forked from mindspore-Ecosystem/mindspore
!17717 modify tensor api document
From: @huangbingjian Reviewed-by: @zh_qh,@ginfung Signed-off-by: @zh_qh
This commit is contained in:
commit
3d76d462d1
|
@ -56,14 +56,23 @@ def mean(x, axis=(), keep_dims=False):
|
|||
Reduces a dimension of a tensor by averaging all elements in the dimension.
|
||||
|
||||
Args:
|
||||
axis (Union[None, int, tuple(int)]): Dimensions of reduction,
|
||||
when axis is None or empty tuple, reduce all dimensions.
|
||||
Default: (), reduce all dimensions.
|
||||
keep_dims (bool): Whether to keep the reduced dimensions.
|
||||
Default : False, don't keep these reduced dimensions.
|
||||
axis (Union[None, int, tuple(int), list(int)]): Dimensions of reduction,
|
||||
when axis is None or empty tuple, reduce all dimensions. Default: ().
|
||||
keep_dims (bool): Whether to keep the reduced dimensions. Default: False.
|
||||
|
||||
Returns:
|
||||
Tensor, has the same data type as x.
|
||||
Tensor, has the same data type as input tensor.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> import numpy as np
|
||||
>>> from mindspore import Tensor
|
||||
>>> input_x = Tensor(np.array([1, 2, 3], dtype=np.float32))
|
||||
>>> output = input_x.mean()
|
||||
>>> print(output)
|
||||
2.0
|
||||
"""
|
||||
if axis is None:
|
||||
axis = ()
|
||||
|
@ -501,7 +510,7 @@ def cumsum(x, axis=None, dtype=None):
|
|||
>>> import numpy as np
|
||||
>>> from mindspore import Tensor
|
||||
>>> a = Tensor(np.ones((3,3)).astype("float32"))
|
||||
>>> output = a.cumsum()
|
||||
>>> output = a.cumsum(axis=0)
|
||||
>>> print(output)
|
||||
[[1. 1. 1.]
|
||||
[2. 2. 2.]
|
||||
|
@ -909,8 +918,7 @@ def choose(x, choices, mode='clip'):
|
|||
|
||||
Examples:
|
||||
>>> import mindspore.numpy as np
|
||||
>>> choices = [[0, 1, 2, 3], [10, 11, 12, 13],
|
||||
[20, 21, 22, 23], [30, 31, 32, 33]]
|
||||
>>> choices = [[0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23], [30, 31, 32, 33]]
|
||||
>>> x = np.array([2, 3, 1, 0])
|
||||
>>> print(x.choose(choices))
|
||||
[20 31 12 3]
|
||||
|
|
|
@ -491,7 +491,18 @@ class Tensor(Tensor_):
|
|||
keep_dims (bool): Whether to keep the reduced dimensions. Default: False.
|
||||
|
||||
Returns:
|
||||
Tensor, has the same data type as x.
|
||||
Tensor, has the same data type as input tensor.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> import numpy as np
|
||||
>>> from mindspore import Tensor
|
||||
>>> input_x = Tensor(np.array([1, 2, 3], dtype=np.float32))
|
||||
>>> output = input_x.mean()
|
||||
>>> print(output)
|
||||
2.0
|
||||
"""
|
||||
self.init_check()
|
||||
if axis is None:
|
||||
|
@ -839,7 +850,7 @@ class Tensor(Tensor_):
|
|||
>>> import numpy as np
|
||||
>>> from mindspore import Tensor
|
||||
>>> a = Tensor(np.ones((3,3)).astype("float32"))
|
||||
>>> output = a.cumsum()
|
||||
>>> output = a.cumsum(axis=0)
|
||||
>>> print(output)
|
||||
[[1. 1. 1.]
|
||||
[2. 2. 2.]
|
||||
|
@ -1464,8 +1475,7 @@ class Tensor(Tensor_):
|
|||
Examples:
|
||||
>>> import numpy as np
|
||||
>>> from mindspore import Tensor
|
||||
>>> choices = [[0, 1, 2, 3], [10, 11, 12, 13],
|
||||
[20, 21, 22, 23], [30, 31, 32, 33]]
|
||||
>>> choices = [[0, 1, 2, 3], [10, 11, 12, 13], [20, 21, 22, 23], [30, 31, 32, 33]]
|
||||
>>> x = Tensor(np.array([2, 3, 1, 0]))
|
||||
>>> print(x.choose(choices))
|
||||
[20 31 12 3]
|
||||
|
@ -1651,7 +1661,7 @@ class Tensor(Tensor_):
|
|||
Examples:
|
||||
>>> import numpy as np
|
||||
>>> from mindspore import Tensor
|
||||
>>> input_x = Tensor(np.array([1., 2., 3., 4.]))
|
||||
>>> input_x = Tensor(np.array([1, 2, 3, 4], dtype=np.float32))
|
||||
>>> output = input_x.std()
|
||||
>>> print(output)
|
||||
1.118034
|
||||
|
@ -1697,10 +1707,10 @@ class Tensor(Tensor_):
|
|||
Examples:
|
||||
>>> import numpy as np
|
||||
>>> from mindspore import Tensor
|
||||
>>> input_x = Tensor(np.array([-1, 0, 1]).astype('int32'))
|
||||
>>> input_x = Tensor(np.array([-1, 0, 1]).astype(np.float32))
|
||||
>>> print(input_x.sum())
|
||||
0
|
||||
>>> input_x = Tensor(np.arange(10).reshape(2, 5).astype('float32'))
|
||||
0.0
|
||||
>>> input_x = Tensor(np.arange(10).reshape(2, 5).astype(np.float32))
|
||||
>>> print(input_x.sum(axis=1))
|
||||
[10. 35.]
|
||||
"""
|
||||
|
|
Loading…
Reference in New Issue