATH EPOCH_SIZE VOCAB_SIZE EMB_DIM + DATASET ENV_SH RANK_TABLE_FILE MODE +``` + To evaluate the model, command as follows: ``` python eval.py diff --git a/model_zoo/wide_and_deep/eval.py b/model_zoo/official/recommend/wide_and_deep/eval.py similarity index 88% rename from model_zoo/wide_and_deep/eval.py rename to model_zoo/official/recommend/wide_and_deep/eval.py index bc3846533f2..7f664f8abad 100644 --- a/model_zoo/wide_and_deep/eval.py +++ b/model_zoo/official/recommend/wide_and_deep/eval.py @@ -22,7 +22,7 @@ from mindspore.train.serialization import load_checkpoint, load_param_into_net from src.wide_and_deep import PredictWithSigmoid, TrainStepWrap, NetWithLossClass, WideDeepModel from src.callbacks import LossCallBack, EvalCallBack -from src.datasets import create_dataset +from src.datasets import create_dataset, DataType from src.metrics import AUCMetric from src.config import WideDeepConfig @@ -69,8 +69,14 @@ def test_eval(config): """ data_path = config.data_path batch_size = config.batch_size - ds_eval = create_dataset(data_path, train_mode=False, epochs=2, - batch_size=batch_size) + if config.dataset_type == "tfrecord": + dataset_type = DataType.TFRECORD + elif config.dataset_type == "mindrecord": + dataset_type = DataType.MINDRECORD + else: + dataset_type = DataType.H5 + ds_eval = create_dataset(data_path, train_mode=False, epochs=1, + batch_size=batch_size, data_type=dataset_type) print("ds_eval.size: {}".format(ds_eval.get_dataset_size())) net_builder = ModelBuilder() diff --git a/model_zoo/official/recommend/wide_and_deep/script/cluster_32p.json b/model_zoo/official/recommend/wide_and_deep/script/cluster_32p.json new file mode 100644 index 00000000000..3f6dfb57fb5 --- /dev/null +++ b/model_zoo/official/recommend/wide_and_deep/script/cluster_32p.json @@ -0,0 +1,21 @@ +{ + "rank_size": 32, + "cluster": { + "xx.xx.xx.xx": { + "user": "", + "passwd": "" + }, + "xx.xx.xx.xx": { + "user": "", + "passwd": "" + }, + "xx.xx.xx.xx": { + "user": "", + "passwd": "" + }, + "xx.xx.xx.xx": { + "user": "", + "passwd": "" + } + } +} \ No newline at end of file diff --git a/model_zoo/official/recommend/wide_and_deep/script/common.sh b/model_zoo/official/recommend/wide_and_deep/script/common.sh new file mode 100644 index 00000000000..06164ce42c4 --- /dev/null +++ b/model_zoo/official/recommend/wide_and_deep/script/common.sh @@ -0,0 +1,95 @@ +#!/bin/bash +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +SSH="ssh -o StrictHostKeyChecking=no" +SCP="scp -o StrictHostKeyChecking=no" + +error_msg() +{ + local msg="$*" + echo "[ERROR]: $msg" 1>&2 + exit 1 +} + +ssh_pass() +{ + local node="$1" + local user="$2" + local passwd="$3" + shift 3 + local cmd="$*" + sshpass -p "${passwd}" ${SSH} "${user}"@"${node}" ${cmd} +} + +scp_pass() +{ + local node="$1" + local user="$2" + local passwd="$3" + local src="$4" + local target="$5" + sshpass -p "${passwd}" ${SCP} -r "${src}" "${user}"@"${node}":"${target}" +} + +rscp_pass() +{ + local node="$1" + local user="$2" + local passwd="$3" + local src="$4" + local target="$5" + sshpass -p "${passwd}" ${SCP} -r "${user}"@"${node}":"${src}" "${target}" +} + +get_rank_size() +{ + local cluster_config=$1 + cat ${cluster_config} | python3 -c 'import sys,json;print(json.load(sys.stdin)["rank_size"])' +} + +get_train_dataset() +{ + local cluster_config=$1 + cat ${cluster_config} | python3 -c 'import sys,json;print(json.load(sys.stdin)["train_dataset"])' +} + +get_cluster_list() +{ + local cluster_config=$1 + cat ${cluster_config} | python3 -c 'import sys,json;[print(node) for node in json.load(sys.stdin)["cluster"].keys()]' | sort +} + +get_node_user() +{ + local cluster_config=$1 + local node=$2 + cat ${cluster_config} | python3 -c 'import sys,json;print(json.load(sys.stdin)["cluster"]['\"${node}\"']["user"])' +} + +get_node_passwd() +{ + local cluster_config=$1 + local node=$2 + cat ${cluster_config} | python3 -c 'import sys,json;print(json.load(sys.stdin)["cluster"]['\"${node}\"']["passwd"])' +} + +rsync_sshpass() +{ + local node=$1 + local user="$2" + local passwd="$3" + scp_pass "${node}" "${user}" "${passwd}" /usr/local/bin/sshpass /usr/local/bin/sshpass +} diff --git a/model_zoo/official/recommend/wide_and_deep/script/deploy_cluster.sh b/model_zoo/official/recommend/wide_and_deep/script/deploy_cluster.sh new file mode 100644 index 00000000000..291181eb1ae --- /dev/null +++ b/model_zoo/official/recommend/wide_and_deep/script/deploy_cluster.sh @@ -0,0 +1,37 @@ +#!/bin/bash +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +SCRIPTPATH="$( cd "$(dirname "$0")" || exit ; pwd -P )" +# shellcheck source=/dev/null +source $SCRIPTPATH/common.sh +cluster_config_path=$1 +execute_path=$2 +RANK_SIZE=$(get_rank_size ${cluster_config_path}) +RANK_START=0 +node_list=$(get_cluster_list ${cluster_config_path}) + +for node in ${node_list} +do + user=$(get_node_user ${cluster_config_path} ${node}) + passwd=$(get_node_passwd ${cluster_config_path} ${node}) + echo "------------------${user}@${node}---------------------" + ssh_pass ${node} ${user} ${passwd} "rm -rf ${execute_path}" + scp_pass ${node} ${user} ${passwd} $SCRIPTPATH/../../wide_and_deep ${execute_path} + RANK_START=$[RANK_START+8] + if [[ $RANK_START -ge $RANK_SIZE ]]; then + break; + fi +done \ No newline at end of file diff --git a/model_zoo/wide_and_deep/script/run_auto_parallel_train.sh b/model_zoo/official/recommend/wide_and_deep/script/run_auto_parallel_train.sh similarity index 100% rename from model_zoo/wide_and_deep/script/run_auto_parallel_train.sh rename to model_zoo/official/recommend/wide_and_deep/script/run_auto_parallel_train.sh diff --git a/model_zoo/official/recommend/wide_and_deep/script/run_auto_parallel_train_cluster.sh b/model_zoo/official/recommend/wide_and_deep/script/run_auto_parallel_train_cluster.sh new file mode 100644 index 00000000000..f3482a4205b --- /dev/null +++ b/model_zoo/official/recommend/wide_and_deep/script/run_auto_parallel_train_cluster.sh @@ -0,0 +1,48 @@ +#!/bin/bash +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +execute_path=$(pwd) +echo ${execute_path} +script_self=$(readlink -f "$0") +self_path=$(dirname "${script_self}") +echo ${self_path} + +export RANK_SIZE=$1 +RANK_START=$2 +EPOCH_SIZE=$3 +VOCAB_SIZE=$4 +EMB_DIM=$5 +DATASET=$6 +ENV_SH=$7 +MODE=$8 +export MINDSPORE_HCCL_CONFIG=$9 +export RANK_TABLE_FILE=$9 +DEVICE_START=0 +# shellcheck source=/dev/null +source $ENV_SH +for((i=0;i<=7;i++)); +do + export RANK_ID=$[i+RANK_START] + export DEVICE_ID=$[i+DEVICE_START] + rm -rf ${execute_path}/device_$RANK_ID + mkdir ${execute_path}/device_$RANK_ID + cd ${execute_path}/device_$RANK_ID || exit + if [ $MODE == "host_device_mix" ]; then + python -s ${self_path}/../train_and_eval_auto_parallel.py --data_path=$DATASET --epochs=$EPOCH_SIZE --vocab_size=$VOCAB_SIZE --emb_dim=$EMB_DIM --dropout_flag=1 --host_device_mix=1 >train_deep$i.log 2>&1 & + else + python -s ${self_path}/../train_and_eval_auto_parallel.py --data_path=$DATASET --epochs=$EPOCH_SIZE --vocab_size=$VOCAB_SIZE --emb_dim=$EMB_DIM --dropout_flag=1 --host_device_mix=0 >train_deep$i.log 2>&1 & + fi +done \ No newline at end of file diff --git a/model_zoo/wide_and_deep/script/run_multigpu_train.sh b/model_zoo/official/recommend/wide_and_deep/script/run_multigpu_train.sh similarity index 100% rename from model_zoo/wide_and_deep/script/run_multigpu_train.sh rename to model_zoo/official/recommend/wide_and_deep/script/run_multigpu_train.sh diff --git a/model_zoo/wide_and_deep/script/run_multinpu_train.sh b/model_zoo/official/recommend/wide_and_deep/script/run_multinpu_train.sh similarity index 100% rename from model_zoo/wide_and_deep/script/run_multinpu_train.sh rename to model_zoo/official/recommend/wide_and_deep/script/run_multinpu_train.sh diff --git a/model_zoo/wide_and_deep/script/run_standalone_train_for_gpu.sh b/model_zoo/official/recommend/wide_and_deep/script/run_standalone_train_for_gpu.sh similarity index 100% rename from model_zoo/wide_and_deep/script/run_standalone_train_for_gpu.sh rename to model_zoo/official/recommend/wide_and_deep/script/run_standalone_train_for_gpu.sh diff --git a/model_zoo/official/recommend/wide_and_deep/script/start_cluster.sh b/model_zoo/official/recommend/wide_and_deep/script/start_cluster.sh new file mode 100644 index 00000000000..939432726d5 --- /dev/null +++ b/model_zoo/official/recommend/wide_and_deep/script/start_cluster.sh @@ -0,0 +1,51 @@ +#!/bin/bash +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ + +execute_path=$(pwd) +echo ${execute_path} +script_self=$(readlink -f "$0") +SCRIPTPATH=$(dirname "${script_self}") +echo ${SCRIPTPATH} +# shellcheck source=/dev/null +source $SCRIPTPATH/common.sh +cluster_config_path=$1 +RANK_SIZE=$(get_rank_size ${cluster_config_path}) +RANK_START=0 +node_list=$(get_cluster_list ${cluster_config_path}) +EPOCH_SIZE=$2 +VOCAB_SIZE=$3 +EMB_DIM=$4 +DATASET=$5 +MINDSPORE_HCCL_CONFIG_PATH=$6 +ENV_SH=$7 +MODE=$8 + +for node in ${node_list} +do + user=$(get_node_user ${cluster_config_path} ${node}) + passwd=$(get_node_passwd ${cluster_config_path} ${node}) + echo "------------------${user}@${node}---------------------" + if [ $MODE == "host_device_mix" ]; then + ssh_pass ${node} ${user} ${passwd} "mkdir -p ${execute_path}; cd ${execute_path}; bash ${SCRIPTPATH}/run_auto_parallel_train_cluster.sh ${RANK_SIZE} ${RANK_START} ${EPOCH_SIZE} ${VOCAB_SIZE} ${EMB_DIM} ${DATASET} ${ENV_SH} ${MODE} ${MINDSPORE_HCCL_CONFIG_PATH}" + else + echo "[ERROR] mode is wrong" + exit 1 + fi + RANK_START=$[RANK_START+8] + if [[ $RANK_START -ge $RANK_SIZE ]]; then + break; + fi +done \ No newline at end of file diff --git a/model_zoo/wide_and_deep/src/__init__.py b/model_zoo/official/recommend/wide_and_deep/src/__init__.py similarity index 100% rename from model_zoo/wide_and_deep/src/__init__.py rename to model_zoo/official/recommend/wide_and_deep/src/__init__.py diff --git a/model_zoo/wide_and_deep/src/callbacks.py b/model_zoo/official/recommend/wide_and_deep/src/callbacks.py similarity index 94% rename from model_zoo/wide_and_deep/src/callbacks.py rename to model_zoo/official/recommend/wide_and_deep/src/callbacks.py index 4c2f9c700e7..93252927052 100644 --- a/model_zoo/wide_and_deep/src/callbacks.py +++ b/model_zoo/official/recommend/wide_and_deep/src/callbacks.py @@ -51,7 +51,7 @@ class LossCallBack(Callback): wide_loss, deep_loss = cb_params.net_outputs[0].asnumpy(), cb_params.net_outputs[1].asnumpy() cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1 cur_num = cb_params.cur_step_num - print("===loss===", cb_params.cur_epoch_num, cur_step_in_epoch, wide_loss, deep_loss) + print("===loss===", cb_params.cur_epoch_num, cur_step_in_epoch, wide_loss, deep_loss, flush=True) # raise ValueError if self._per_print_times != 0 and cur_num % self._per_print_times == 0 and self.config is not None: @@ -76,7 +76,7 @@ class EvalCallBack(Callback): Args: print_per_step (int): Print loss every times. Default: 1. """ - def __init__(self, model, eval_dataset, auc_metric, config, print_per_step=1): + def __init__(self, model, eval_dataset, auc_metric, config, print_per_step=1, host_device_mix=False): super(EvalCallBack, self).__init__() if not isinstance(print_per_step, int) or print_per_step < 0: raise ValueError("print_per_step must be int and >= 0.") @@ -87,6 +87,7 @@ class EvalCallBack(Callback): self.aucMetric.clear() self.eval_file_name = config.eval_file_name self.eval_values = [] + self.host_device_mix = host_device_mix def epoch_end(self, run_context): """ @@ -98,7 +99,7 @@ class EvalCallBack(Callback): context.set_auto_parallel_context(strategy_ckpt_save_file="", strategy_ckpt_load_file="./strategy_train.ckpt") start_time = time.time() - out = self.model.eval(self.eval_dataset) + out = self.model.eval(self.eval_dataset, dataset_sink_mode=(not self.host_device_mix)) end_time = time.time() eval_time = int(end_time - start_time) diff --git a/model_zoo/wide_and_deep/src/config.py b/model_zoo/official/recommend/wide_and_deep/src/config.py similarity index 92% rename from model_zoo/wide_and_deep/src/config.py rename to model_zoo/official/recommend/wide_and_deep/src/config.py index f8a2c84743d..65a567504fe 100644 --- a/model_zoo/wide_and_deep/src/config.py +++ b/model_zoo/official/recommend/wide_and_deep/src/config.py @@ -38,6 +38,8 @@ def argparse_init(): parser.add_argument("--ckpt_path", type=str, default="./checkpoints/") parser.add_argument("--eval_file_name", type=str, default="eval.log") parser.add_argument("--loss_file_name", type=str, default="loss.log") + parser.add_argument("--host_device_mix", type=int, default=0) + parser.add_argument("--dataset_type", type=str, default="tfrecord") return parser @@ -68,6 +70,8 @@ class WideDeepConfig(): self.eval_file_name = "eval.log" self.loss_file_name = "loss.log" self.ckpt_path = "./checkpoints/" + self.host_device_mix = 0 + self.dataset_type = "tfrecord" def argparse_init(self): """ @@ -97,3 +101,5 @@ class WideDeepConfig(): self.eval_file_name = args.eval_file_name self.loss_file_name = args.loss_file_name self.ckpt_path = args.ckpt_path + self.host_device_mix = args.host_device_mix + self.dataset_type = args.dataset_type diff --git a/model_zoo/wide_and_deep/src/datasets.py b/model_zoo/official/recommend/wide_and_deep/src/datasets.py similarity index 100% rename from model_zoo/wide_and_deep/src/datasets.py rename to model_zoo/official/recommend/wide_and_deep/src/datasets.py diff --git a/model_zoo/wide_and_deep/src/metrics.py b/model_zoo/official/recommend/wide_and_deep/src/metrics.py similarity index 100% rename from model_zoo/wide_and_deep/src/metrics.py rename to model_zoo/official/recommend/wide_and_deep/src/metrics.py diff --git a/model_zoo/wide_and_deep/src/preprocess_data.py b/model_zoo/official/recommend/wide_and_deep/src/preprocess_data.py similarity index 100% rename from model_zoo/wide_and_deep/src/preprocess_data.py rename to model_zoo/official/recommend/wide_and_deep/src/preprocess_data.py diff --git a/model_zoo/wide_and_deep/src/process_data.py b/model_zoo/official/recommend/wide_and_deep/src/process_data.py similarity index 100% rename from model_zoo/wide_and_deep/src/process_data.py rename to model_zoo/official/recommend/wide_and_deep/src/process_data.py diff --git a/model_zoo/wide_and_deep/src/wide_and_deep.py b/model_zoo/official/recommend/wide_and_deep/src/wide_and_deep.py similarity index 77% rename from model_zoo/wide_and_deep/src/wide_and_deep.py rename to model_zoo/official/recommend/wide_and_deep/src/wide_and_deep.py index 048bf3c66d5..3625f6146f7 100644 --- a/model_zoo/wide_and_deep/src/wide_and_deep.py +++ b/model_zoo/official/recommend/wide_and_deep/src/wide_and_deep.py @@ -20,7 +20,7 @@ from mindspore.ops import functional as F from mindspore.ops import composite as C from mindspore.ops import operations as P from mindspore.nn import Dropout -from mindspore.nn.optim import Adam, FTRL +from mindspore.nn.optim import Adam, FTRL, LazyAdam # from mindspore.nn.metrics import Metric from mindspore.common.initializer import Uniform, initializer # from mindspore.train.callback import ModelCheckpoint, CheckpointConfig @@ -82,7 +82,7 @@ class DenseLayer(nn.Cell): """ def __init__(self, input_dim, output_dim, weight_bias_init, act_str, - keep_prob=0.7, use_activation=True, convert_dtype=True, drop_out=False): + keep_prob=0.5, use_activation=True, convert_dtype=True, drop_out=False): super(DenseLayer, self).__init__() weight_init, bias_init = weight_bias_init self.weight = init_method( @@ -137,8 +137,10 @@ class WideDeepModel(nn.Cell): def __init__(self, config): super(WideDeepModel, self).__init__() self.batch_size = config.batch_size + host_device_mix = bool(config.host_device_mix) parallel_mode = _get_parallel_mode() - if parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL): + is_auto_parallel = parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL) + if is_auto_parallel: self.batch_size = self.batch_size * get_group_size() self.field_size = config.field_size self.vocab_size = config.vocab_size @@ -187,16 +189,29 @@ class WideDeepModel(nn.Cell): self.weight_bias_init, self.deep_layer_act, use_activation=False, convert_dtype=True, drop_out=config.dropout_flag) - - self.embeddinglookup = nn.EmbeddingLookup(target='DEVICE') - self.mul = P.Mul() + self.wide_mul = P.Mul() + self.deep_mul = P.Mul() self.reduce_sum = P.ReduceSum(keep_dims=False) self.reshape = P.Reshape() + self.deep_reshape = P.Reshape() self.square = P.Square() self.shape = P.Shape() self.tile = P.Tile() self.concat = P.Concat(axis=1) self.cast = P.Cast() + if is_auto_parallel and host_device_mix: + self.dense_layer_1.dropout.dropout_do_mask.set_strategy(((1, get_group_size()),)) + self.dense_layer_1.matmul.set_strategy(((1, get_group_size()), (get_group_size(), 1))) + self.deep_embeddinglookup = nn.EmbeddingLookup() + self.deep_embeddinglookup.embeddinglookup.set_strategy(((1, get_group_size()), (1, 1))) + self.wide_embeddinglookup = nn.EmbeddingLookup() + self.wide_embeddinglookup.embeddinglookup.set_strategy(((get_group_size(), 1), (1, 1))) + self.deep_mul.set_strategy(((1, 1, get_group_size()), (1, 1, 1))) + self.deep_reshape.add_prim_attr("skip_redistribution", True) + self.reduce_sum.add_prim_attr("cross_batch", True) + else: + self.deep_embeddinglookup = nn.EmbeddingLookup(target='DEVICE') + self.wide_embeddinglookup = nn.EmbeddingLookup(target='DEVICE') def construct(self, id_hldr, wt_hldr): """ @@ -206,13 +221,13 @@ class WideDeepModel(nn.Cell): """ mask = self.reshape(wt_hldr, (self.batch_size, self.field_size, 1)) # Wide layer - wide_id_weight = self.embeddinglookup(self.wide_w, id_hldr) - wx = self.mul(wide_id_weight, mask) + wide_id_weight = self.wide_embeddinglookup(self.wide_w, id_hldr) + wx = self.wide_mul(wide_id_weight, mask) wide_out = self.reshape(self.reduce_sum(wx, 1) + self.wide_b, (-1, 1)) # Deep layer - deep_id_embs = self.embeddinglookup(self.embedding_table, id_hldr) - vx = self.mul(deep_id_embs, mask) - deep_in = self.reshape(vx, (-1, self.field_size * self.emb_dim)) + deep_id_embs = self.deep_embeddinglookup(self.embedding_table, id_hldr) + vx = self.deep_mul(deep_id_embs, mask) + deep_in = self.deep_reshape(vx, (-1, self.field_size * self.emb_dim)) deep_in = self.dense_layer_1(deep_in) deep_in = self.dense_layer_2(deep_in) deep_in = self.dense_layer_3(deep_in) @@ -233,19 +248,28 @@ class NetWithLossClass(nn.Cell): def __init__(self, network, config): super(NetWithLossClass, self).__init__(auto_prefix=False) + host_device_mix = bool(config.host_device_mix) + parallel_mode = _get_parallel_mode() + is_auto_parallel = parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL) + self.no_l2loss = host_device_mix and is_auto_parallel self.network = network self.l2_coef = config.l2_coef self.loss = P.SigmoidCrossEntropyWithLogits() self.square = P.Square() self.reduceMean_false = P.ReduceMean(keep_dims=False) + if is_auto_parallel: + self.reduceMean_false.add_prim_attr("cross_batch", True) self.reduceSum_false = P.ReduceSum(keep_dims=False) def construct(self, batch_ids, batch_wts, label): predict, embedding_table = self.network(batch_ids, batch_wts) log_loss = self.loss(predict, label) wide_loss = self.reduceMean_false(log_loss) - l2_loss_v = self.reduceSum_false(self.square(embedding_table)) / 2 - deep_loss = self.reduceMean_false(log_loss) + self.l2_coef * l2_loss_v + if self.no_l2loss: + deep_loss = wide_loss + else: + l2_loss_v = self.reduceSum_false(self.square(embedding_table)) / 2 + deep_loss = self.reduceMean_false(log_loss) + self.l2_coef * l2_loss_v return wide_loss, deep_loss @@ -267,12 +291,15 @@ class TrainStepWrap(nn.Cell): Append Adam and FTRL optimizers to the training network after that construct function can be called to create the backward graph. Args: - network (Cell): the training network. Note that loss function should have been added. - sens (Number): The adjust parameter. Default: 1000.0 + network (Cell): The training network. Note that loss function should have been added. + sens (Number): The adjust parameter. Default: 1024.0 + host_device_mix (Bool): Whether run in host and device mix mode. Default: False """ - def __init__(self, network, sens=1024.0): + def __init__(self, network, sens=1024.0, host_device_mix=False): super(TrainStepWrap, self).__init__() + parallel_mode = _get_parallel_mode() + is_auto_parallel = parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL) self.network = network self.network.set_train() self.trainable_params = network.trainable_params() @@ -285,10 +312,19 @@ class TrainStepWrap(nn.Cell): weights_d.append(params) self.weights_w = ParameterTuple(weights_w) self.weights_d = ParameterTuple(weights_d) - self.optimizer_w = FTRL(learning_rate=1e-2, params=self.weights_w, - l1=1e-8, l2=1e-8, initial_accum=1.0) - self.optimizer_d = Adam( - self.weights_d, learning_rate=3.5e-4, eps=1e-8, loss_scale=sens) + + if host_device_mix and is_auto_parallel: + self.optimizer_d = LazyAdam( + self.weights_d, learning_rate=3.5e-4, eps=1e-8, loss_scale=sens) + self.optimizer_w = FTRL(learning_rate=5e-2, params=self.weights_w, + l1=1e-8, l2=1e-8, initial_accum=1.0, loss_scale=sens) + self.optimizer_w.sparse_opt.add_prim_attr("primitive_target", "CPU") + self.optimizer_d.sparse_opt.add_prim_attr("primitive_target", "CPU") + else: + self.optimizer_d = Adam( + self.weights_d, learning_rate=3.5e-4, eps=1e-8, loss_scale=sens) + self.optimizer_w = FTRL(learning_rate=5e-2, params=self.weights_w, + l1=1e-8, l2=1e-8, initial_accum=1.0, loss_scale=sens) self.hyper_map = C.HyperMap() self.grad_w = C.GradOperation('grad_w', get_by_list=True, sens_param=True) diff --git a/model_zoo/wide_and_deep/train.py b/model_zoo/official/recommend/wide_and_deep/train.py similarity index 88% rename from model_zoo/wide_and_deep/train.py rename to model_zoo/official/recommend/wide_and_deep/train.py index 0d76b5d1a43..4c4e384b6ec 100644 --- a/model_zoo/wide_and_deep/train.py +++ b/model_zoo/official/recommend/wide_and_deep/train.py @@ -17,7 +17,7 @@ from mindspore import Model, context from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor from src.wide_and_deep import PredictWithSigmoid, TrainStepWrap, NetWithLossClass, WideDeepModel from src.callbacks import LossCallBack -from src.datasets import create_dataset +from src.datasets import create_dataset, DataType from src.config import WideDeepConfig @@ -63,7 +63,14 @@ def test_train(configure): data_path = configure.data_path batch_size = configure.batch_size epochs = configure.epochs - ds_train = create_dataset(data_path, train_mode=True, epochs=1, batch_size=batch_size) + if configure.dataset_type == "tfrecord": + dataset_type = DataType.TFRECORD + elif configure.dataset_type == "mindrecord": + dataset_type = DataType.MINDRECORD + else: + dataset_type = DataType.H5 + ds_train = create_dataset(data_path, train_mode=True, epochs=1, + batch_size=batch_size, data_type=dataset_type) print("ds_train.size: {}".format(ds_train.get_dataset_size())) net_builder = ModelBuilder() diff --git a/model_zoo/wide_and_deep/train_and_eval.py b/model_zoo/official/recommend/wide_and_deep/train_and_eval.py similarity index 87% rename from model_zoo/wide_and_deep/train_and_eval.py rename to model_zoo/official/recommend/wide_and_deep/train_and_eval.py index 779ef92b4f8..1a255ce9e5c 100644 --- a/model_zoo/wide_and_deep/train_and_eval.py +++ b/model_zoo/official/recommend/wide_and_deep/train_and_eval.py @@ -19,7 +19,7 @@ from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMoni from src.wide_and_deep import PredictWithSigmoid, TrainStepWrap, NetWithLossClass, WideDeepModel from src.callbacks import LossCallBack, EvalCallBack -from src.datasets import create_dataset +from src.datasets import create_dataset, DataType from src.metrics import AUCMetric from src.config import WideDeepConfig @@ -67,8 +67,16 @@ def test_train_eval(config): data_path = config.data_path batch_size = config.batch_size epochs = config.epochs - ds_train = create_dataset(data_path, train_mode=True, epochs=1, batch_size=batch_size) - ds_eval = create_dataset(data_path, train_mode=False, epochs=1, batch_size=batch_size) + if config.dataset_type == "tfrecord": + dataset_type = DataType.TFRECORD + elif config.dataset_type == "mindrecord": + dataset_type = DataType.MINDRECORD + else: + dataset_type = DataType.H5 + ds_train = create_dataset(data_path, train_mode=True, epochs=1, + batch_size=batch_size, data_type=dataset_type) + ds_eval = create_dataset(data_path, train_mode=False, epochs=1, + batch_size=batch_size, data_type=dataset_type) print("ds_train.size: {}".format(ds_train.get_dataset_size())) print("ds_eval.size: {}".format(ds_eval.get_dataset_size())) diff --git a/model_zoo/wide_and_deep/train_and_eval_auto_parallel.py b/model_zoo/official/recommend/wide_and_deep/train_and_eval_auto_parallel.py similarity index 75% rename from model_zoo/wide_and_deep/train_and_eval_auto_parallel.py rename to model_zoo/official/recommend/wide_and_deep/train_and_eval_auto_parallel.py index 6d36bf9af4e..a168b84d79b 100644 --- a/model_zoo/wide_and_deep/train_and_eval_auto_parallel.py +++ b/model_zoo/official/recommend/wide_and_deep/train_and_eval_auto_parallel.py @@ -27,13 +27,14 @@ from mindspore.nn.wrap.cell_wrapper import VirtualDatasetCellTriple from src.wide_and_deep import PredictWithSigmoid, TrainStepWrap, NetWithLossClass, WideDeepModel from src.callbacks import LossCallBack, EvalCallBack -from src.datasets import create_dataset +from src.datasets import create_dataset, DataType from src.metrics import AUCMetric from src.config import WideDeepConfig sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True) -context.set_auto_parallel_context(parallel_mode=ParallelMode.AUTO_PARALLEL, mirror_mean=True) +context.set_context(variable_memory_max_size="24GB") +context.set_context(enable_sparse=True) cost_model_context.set_cost_model_context(multi_subgraphs=True) init() @@ -46,7 +47,7 @@ def get_WideDeep_net(config): WideDeep_net = WideDeepModel(config) loss_net = NetWithLossClass(WideDeep_net, config) loss_net = VirtualDatasetCellTriple(loss_net) - train_net = TrainStepWrap(loss_net) + train_net = TrainStepWrap(loss_net, host_device_mix=bool(config.host_device_mix)) eval_net = PredictWithSigmoid(WideDeep_net) eval_net = VirtualDatasetCellTriple(eval_net) return train_net, eval_net @@ -81,19 +82,28 @@ def train_and_eval(config): data_path = config.data_path batch_size = config.batch_size epochs = config.epochs + if config.dataset_type == "tfrecord": + dataset_type = DataType.TFRECORD + elif config.dataset_type == "mindrecord": + dataset_type = DataType.MINDRECORD + else: + dataset_type = DataType.H5 + host_device_mix = bool(config.host_device_mix) print("epochs is {}".format(epochs)) if config.full_batch: context.set_auto_parallel_context(full_batch=True) de.config.set_seed(1) ds_train = create_dataset(data_path, train_mode=True, epochs=1, - batch_size=batch_size*get_group_size()) + batch_size=batch_size*get_group_size(), data_type=dataset_type) ds_eval = create_dataset(data_path, train_mode=False, epochs=1, - batch_size=batch_size*get_group_size()) + batch_size=batch_size*get_group_size(), data_type=dataset_type) else: ds_train = create_dataset(data_path, train_mode=True, epochs=1, - batch_size=batch_size, rank_id=get_rank(), rank_size=get_group_size()) + batch_size=batch_size, rank_id=get_rank(), + rank_size=get_group_size(), data_type=dataset_type) ds_eval = create_dataset(data_path, train_mode=False, epochs=1, - batch_size=batch_size, rank_id=get_rank(), rank_size=get_group_size()) + batch_size=batch_size, rank_id=get_rank(), + rank_size=get_group_size(), data_type=dataset_type) print("ds_train.size: {}".format(ds_train.get_dataset_size())) print("ds_eval.size: {}".format(ds_eval.get_dataset_size())) @@ -105,18 +115,24 @@ def train_and_eval(config): model = Model(train_net, eval_network=eval_net, metrics={"auc": auc_metric}) - eval_callback = EvalCallBack(model, ds_eval, auc_metric, config) + eval_callback = EvalCallBack(model, ds_eval, auc_metric, config, host_device_mix=host_device_mix) callback = LossCallBack(config=config) ckptconfig = CheckpointConfig(save_checkpoint_steps=ds_train.get_dataset_size(), keep_checkpoint_max=5) ckpoint_cb = ModelCheckpoint(prefix='widedeep_train', directory=config.ckpt_path, config=ckptconfig) context.set_auto_parallel_context(strategy_ckpt_save_file="./strategy_train.ckpt") - model.train(epochs, ds_train, - callbacks=[TimeMonitor(ds_train.get_dataset_size()), eval_callback, callback, ckpoint_cb]) + callback_list = [TimeMonitor(ds_train.get_dataset_size()), eval_callback, callback] + if not host_device_mix: + callback_list.append(ckpoint_cb) + model.train(epochs, ds_train, callbacks=callback_list, dataset_sink_mode=(not host_device_mix)) if __name__ == "__main__": wide_deep_config = WideDeepConfig() wide_deep_config.argparse_init() + if wide_deep_config.host_device_mix == 1: + context.set_auto_parallel_context(parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, mirror_mean=True) + else: + context.set_auto_parallel_context(parallel_mode=ParallelMode.AUTO_PARALLEL, mirror_mean=True) train_and_eval(wide_deep_config) diff --git a/model_zoo/wide_and_deep/train_and_eval_distribute.py b/model_zoo/official/recommend/wide_and_deep/train_and_eval_distribute.py similarity index 90% rename from model_zoo/wide_and_deep/train_and_eval_distribute.py rename to model_zoo/official/recommend/wide_and_deep/train_and_eval_distribute.py index e85c9186b9d..86317b66d56 100644 --- a/model_zoo/wide_and_deep/train_and_eval_distribute.py +++ b/model_zoo/official/recommend/wide_and_deep/train_and_eval_distribute.py @@ -25,7 +25,7 @@ from mindspore.communication.management import get_rank, get_group_size, init from src.wide_and_deep import PredictWithSigmoid, TrainStepWrap, NetWithLossClass, WideDeepModel from src.callbacks import LossCallBack, EvalCallBack -from src.datasets import create_dataset +from src.datasets import create_dataset, DataType from src.metrics import AUCMetric from src.config import WideDeepConfig @@ -73,11 +73,19 @@ def train_and_eval(config): data_path = config.data_path batch_size = config.batch_size epochs = config.epochs + if config.dataset_type == "tfrecord": + dataset_type = DataType.TFRECORD + elif config.dataset_type == "mindrecord": + dataset_type = DataType.MINDRECORD + else: + dataset_type = DataType.H5 print("epochs is {}".format(epochs)) ds_train = create_dataset(data_path, train_mode=True, epochs=1, - batch_size=batch_size, rank_id=get_rank(), rank_size=get_group_size()) + batch_size=batch_size, rank_id=get_rank(), + rank_size=get_group_size(), data_type=dataset_type) ds_eval = create_dataset(data_path, train_mode=False, epochs=1, - batch_size=batch_size, rank_id=get_rank(), rank_size=get_group_size()) + batch_size=batch_size, rank_id=get_rank(), + rank_size=get_group_size(), data_type=dataset_type) print("ds_train.size: {}".format(ds_train.get_dataset_size())) print("ds_eval.size: {}".format(ds_eval.get_dataset_size())) diff --git a/tests/st/model_zoo_tests/wide_and_deep/run_wide_and_deep_auto_parallel.sh b/tests/st/model_zoo_tests/wide_and_deep/run_wide_and_deep_auto_parallel.sh index 189014ce915..0cdd327212c 100644 --- a/tests/st/model_zoo_tests/wide_and_deep/run_wide_and_deep_auto_parallel.sh +++ b/tests/st/model_zoo_tests/wide_and_deep/run_wide_and_deep_auto_parallel.sh @@ -21,10 +21,10 @@ export RANK_SIZE=$DEVICE_NUM unset SLOG_PRINT_TO_STDOUT export MINDSPORE_HCCL_CONFIG_PATH=$CONFIG_PATH/hccl/rank_table_${DEVICE_NUM}p.json CODE_DIR="./" -if [ -d ${BASE_PATH}/../../../../model_zoo/wide_and_deep ]; then - CODE_DIR=${BASE_PATH}/../../../../model_zoo/wide_and_deep -elif [ -d ${BASE_PATH}/../../model_zoo/wide_and_deep ]; then - CODE_DIR=${BASE_PATH}/../../model_zoo/wide_and_deep +if [ -d ${BASE_PATH}/../../../../model_zoo/official/recommend/wide_and_deep ]; then + CODE_DIR=${BASE_PATH}/../../../../model_zoo/official/recommend/wide_and_deep +elif [ -d ${BASE_PATH}/../../model_zoo/official/recommend/wide_and_deep ]; then + CODE_DIR=${BASE_PATH}/../../model_zoo/official/recommend/wide_and_deep else echo "[ERROR] code dir is not found" fi