forked from mindspore-Ecosystem/mindspore
[feat][assistant][I3J6V0] add new audio operator TrebleBiquad
This commit is contained in:
parent
5debb583e2
commit
3da0f0f487
|
@ -39,6 +39,7 @@
|
|||
#include "minddata/dataset/audio/ir/kernels/riaa_biquad_ir.h"
|
||||
#include "minddata/dataset/audio/ir/kernels/time_masking_ir.h"
|
||||
#include "minddata/dataset/audio/ir/kernels/time_stretch_ir.h"
|
||||
#include "minddata/dataset/audio/ir/kernels/treble_biquad_ir.h"
|
||||
#include "minddata/dataset/audio/ir/kernels/vol_ir.h"
|
||||
|
||||
namespace mindspore {
|
||||
|
@ -385,6 +386,23 @@ std::shared_ptr<TensorOperation> TimeStretch::Parse() {
|
|||
return std::make_shared<TimeStretchOperation>(data_->hop_length_, data_->n_freq_, data_->fixed_rate_);
|
||||
}
|
||||
|
||||
// TrebleBiquad Transform Operation.
|
||||
struct TrebleBiquad::Data {
|
||||
Data(int32_t sample_rate, float gain, float central_freq, float Q)
|
||||
: sample_rate_(sample_rate), gain_(gain), central_freq_(central_freq), Q_(Q) {}
|
||||
int32_t sample_rate_;
|
||||
float gain_;
|
||||
float central_freq_;
|
||||
float Q_;
|
||||
};
|
||||
|
||||
TrebleBiquad::TrebleBiquad(int32_t sample_rate, float gain, float central_freq, float Q)
|
||||
: data_(std::make_shared<Data>(sample_rate, gain, central_freq, Q)) {}
|
||||
|
||||
std::shared_ptr<TensorOperation> TrebleBiquad::Parse() {
|
||||
return std::make_shared<TrebleBiquadOperation>(data_->sample_rate_, data_->gain_, data_->central_freq_, data_->Q_);
|
||||
}
|
||||
|
||||
// Vol Transform Operation.
|
||||
struct Vol::Data {
|
||||
Data(float gain, GainType gain_type) : gain_(gain), gain_type_(gain_type) {}
|
||||
|
|
|
@ -43,6 +43,7 @@
|
|||
#include "minddata/dataset/audio/ir/kernels/riaa_biquad_ir.h"
|
||||
#include "minddata/dataset/audio/ir/kernels/time_masking_ir.h"
|
||||
#include "minddata/dataset/audio/ir/kernels/time_stretch_ir.h"
|
||||
#include "minddata/dataset/audio/ir/kernels/treble_biquad_ir.h"
|
||||
#include "minddata/dataset/audio/ir/kernels/vol_ir.h"
|
||||
|
||||
namespace mindspore {
|
||||
|
@ -317,6 +318,17 @@ PYBIND_REGISTER(
|
|||
}));
|
||||
}));
|
||||
|
||||
PYBIND_REGISTER(
|
||||
TrebleBiquadOperation, 1, ([](const py::module *m) {
|
||||
(void)py::class_<audio::TrebleBiquadOperation, TensorOperation, std::shared_ptr<audio::TrebleBiquadOperation>>(
|
||||
*m, "TrebleBiquadOperation")
|
||||
.def(py::init([](int32_t sample_rate, float gain, float central_freq, float Q) {
|
||||
auto treble_biquad = std::make_shared<audio::TrebleBiquadOperation>(sample_rate, gain, central_freq, Q);
|
||||
THROW_IF_ERROR(treble_biquad->ValidateParams());
|
||||
return treble_biquad;
|
||||
}));
|
||||
}));
|
||||
|
||||
PYBIND_REGISTER(VolOperation, 1, ([](const py::module *m) {
|
||||
(void)py::class_<audio::VolOperation, TensorOperation, std::shared_ptr<audio::VolOperation>>(
|
||||
*m, "VolOperation")
|
||||
|
|
|
@ -25,6 +25,7 @@ add_library(audio-ir-kernels OBJECT
|
|||
riaa_biquad_ir.cc
|
||||
time_masking_ir.cc
|
||||
time_stretch_ir.cc
|
||||
treble_biquad_ir.cc
|
||||
vol_ir.cc
|
||||
)
|
||||
|
||||
|
|
|
@ -0,0 +1,49 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "minddata/dataset/audio/ir/kernels/treble_biquad_ir.h"
|
||||
|
||||
#include "minddata/dataset/audio/ir/validators.h"
|
||||
#include "minddata/dataset/audio/kernels/treble_biquad_op.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
namespace audio {
|
||||
TrebleBiquadOperation::TrebleBiquadOperation(int32_t sample_rate, float gain, float central_freq, float Q)
|
||||
: sample_rate_(sample_rate), gain_(gain), central_freq_(central_freq), Q_(Q) {}
|
||||
|
||||
Status TrebleBiquadOperation::ValidateParams() {
|
||||
RETURN_IF_NOT_OK(ValidateScalar("TrebleBiquad", "Q", Q_, {0, 1.0}, true, false));
|
||||
RETURN_IF_NOT_OK(ValidateScalarNotZero("TrebleBiquad", "sample_rate", sample_rate_));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
std::shared_ptr<TensorOp> TrebleBiquadOperation::Build() {
|
||||
std::shared_ptr<TrebleBiquadOp> tensor_op = std::make_shared<TrebleBiquadOp>(sample_rate_, gain_, central_freq_, Q_);
|
||||
return tensor_op;
|
||||
}
|
||||
|
||||
Status TrebleBiquadOperation::to_json(nlohmann::json *out_json) {
|
||||
nlohmann::json args;
|
||||
args["sample_rate"] = sample_rate_;
|
||||
args["gain"] = gain_;
|
||||
args["central_freq"] = central_freq_;
|
||||
args["Q"] = Q_;
|
||||
*out_json = args;
|
||||
return Status::OK();
|
||||
}
|
||||
} // namespace audio
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,59 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_AUDIO_IR_KERNELS_TREBLE_BIQUAD_IR_H_
|
||||
#define MINDSPORE_CCSRC_MINDDATA_DATASET_AUDIO_IR_KERNELS_TREBLE_BIQUAD_IR_H_
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
#include "include/api/status.h"
|
||||
#include "minddata/dataset/include/dataset/constants.h"
|
||||
#include "minddata/dataset/include/dataset/transforms.h"
|
||||
#include "minddata/dataset/kernels/ir/tensor_operation.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
namespace audio {
|
||||
|
||||
constexpr char kTrebleBiquadOperation[] = "TrebleBiquad";
|
||||
|
||||
class TrebleBiquadOperation : public TensorOperation {
|
||||
public:
|
||||
TrebleBiquadOperation(int32_t sample_rate, float gain, float central_freq, float Q);
|
||||
|
||||
~TrebleBiquadOperation() = default;
|
||||
|
||||
std::shared_ptr<TensorOp> Build() override;
|
||||
|
||||
Status ValidateParams() override;
|
||||
|
||||
std::string Name() const override { return kTrebleBiquadOperation; }
|
||||
|
||||
Status to_json(nlohmann::json *out_json) override;
|
||||
|
||||
private:
|
||||
int32_t sample_rate_;
|
||||
float gain_;
|
||||
float central_freq_;
|
||||
float Q_;
|
||||
};
|
||||
} // namespace audio
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_AUDIO_IR_KERNELS_TREBLE_BIQUAD_IR_H_
|
|
@ -26,6 +26,7 @@ add_library(audio-kernels OBJECT
|
|||
riaa_biquad_op.cc
|
||||
time_masking_op.cc
|
||||
time_stretch_op.cc
|
||||
treble_biquad_op.cc
|
||||
vol_op.cc
|
||||
)
|
||||
|
||||
|
|
|
@ -0,0 +1,68 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "minddata/dataset/audio/kernels/treble_biquad_op.h"
|
||||
|
||||
#include "minddata/dataset/audio/kernels/audio_utils.h"
|
||||
#include "minddata/dataset/util/status.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
TrebleBiquadOp::TrebleBiquadOp(int32_t sample_rate, float gain, float central_freq, float Q)
|
||||
: sample_rate_(sample_rate), gain_(gain), central_freq_(central_freq), Q_(Q) {}
|
||||
|
||||
Status TrebleBiquadOp::Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) {
|
||||
IO_CHECK(input, output);
|
||||
TensorShape input_shape = input->shape();
|
||||
// check input tensor dimension, it should be greater than 0.
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(input_shape.Size() > 0, "TrebleBiquad: input tensor is not in shape of <..., time>.");
|
||||
// check input type, it should be DE_FLOAT32 or DE_FLOAT16 or DE_FLOAT64
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(input->type() == DataType(DataType::DE_FLOAT32) ||
|
||||
input->type() == DataType(DataType::DE_FLOAT16) ||
|
||||
input->type() == DataType(DataType::DE_FLOAT64),
|
||||
"TrebleBiquad: input tensor type should be float, but got: " + input->type().ToString());
|
||||
// computer a0, a1, a2, b0, b1, b2
|
||||
float w0 = 2 * PI * central_freq_ / sample_rate_;
|
||||
float alpha = sin(w0) / 2 / Q_;
|
||||
// for peaking and shelving EQ filters only
|
||||
float attenuation = exp(gain_ / 40 * log(10));
|
||||
|
||||
// temp1, temp2, temp3 are the intermediate variable used to solve for a and b.
|
||||
float temp1 = 2 * sqrt(attenuation) * alpha;
|
||||
float temp2 = (attenuation - 1) * cos(w0);
|
||||
float temp3 = (attenuation + 1) * cos(w0);
|
||||
|
||||
float b0 = attenuation * ((attenuation + 1) + temp2 + temp1);
|
||||
float b1 = -2 * attenuation * ((attenuation - 1) + temp3);
|
||||
float b2 = attenuation * ((attenuation + 1) + temp2 - temp1);
|
||||
float a0 = (attenuation + 1) - temp2 + temp1;
|
||||
float a1 = 2 * ((attenuation - 1) - temp3);
|
||||
float a2 = (attenuation + 1) - temp2 - temp1;
|
||||
// use Biquad function
|
||||
if (input->type() == DataType(DataType::DE_FLOAT32)) {
|
||||
return Biquad(input, output, static_cast<float>(b0), static_cast<float>(b1), static_cast<float>(b2),
|
||||
static_cast<float>(a0), static_cast<float>(a1), static_cast<float>(a2));
|
||||
} else if (input->type() == DataType(DataType::DE_FLOAT64)) {
|
||||
return Biquad(input, output, static_cast<double>(b0), static_cast<double>(b1), static_cast<double>(b2),
|
||||
static_cast<double>(a0), static_cast<double>(a1), static_cast<double>(a2));
|
||||
} else {
|
||||
return Biquad(input, output, static_cast<float16>(b0), static_cast<float16>(b1), static_cast<float16>(b2),
|
||||
static_cast<float16>(a0), static_cast<float16>(a1), static_cast<float16>(a2));
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,48 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_AUDIO_KERNELS_TREBLE_BIQUAD_OP_H_
|
||||
#define MINDSPORE_CCSRC_MINDDATA_DATASET_AUDIO_KERNELS_TREBLE_BIQUAD_OP_H_
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "minddata/dataset/core/tensor.h"
|
||||
#include "minddata/dataset/kernels/tensor_op.h"
|
||||
#include "minddata/dataset/util/status.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace dataset {
|
||||
class TrebleBiquadOp : public TensorOp {
|
||||
public:
|
||||
TrebleBiquadOp(int32_t sample_rate, float gain, float central_freq, float Q);
|
||||
|
||||
~TrebleBiquadOp() override = default;
|
||||
|
||||
Status Compute(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output) override;
|
||||
|
||||
std::string Name() const override { return kTrebleBiquadOp; }
|
||||
|
||||
private:
|
||||
int32_t sample_rate_;
|
||||
float gain_;
|
||||
float central_freq_;
|
||||
float Q_;
|
||||
};
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_AUDIO_KERNELS_TREBLE_BIQUAD_OP_H_
|
|
@ -556,6 +556,29 @@ class TimeStretch final : public TensorTransform {
|
|||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Design a treble tone-control effect.
|
||||
class TrebleBiquad final : public TensorTransform {
|
||||
public:
|
||||
/// \brief Constructor.
|
||||
/// \param[in] sample_rate Sampling rate of the waveform, e.g. 44100 (Hz), the value can't be zero.
|
||||
/// \param[in] gain Desired gain at the boost (or attenuation) in dB.
|
||||
/// \param[in] central_freq Central frequency (in Hz) (Default: 3000).
|
||||
/// \param[in] Q Quality factor, https://en.wikipedia.org/wiki/Q_factor, range: (0, 1] (Default: 0.707).
|
||||
TrebleBiquad(int32_t sample_rate, float gain, float central_freq = 3000, float Q = 0.707);
|
||||
|
||||
/// \brief Destructor.
|
||||
~TrebleBiquad() = default;
|
||||
|
||||
protected:
|
||||
/// \brief Function to convert TensorTransform object into a TensorOperation object.
|
||||
/// \return Shared pointer to TensorOperation object.
|
||||
std::shared_ptr<TensorOperation> Parse() override;
|
||||
|
||||
private:
|
||||
struct Data;
|
||||
std::shared_ptr<Data> data_;
|
||||
};
|
||||
|
||||
/// \brief Vol TensorTransform.
|
||||
/// \notes Add a volume to an waveform.
|
||||
class Vol final : public TensorTransform {
|
||||
|
|
|
@ -165,6 +165,7 @@ constexpr char kMuLawDecodingOp[] = "MuLawDecodingOp";
|
|||
constexpr char kRiaaBiquadOp[] = "RiaaBiquadOp";
|
||||
constexpr char kTimeMaskingOp[] = "TimeMaskingOp";
|
||||
constexpr char kTimeStretchOp[] = "TimeStretchOp";
|
||||
constexpr char kTrebleBiquadOp[] = "TrebleBiquadOp";
|
||||
constexpr char kVolOp[] = "VolOp";
|
||||
|
||||
// data
|
||||
|
|
|
@ -28,7 +28,7 @@ from .validators import check_allpass_biquad, check_amplitude_to_db, check_band_
|
|||
check_bandreject_biquad, check_bass_biquad, check_biquad, check_complex_norm, check_contrast, check_dc_shift, \
|
||||
check_deemph_biquad, check_equalizer_biquad, check_fade, check_highpass_biquad, check_lfilter, \
|
||||
check_lowpass_biquad, check_magphase, check_masking, check_mu_law_decoding, check_riaa_biquad, \
|
||||
check_time_stretch, check_vol
|
||||
check_time_stretch, check_treble_biquad, check_vol
|
||||
|
||||
|
||||
class AudioTensorOperation(TensorOperation):
|
||||
|
@ -714,6 +714,36 @@ class TimeStretch(AudioTensorOperation):
|
|||
return cde.TimeStretchOperation(self.hop_length, self.n_freq, self.fixed_rate)
|
||||
|
||||
|
||||
class TrebleBiquad(AudioTensorOperation):
|
||||
"""
|
||||
Design a treble tone-control effect. Similar to SoX implementation.
|
||||
|
||||
Args:
|
||||
sample_rate (int): Sampling rate of the waveform, e.g. 44100 (Hz), the value can't be zero.
|
||||
gain (float): Desired gain at the boost (or attenuation) in dB.
|
||||
central_freq (float, optional): Central frequency (in Hz) (default=3000).
|
||||
Q(float, optional): Quality factor, https://en.wikipedia.org/wiki/Q_factor, range: (0, 1] (default=0.707).
|
||||
|
||||
Examples:
|
||||
>>> import numpy as np
|
||||
>>>
|
||||
>>> waveform = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float64)
|
||||
>>> numpy_slices_dataset = ds.NumpySlicesDataset(data=waveform, column_names=["audio"])
|
||||
>>> transforms = [audio.TrebleBiquad(44100, 200.0)]
|
||||
>>> numpy_slices_dataset = numpy_slices_dataset.map(operations=transforms, input_columns=["audio"])
|
||||
"""
|
||||
|
||||
@check_treble_biquad
|
||||
def __init__(self, sample_rate, gain, central_freq=3000, Q=0.707):
|
||||
self.sample_rate = sample_rate
|
||||
self.gain = gain
|
||||
self.central_freq = central_freq
|
||||
self.Q = Q
|
||||
|
||||
def parse(self):
|
||||
return cde.TrebleBiquadOperation(self.sample_rate, self.gain, self.central_freq, self.Q)
|
||||
|
||||
|
||||
DE_C_GAINTYPE_TYPE = {GainType.AMPLITUDE: cde.GainType.DE_GAINTYPE_AMPLITUDE,
|
||||
GainType.POWER: cde.GainType.DE_GAINTYPE_POWER,
|
||||
GainType.DB: cde.GainType.DE_GAINTYPE_DB}
|
||||
|
|
|
@ -329,6 +329,22 @@ def check_time_stretch(method):
|
|||
return new_method
|
||||
|
||||
|
||||
def check_treble_biquad(method):
|
||||
"""Wrapper method to check the parameters of TrebleBiquad."""
|
||||
|
||||
@wraps(method)
|
||||
def new_method(self, *args, **kwargs):
|
||||
[sample_rate, gain, central_freq, Q], _ = parse_user_args(
|
||||
method, *args, **kwargs)
|
||||
check_biquad_sample_rate(sample_rate)
|
||||
check_biquad_gain(gain)
|
||||
check_biquad_central_freq(central_freq)
|
||||
check_biquad_Q(Q)
|
||||
return method(self, *args, **kwargs)
|
||||
|
||||
return new_method
|
||||
|
||||
|
||||
def check_masking(method):
|
||||
"""Wrapper method to check the parameters of time_masking and FrequencyMasking"""
|
||||
|
||||
|
|
|
@ -331,6 +331,74 @@ TEST_F(MindDataTestPipeline, TestTimeStretchPipelineWrongArgs) {
|
|||
EXPECT_EQ(iter, nullptr);
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestPipeline, TestTrebleBiquadBasic) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestTrebleBiquadBasic.";
|
||||
// Original waveform
|
||||
std::shared_ptr<SchemaObj> schema = Schema();
|
||||
ASSERT_OK(schema->add_column("waveform", mindspore::DataType::kNumberTypeFloat32, {2, 200}));
|
||||
std::shared_ptr<Dataset> ds = RandomData(50, schema);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
ds = ds->SetNumWorkers(4);
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
auto TrebleBiquadOp = audio::TrebleBiquad(44100, 200.0, 2000, 0.604);
|
||||
|
||||
ds = ds->Map({TrebleBiquadOp});
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Filtered waveform by treblebiquad
|
||||
std::shared_ptr<Iterator> iter = ds->CreateIterator();
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
std::unordered_map<std::string, mindspore::MSTensor> row;
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
|
||||
std::vector<int64_t> expected = {2, 200};
|
||||
|
||||
int i = 0;
|
||||
while (row.size() != 0) {
|
||||
auto col = row["waveform"];
|
||||
ASSERT_EQ(col.Shape(), expected);
|
||||
ASSERT_EQ(col.Shape().size(), 2);
|
||||
ASSERT_EQ(col.DataType(), mindspore::DataType::kNumberTypeFloat32);
|
||||
ASSERT_OK(iter->GetNextRow(&row));
|
||||
i++;
|
||||
}
|
||||
EXPECT_EQ(i, 50);
|
||||
|
||||
iter->Stop();
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestPipeline, TestTrebleBiquadWrongArg) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestTrebleBiquadWrongArg.";
|
||||
std::shared_ptr<SchemaObj> schema = Schema();
|
||||
// Original waveform
|
||||
ASSERT_OK(schema->add_column("waveform", mindspore::DataType::kNumberTypeFloat32, {2, 2}));
|
||||
std::shared_ptr<Dataset> ds = RandomData(50, schema);
|
||||
std::shared_ptr<Dataset> ds01;
|
||||
std::shared_ptr<Dataset> ds02;
|
||||
EXPECT_NE(ds, nullptr);
|
||||
|
||||
// Check sample_rate
|
||||
MS_LOG(INFO) << "sample_rate is zero.";
|
||||
auto treble_biquad_op_01 = audio::TrebleBiquad(0, 200);
|
||||
ds01 = ds->Map({treble_biquad_op_01});
|
||||
EXPECT_NE(ds01, nullptr);
|
||||
|
||||
std::shared_ptr<Iterator> iter01 = ds01->CreateIterator();
|
||||
EXPECT_EQ(iter01, nullptr);
|
||||
|
||||
// Check Q_
|
||||
MS_LOG(INFO) << "Q_ is zero.";
|
||||
auto treble_biquad_op_02 = audio::TrebleBiquad(44100, 200.0, 3000.0, 0);
|
||||
ds02 = ds->Map({treble_biquad_op_02});
|
||||
EXPECT_NE(ds02, nullptr);
|
||||
|
||||
std::shared_ptr<Iterator> iter02 = ds02->CreateIterator();
|
||||
EXPECT_EQ(iter02, nullptr);
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestPipeline, TestVolPipeline) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestPipeline-TestVolPipeline.";
|
||||
// Original waveform
|
||||
|
|
|
@ -914,6 +914,48 @@ TEST_F(MindDataTestExecute, TestRiaaBiquadWithWrongArg) {
|
|||
EXPECT_FALSE(s01.IsOk());
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestExecute, TestTrebleBiquadWithEager) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestExecute-TestTrebleBiquadWithEager.";
|
||||
// Original waveform
|
||||
std::vector<float> labels = {
|
||||
3.156, 5.690, 1.362, 1.093,
|
||||
5.782, 6.381, 5.982, 3.098,
|
||||
1.222, 6.027, 3.909, 7.993,
|
||||
4.324, 1.092, 5.093, 0.991,
|
||||
1.099, 4.092, 8.111, 6.666};
|
||||
std::shared_ptr<Tensor> input;
|
||||
ASSERT_OK(Tensor::CreateFromVector(labels, TensorShape({2, 10}), &input));
|
||||
auto input_01 = mindspore::MSTensor(std::make_shared<mindspore::dataset::DETensor>(input));
|
||||
std::shared_ptr<TensorTransform> treble_biquad_01 = std::make_shared<audio::TrebleBiquad>(44100, 200);
|
||||
mindspore::dataset::Execute Transform01({treble_biquad_01});
|
||||
// Filtered waveform by treblebiquad
|
||||
EXPECT_OK(Transform01(input_01, &input_01));
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestExecute, TestTrebleBiquadWithWrongArg) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestExecute-TestTrebleBiquadWithWrongArg.";
|
||||
std::vector<double> labels = {
|
||||
2.716064453125000000e-03, 6.347656250000000000e-03, 9.246826171875000000e-03, 1.089477539062500000e-02,
|
||||
1.138305664062500000e-02, 1.156616210937500000e-02, 1.394653320312500000e-02, 1.550292968750000000e-02,
|
||||
1.614379882812500000e-02, 1.840209960937500000e-02, 1.718139648437500000e-02, 1.599121093750000000e-02,
|
||||
1.647949218750000000e-02, 1.510620117187500000e-02, 1.385498046875000000e-02, 1.345825195312500000e-02,
|
||||
1.419067382812500000e-02, 1.284790039062500000e-02, 1.052856445312500000e-02, 9.368896484375000000e-03};
|
||||
std::shared_ptr<Tensor> input;
|
||||
ASSERT_OK(Tensor::CreateFromVector(labels, TensorShape({2, 10}), &input));
|
||||
auto input01 = mindspore::MSTensor(std::make_shared<mindspore::dataset::DETensor>(input));
|
||||
auto input02 = mindspore::MSTensor(std::make_shared<mindspore::dataset::DETensor>(input));
|
||||
// Check sample_rate
|
||||
MS_LOG(INFO) << "sample_rate is zero.";
|
||||
std::shared_ptr<TensorTransform> treble_biquad_op01 = std::make_shared<audio::TrebleBiquad>(0.0, 200.0);
|
||||
mindspore::dataset::Execute Transform01({treble_biquad_op01});
|
||||
EXPECT_ERROR(Transform01(input01, &input01));
|
||||
//Check Q
|
||||
MS_LOG(INFO) << "Q is zero.";
|
||||
std::shared_ptr<TensorTransform> treble_biquad_op02 = std::make_shared<audio::TrebleBiquad>(44100, 200.0, 3000.0, 0.0);
|
||||
mindspore::dataset::Execute Transform02({treble_biquad_op02});
|
||||
EXPECT_ERROR(Transform02(input02, &input02));
|
||||
}
|
||||
|
||||
TEST_F(MindDataTestExecute, TestLFilterWithEager) {
|
||||
MS_LOG(INFO) << "Doing MindDataTestExecute-TestLFilterWithEager.";
|
||||
// Original waveform
|
||||
|
|
|
@ -0,0 +1,100 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore.dataset as ds
|
||||
import mindspore.dataset.audio.transforms as audio
|
||||
from mindspore import log as logger
|
||||
|
||||
|
||||
def count_unequal_element(data_expected, data_me, rtol, atol):
|
||||
assert data_expected.shape == data_me.shape
|
||||
total_count = len(data_expected.flatten())
|
||||
error = np.abs(data_expected - data_me)
|
||||
greater = np.greater(error, atol + np.abs(data_expected) * rtol)
|
||||
loss_count = np.count_nonzero(greater)
|
||||
assert (loss_count / total_count) < rtol, "\ndata_expected_std:{0}\ndata_me_error:{1}\nloss:{2}".format(
|
||||
data_expected[greater], data_me[greater], error[greater])
|
||||
|
||||
|
||||
def test_treble_biquad_eager():
|
||||
""" mindspore eager mode normal testcase:treble_biquad op"""
|
||||
# Original waveform
|
||||
waveform = np.array([[0.234, 1.873, 0.786], [-2.673, 0.886, 1.666]], dtype=np.float64)
|
||||
# Expect waveform
|
||||
expect_waveform = np.array([[1., 1., -1.], [-1., 1., -1.]], dtype=np.float64)
|
||||
treble_biquad_op = audio.TrebleBiquad(44100, 200.0)
|
||||
# Filtered waveform by treblebiquad
|
||||
output = treble_biquad_op(waveform)
|
||||
count_unequal_element(expect_waveform, output, 0.0001, 0.0001)
|
||||
|
||||
|
||||
def test_treble_biquad_pipeline():
|
||||
""" mindspore pipeline mode normal testcase:treble_biquad op"""
|
||||
# Original waveform
|
||||
waveform = np.array([[1, 2, 3], [4, 5, 6]], dtype=np.float64)
|
||||
# Expect waveform
|
||||
expect_waveform = np.array([[1., -1., 1.], [1., -1., 1.]], dtype=np.float64)
|
||||
dataset = ds.NumpySlicesDataset(waveform, ["waveform"], shuffle=False)
|
||||
treble_biquad_op = audio.TrebleBiquad(44100, 200.0)
|
||||
# Filtered waveform by treblebiquad
|
||||
dataset = dataset.map(input_columns=["waveform"], operations=treble_biquad_op)
|
||||
i = 0
|
||||
for item in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
|
||||
count_unequal_element(expect_waveform[i, :], item['waveform'], 0.0001, 0.0001)
|
||||
i += 1
|
||||
|
||||
|
||||
def test_treble_biquad_invalid_input():
|
||||
def test_invalid_input(test_name, sample_rate, gain, central_freq, Q, error, error_msg):
|
||||
logger.info("Test TrebleBiquad with bad input: {0}".format(test_name))
|
||||
with pytest.raises(error) as error_info:
|
||||
audio.TrebleBiquad(sample_rate, gain, central_freq, Q)
|
||||
assert error_msg in str(error_info.value)
|
||||
|
||||
test_invalid_input("invalid sample_rate parameter type as a float", 44100.5, 0.2, 3000, 0.707, TypeError,
|
||||
"Argument sample_rate with value 44100.5 is not of type [<class 'int'>],"
|
||||
" but got <class 'float'>.")
|
||||
test_invalid_input("invalid sample_rate parameter type as a String", "44100", 0.2, 3000, 0.707, TypeError,
|
||||
"Argument sample_rate with value 44100 is not of type [<class 'int'>], "
|
||||
"but got <class 'str'>.")
|
||||
test_invalid_input("invalid gain parameter type as a String", 4410, "0", 3000, 0.707, TypeError,
|
||||
"Argument gain with value 0 is not of type [<class 'float'>, <class 'int'>],"
|
||||
+ " but got <class 'str'>.")
|
||||
test_invalid_input("invalid central_rate parameter value", 4410, 0.2, None, 0.707, TypeError,
|
||||
"Argument central_freq with value None is not of type [<class 'float'>, <class 'int'>]," +
|
||||
" but got <class 'NoneType'>.")
|
||||
test_invalid_input("invalid Q parameter type as a String", 4410, 0.2, 3000, "0", TypeError,
|
||||
"Argument Q with value 0 is not of type [<class 'float'>, <class 'int'>]," +
|
||||
" but got <class 'str'>.")
|
||||
test_invalid_input("invalid sample_rate parameter value", 0, 0.2, 3000, 0.707, ValueError,
|
||||
"Input sample_rate is not within the required interval of [-2147483648, 0) and (0, 2147483647].")
|
||||
test_invalid_input("invalid sample_rate parameter value", 441324343243242342345300, 0.2, 3000, 0.707, ValueError,
|
||||
"Input sample_rate is not within the required interval of [-2147483648, 0) and (0, 2147483647].")
|
||||
test_invalid_input("invalid gain parameter value", 44100, 32434324324234321, 3000, 0.707, ValueError,
|
||||
"Input gain is not within the required interval of [-16777216, 16777216].")
|
||||
test_invalid_input("invalid central_freq parameter value", 44100, 0.2, 32434324324234321, 0.707, ValueError,
|
||||
"Input central_freq is not within the required interval of [-16777216, 16777216].")
|
||||
test_invalid_input("invalid Q parameter value", 44100, 0.2, 3000, 1.707, ValueError,
|
||||
"Input Q is not within the required interval of (0, 1].")
|
||||
test_invalid_input("invalid Q parameter value", 44100, 0.2, 3000, 0, ValueError,
|
||||
"Input Q is not within the required interval of (0, 1].")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_treble_biquad_eager()
|
||||
test_treble_biquad_pipeline()
|
||||
test_treble_biquad_invalid_input()
|
Loading…
Reference in New Issue