diff --git a/mindspore/_extends/parse/standard_method.py b/mindspore/_extends/parse/standard_method.py index 13f07b9e83f..e472692e7a3 100644 --- a/mindspore/_extends/parse/standard_method.py +++ b/mindspore/_extends/parse/standard_method.py @@ -56,14 +56,23 @@ def mean(x, axis=(), keep_dims=False): Reduces a dimension of a tensor by averaging all elements in the dimension. Args: - axis (Union[None, int, tuple(int)]): Dimensions of reduction, - when axis is None or empty tuple, reduce all dimensions. - Default: (), reduce all dimensions. - keep_dims (bool): Whether to keep the reduced dimensions. - Default : False, don't keep these reduced dimensions. + axis (Union[None, int, tuple(int), list(int)]): Dimensions of reduction, + when axis is None or empty tuple, reduce all dimensions. Default: (). + keep_dims (bool): Whether to keep the reduced dimensions. Default: False. Returns: - Tensor, has the same data type as x. + Tensor, has the same data type as input tensor. + + Supported Platforms: + ``Ascend`` ``GPU`` ``CPU`` + + Examples: + >>> import numpy as np + >>> from mindspore import Tensor + >>> input_x = Tensor(np.array([1, 2, 3], dtype=np.float32)) + >>> output = input_x.mean() + >>> print(output) + 2.0 """ if axis is None: axis = () @@ -501,7 +510,7 @@ def cumsum(x, axis=None, dtype=None): >>> import numpy as np >>> from mindspore import Tensor >>> a = Tensor(np.ones((3,3)).astype("float32")) - >>> output = a.cumsum() + >>> output = a.cumsum(axis=0) >>> print(output) [[1. 1. 1.] [2. 2. 2.] @@ -909,8 +918,7 @@ def choose(x, choices, mode='clip'): Examples: >>> import mindspore.numpy as np - >>> choices = [[0, 1, 2, 3], [10, 11, 12, 13], - [20, 21, 22, 23], [30, 31, 32, 33]] + >>> choices = [[0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23], [30, 31, 32, 33]] >>> x = np.array([2, 3, 1, 0]) >>> print(x.choose(choices)) [20 31 12 3] diff --git a/mindspore/common/tensor.py b/mindspore/common/tensor.py index 6cde5c932a6..5cfdb482116 100644 --- a/mindspore/common/tensor.py +++ b/mindspore/common/tensor.py @@ -491,7 +491,18 @@ class Tensor(Tensor_): keep_dims (bool): Whether to keep the reduced dimensions. Default: False. Returns: - Tensor, has the same data type as x. + Tensor, has the same data type as input tensor. + + Supported Platforms: + ``Ascend`` ``GPU`` ``CPU`` + + Examples: + >>> import numpy as np + >>> from mindspore import Tensor + >>> input_x = Tensor(np.array([1, 2, 3], dtype=np.float32)) + >>> output = input_x.mean() + >>> print(output) + 2.0 """ self.init_check() if axis is None: @@ -839,7 +850,7 @@ class Tensor(Tensor_): >>> import numpy as np >>> from mindspore import Tensor >>> a = Tensor(np.ones((3,3)).astype("float32")) - >>> output = a.cumsum() + >>> output = a.cumsum(axis=0) >>> print(output) [[1. 1. 1.] [2. 2. 2.] @@ -1464,8 +1475,7 @@ class Tensor(Tensor_): Examples: >>> import numpy as np >>> from mindspore import Tensor - >>> choices = [[0, 1, 2, 3], [10, 11, 12, 13], - [20, 21, 22, 23], [30, 31, 32, 33]] + >>> choices = [[0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23], [30, 31, 32, 33]] >>> x = Tensor(np.array([2, 3, 1, 0])) >>> print(x.choose(choices)) [20 31 12 3] @@ -1651,7 +1661,7 @@ class Tensor(Tensor_): Examples: >>> import numpy as np >>> from mindspore import Tensor - >>> input_x = Tensor(np.array([1., 2., 3., 4.])) + >>> input_x = Tensor(np.array([1, 2, 3, 4], dtype=np.float32)) >>> output = input_x.std() >>> print(output) 1.118034 @@ -1697,10 +1707,10 @@ class Tensor(Tensor_): Examples: >>> import numpy as np >>> from mindspore import Tensor - >>> input_x = Tensor(np.array([-1, 0, 1]).astype('int32')) + >>> input_x = Tensor(np.array([-1, 0, 1]).astype(np.float32)) >>> print(input_x.sum()) - 0 - >>> input_x = Tensor(np.arange(10).reshape(2, 5).astype('float32')) + 0.0 + >>> input_x = Tensor(np.arange(10).reshape(2, 5).astype(np.float32)) >>> print(input_x.sum(axis=1)) [10. 35.] """