forked from mindspore-Ecosystem/mindspore
!15949 [ME][ControlFlow] Add some control sink testcases
From: @Margaret_wangrui Reviewed-by: @ginfung,@zh_qh Signed-off-by: @zh_qh
This commit is contained in:
commit
3ca52269db
|
@ -211,3 +211,48 @@ def test_single_for_04():
|
|||
|
||||
assert graph_forward_res == pynative_forward_res
|
||||
assert graph_backward_res == pynative_backward_res
|
||||
|
||||
|
||||
def test_single_for_05():
|
||||
class SingleForNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.mul = P.Mul()
|
||||
self.add = P.Add()
|
||||
self.sub = P.Sub()
|
||||
self.assign = P.Assign()
|
||||
self.param_a = Parameter(Tensor(np.array(5), mstype.int32), name='a')
|
||||
self.param_b = Parameter(Tensor(np.array(2), mstype.int32), name='b')
|
||||
|
||||
def construct(self, x):
|
||||
self.assign(self.param_a, x + self.param_a)
|
||||
for _ in range(0, 3):
|
||||
self.assign(self.param_b, x - self.param_a)
|
||||
return x
|
||||
|
||||
class GradNet(nn.Cell):
|
||||
def __init__(self, net):
|
||||
super(GradNet, self).__init__()
|
||||
self.net = net
|
||||
|
||||
def construct(self, *inputs):
|
||||
return grad_all(self.net)(*inputs)
|
||||
|
||||
x = Tensor([6], mstype.int32)
|
||||
|
||||
# graph mode
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
single_for_net = SingleForNet()
|
||||
net = GradNet(single_for_net)
|
||||
graph_forward_res = single_for_net(x)
|
||||
graph_backward_res = net(x)
|
||||
|
||||
# pynative mode
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
single_for_net = SingleForNet()
|
||||
net = GradNet(single_for_net)
|
||||
pynative_forward_res = single_for_net(x)
|
||||
pynative_backward_res = net(x)
|
||||
|
||||
assert graph_forward_res == pynative_forward_res
|
||||
assert graph_backward_res == pynative_backward_res
|
||||
|
|
|
@ -219,3 +219,54 @@ def test_for_in_if_04():
|
|||
|
||||
assert graph_forward_res == pynative_forward_res
|
||||
assert graph_backward_res == pynative_backward_res
|
||||
|
||||
|
||||
def test_for_in_if_05():
|
||||
class ForInIfNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.param_a = Parameter(Tensor(5, mstype.int32), name='a')
|
||||
self.param_b = Parameter(Tensor(4, mstype.int32), name='b')
|
||||
self.assign = P.Assign()
|
||||
|
||||
def construct(self, x):
|
||||
out = self.param_a
|
||||
x = self.func(x)
|
||||
out *= x
|
||||
return out
|
||||
|
||||
def func(self, x):
|
||||
if self.param_a > self.param_b:
|
||||
self.assign(self.param_a, self.param_b + self.param_a)
|
||||
for _ in range(0, 4):
|
||||
self.param_a += 1
|
||||
self.assign(self.param_b, self.param_b - 4)
|
||||
x += self.param_b
|
||||
return x
|
||||
|
||||
class GradNet(nn.Cell):
|
||||
def __init__(self, net):
|
||||
super(GradNet, self).__init__()
|
||||
self.net = net
|
||||
|
||||
def construct(self, *inputs):
|
||||
return grad_all(self.net)(*inputs)
|
||||
|
||||
x = Tensor(5, mstype.int32)
|
||||
|
||||
# graph mode
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
for_in_if_net = ForInIfNet()
|
||||
net = GradNet(for_in_if_net)
|
||||
graph_forward_res = for_in_if_net(x)
|
||||
graph_backward_res = net(x)
|
||||
|
||||
# pynative mode
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
for_in_if_net = ForInIfNet()
|
||||
net = GradNet(for_in_if_net)
|
||||
pynative_forward_res = for_in_if_net(x)
|
||||
pynative_backward_res = net(x)
|
||||
|
||||
assert graph_forward_res == pynative_forward_res
|
||||
assert graph_backward_res == pynative_backward_res
|
||||
|
|
|
@ -23,7 +23,7 @@ from mindspore.common import dtype as mstype
|
|||
grad_all = C.GradOperation(get_all=True)
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
def test_for_in_while():
|
||||
def test_for_in_while_01():
|
||||
class ForInWhileNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
@ -73,3 +73,52 @@ def test_for_in_while():
|
|||
|
||||
assert graph_forward_res == pynative_forward_res
|
||||
assert graph_backward_res == pynative_backward_res
|
||||
|
||||
|
||||
def test_for_in_while_02():
|
||||
class ForInWhileNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.mul = P.Mul()
|
||||
self.add = P.Add()
|
||||
self.sub = P.Sub()
|
||||
self.assign = P.Assign()
|
||||
self.param_a = Parameter(Tensor(5, mstype.int32), name='a')
|
||||
self.param_b = Parameter(Tensor(7, mstype.int32), name='b')
|
||||
|
||||
def construct(self, x):
|
||||
self.assign(self.param_a, x + self.param_a)
|
||||
while self.param_a > self.param_b:
|
||||
for _ in range(0, 3):
|
||||
x = self.add(x, self.param_a + self.param_b)
|
||||
self.assign(self.param_b, self.param_b + 1)
|
||||
y = self.sub(x, self.param_b)
|
||||
self.assign(self.param_a, y)
|
||||
return x
|
||||
|
||||
class GradNet(nn.Cell):
|
||||
def __init__(self, net):
|
||||
super(GradNet, self).__init__()
|
||||
self.net = net
|
||||
|
||||
def construct(self, *inputs):
|
||||
return grad_all(self.net)(*inputs)
|
||||
|
||||
x = Tensor([2], mstype.int32)
|
||||
|
||||
# graph mode
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
for_in_while_net = ForInWhileNet()
|
||||
net = GradNet(for_in_while_net)
|
||||
graph_forward_res = for_in_while_net(x)
|
||||
graph_backward_res = net(x)
|
||||
|
||||
# pynative mode
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
for_in_while_net = ForInWhileNet()
|
||||
net = GradNet(for_in_while_net)
|
||||
pynative_forward_res = for_in_while_net(x)
|
||||
pynative_backward_res = net(x)
|
||||
|
||||
assert graph_forward_res == pynative_forward_res
|
||||
assert graph_backward_res == pynative_backward_res
|
||||
|
|
|
@ -23,7 +23,7 @@ from mindspore.common import dtype as mstype
|
|||
grad_all = C.GradOperation(get_all=True)
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
def test_for_in_for():
|
||||
def test_for_in_for_01():
|
||||
class ForInForNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
@ -74,3 +74,51 @@ def test_for_in_for():
|
|||
|
||||
assert graph_forward_res == pynative_forward_res
|
||||
assert graph_backward_res == pynative_backward_res
|
||||
|
||||
|
||||
def test_for_in_for_02():
|
||||
class ForInForNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.add = P.Add()
|
||||
self.sub = P.Sub()
|
||||
self.assign = P.Assign()
|
||||
self.param_a = Parameter(Tensor(5, mstype.int32), name='a')
|
||||
self.param_b = Parameter(Tensor(11, mstype.int32), name='b')
|
||||
|
||||
def construct(self, x):
|
||||
for _ in range(0, 10):
|
||||
x = x * 2
|
||||
self.assign(self.param_a, x + self.param_a)
|
||||
for _ in range(0, 5):
|
||||
x = self.add(x, x)
|
||||
self.param_b += 1
|
||||
y = self.sub(x, self.param_b + self.param_a)
|
||||
return y
|
||||
|
||||
class GradNet(nn.Cell):
|
||||
def __init__(self, net):
|
||||
super(GradNet, self).__init__()
|
||||
self.net = net
|
||||
|
||||
def construct(self, *inputs):
|
||||
return grad_all(self.net)(*inputs)
|
||||
|
||||
x = Tensor([2], mstype.int32)
|
||||
|
||||
# graph mode
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
for_in_for_net = ForInForNet()
|
||||
net = GradNet(for_in_for_net)
|
||||
graph_forward_res = for_in_for_net(x)
|
||||
graph_backward_res = net(x)
|
||||
|
||||
# pynative mode
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
for_in_for_net = ForInForNet()
|
||||
net = GradNet(for_in_for_net)
|
||||
pynative_forward_res = for_in_for_net(x)
|
||||
pynative_backward_res = net(x)
|
||||
|
||||
assert graph_forward_res == pynative_forward_res
|
||||
assert graph_backward_res == pynative_backward_res
|
||||
|
|
|
@ -24,7 +24,7 @@ grad_all = C.GradOperation(get_all=True)
|
|||
context.set_context(device_target="Ascend")
|
||||
|
||||
|
||||
def test_if_after_for():
|
||||
def test_if_after_for_01():
|
||||
class IfAfterForNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
@ -76,3 +76,57 @@ def test_if_after_for():
|
|||
|
||||
assert graph_forward_res == pynative_forward_res
|
||||
assert graph_backward_res == pynative_backward_res
|
||||
|
||||
|
||||
def test_if_after_for_02():
|
||||
class IfAfterForNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.relu = nn.ReLU()
|
||||
self.mul = P.Mul()
|
||||
self.add = P.Add()
|
||||
self.sub = P.Sub()
|
||||
self.assign = P.Assign()
|
||||
self.param_a = Parameter(Tensor(5, mstype.int32), name='a')
|
||||
self.param_b = Parameter(Tensor(11, mstype.int32), name='b')
|
||||
|
||||
def construct(self, x):
|
||||
self.assign(self.param_a, x + self.param_a)
|
||||
y = self.add(x, self.param_b)
|
||||
for _ in range(0, 2):
|
||||
x = self.sub(x, 2)
|
||||
self.assign(self.param_b, self.param_a + self.param_b - x)
|
||||
self.param_b = self.add(self.param_b, 2)
|
||||
if x < self.param_b:
|
||||
x = y - x
|
||||
y = self.mul(x, self.param_a)
|
||||
|
||||
z = self.relu(x + y)
|
||||
return z
|
||||
|
||||
class GradNet(nn.Cell):
|
||||
def __init__(self, net):
|
||||
super(GradNet, self).__init__()
|
||||
self.net = net
|
||||
|
||||
def construct(self, *inputs):
|
||||
return grad_all(self.net)(*inputs)
|
||||
|
||||
x = Tensor([7], mstype.int32)
|
||||
|
||||
# graph mode
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
if_after_for_net = IfAfterForNet()
|
||||
net = GradNet(if_after_for_net)
|
||||
graph_forward_res = if_after_for_net(x)
|
||||
graph_backward_res = net(x)
|
||||
|
||||
# pynative mode
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
if_after_for_net = IfAfterForNet()
|
||||
net = GradNet(if_after_for_net)
|
||||
pynative_forward_res = if_after_for_net(x)
|
||||
pynative_backward_res = net(x)
|
||||
|
||||
assert graph_forward_res == pynative_forward_res
|
||||
assert graph_backward_res == pynative_backward_res
|
||||
|
|
|
@ -23,7 +23,7 @@ from mindspore.common import dtype as mstype
|
|||
grad_all = C.GradOperation(get_all=True)
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
def test_for_after_for():
|
||||
def test_for_after_for_01():
|
||||
class ForAfterForNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
@ -77,3 +77,56 @@ def test_for_after_for():
|
|||
|
||||
assert graph_forward_res == pynative_forward_res
|
||||
assert graph_backward_res == pynative_backward_res
|
||||
|
||||
|
||||
def test_for_after_for_02():
|
||||
class ForAfterForNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.mul = P.Mul()
|
||||
self.add = P.Add()
|
||||
self.sub = P.Sub()
|
||||
self.assign = P.Assign()
|
||||
param_a = np.full((1,), 5, dtype=np.int32)
|
||||
self.param_a = Parameter(Tensor(param_a), name='a')
|
||||
param_b = np.full((1,), 11, dtype=np.int32)
|
||||
self.param_b = Parameter(Tensor(param_b), name='b')
|
||||
|
||||
def construct(self, x):
|
||||
self.assign(self.param_a, x + self.param_a)
|
||||
y = self.add(x, self.param_a)
|
||||
for _ in range(0, 2):
|
||||
x = self.sub(x, 3)
|
||||
self.assign(self.param_b, x + self.param_b)
|
||||
self.param_a = x + y
|
||||
for _ in range(0, 5):
|
||||
y = self.mul(x, self.param_a)
|
||||
x = x + self.param_a
|
||||
return y
|
||||
|
||||
class GradNet(nn.Cell):
|
||||
def __init__(self, net):
|
||||
super(GradNet, self).__init__()
|
||||
self.net = net
|
||||
|
||||
def construct(self, *inputs):
|
||||
return grad_all(self.net)(*inputs)
|
||||
|
||||
x = Tensor([7], mstype.int32)
|
||||
|
||||
# graph mode
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
for_after_for_net = ForAfterForNet()
|
||||
net = GradNet(for_after_for_net)
|
||||
graph_forward_res = for_after_for_net(x)
|
||||
graph_backward_res = net(x)
|
||||
|
||||
# pynative mode
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
for_after_for_net = ForAfterForNet()
|
||||
net = GradNet(for_after_for_net)
|
||||
pynative_forward_res = for_after_for_net(x)
|
||||
pynative_backward_res = net(x)
|
||||
|
||||
assert graph_forward_res == pynative_forward_res
|
||||
assert graph_backward_res == pynative_backward_res
|
||||
|
|
|
@ -23,7 +23,7 @@ from mindspore.common import dtype as mstype
|
|||
grad_all = C.GradOperation(get_all=True)
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
def test_for_after_while_in_if():
|
||||
def test_for_after_while_in_if_01():
|
||||
class ForAfterWhileInIfNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
@ -90,3 +90,63 @@ def test_for_after_while_in_if():
|
|||
|
||||
assert graph_forward_res == pynative_forward_res
|
||||
assert graph_backward_res == pynative_backward_res
|
||||
|
||||
|
||||
def test_for_after_while_in_if_02():
|
||||
class ForAfterWhileInIfNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.mul = P.Mul()
|
||||
self.add = P.Add()
|
||||
self.sub = P.Sub()
|
||||
self.assign = P.Assign()
|
||||
param_a = np.full((1,), 5, dtype=np.int32)
|
||||
self.param_a = Parameter(Tensor(param_a), name='a')
|
||||
param_b = np.full((1,), 2, dtype=np.int32)
|
||||
self.param_b = Parameter(Tensor(param_b), name='b')
|
||||
param_c = np.full((1,), 11, dtype=np.int32)
|
||||
self.param_c = Parameter(Tensor(param_c), name='c')
|
||||
|
||||
|
||||
def construct(self, x, y):
|
||||
self.assign(self.param_a, x + self.param_a)
|
||||
y = self.add(y, self.param_b)
|
||||
if (self.param_b > (y - self.param_a)) and (self.param_b != self.param_a):
|
||||
x = y - self.param_a - self.param_b
|
||||
while self.param_a >= x:
|
||||
self.assign(self.param_c, self.param_a + 2)
|
||||
x = x + 2
|
||||
self.param_b = self.sub(y, self.param_b)
|
||||
x = self.mul(self.param_b, self.param_c)
|
||||
for _ in range(0, 4):
|
||||
self.assign(self.param_b, y + self.param_b - x)
|
||||
y = x + self.param_a - self.param_b
|
||||
return y
|
||||
|
||||
class GradNet(nn.Cell):
|
||||
def __init__(self, net):
|
||||
super(GradNet, self).__init__()
|
||||
self.net = net
|
||||
|
||||
def construct(self, *inputs):
|
||||
return grad_all(self.net)(*inputs)
|
||||
|
||||
x = Tensor([11], mstype.int32)
|
||||
y = Tensor([7], mstype.int32)
|
||||
|
||||
# graph mode
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
for_after_while_in_if_net = ForAfterWhileInIfNet()
|
||||
net = GradNet(for_after_while_in_if_net)
|
||||
graph_forward_res = for_after_while_in_if_net(x, y)
|
||||
graph_backward_res = net(x, y)
|
||||
|
||||
# pynative mode
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
for_after_while_in_if_net = ForAfterWhileInIfNet()
|
||||
net = GradNet(for_after_while_in_if_net)
|
||||
pynative_forward_res = for_after_while_in_if_net(x, y)
|
||||
pynative_backward_res = net(x, y)
|
||||
|
||||
assert graph_forward_res == pynative_forward_res
|
||||
assert graph_backward_res == pynative_backward_res
|
||||
|
|
|
@ -23,7 +23,7 @@ from mindspore.common import dtype as mstype
|
|||
grad_all = C.GradOperation(get_all=True)
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
def test_for_after_while_in_for():
|
||||
def test_for_after_while_in_for_01():
|
||||
class ForAfterWhileInForNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
@ -91,3 +91,63 @@ def test_for_after_while_in_for():
|
|||
|
||||
assert graph_forward_res == pynative_forward_res
|
||||
assert graph_backward_res == pynative_backward_res
|
||||
|
||||
|
||||
def test_for_after_while_in_for_02():
|
||||
class ForAfterWhileInForNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.mul = P.Mul()
|
||||
self.add = P.Add()
|
||||
self.sub = P.Sub()
|
||||
self.div = P.Div()
|
||||
self.relu = nn.ReLU()
|
||||
self.assign = P.Assign()
|
||||
param_a = np.full((1,), 5, dtype=np.int32)
|
||||
self.param_a = Parameter(Tensor(param_a), name='a')
|
||||
param_b = np.full((1,), 2, dtype=np.int32)
|
||||
self.param_b = Parameter(Tensor(param_b), name='b')
|
||||
param_c = np.full((1,), 30, dtype=np.int32)
|
||||
self.param_c = Parameter(Tensor(param_c), name='c')
|
||||
|
||||
def construct(self, x, y):
|
||||
self.assign(self.param_a, x + self.param_a)
|
||||
y = self.add(y, self.param_b)
|
||||
for _ in range(0, 10):
|
||||
self.param_b = self.add(self.param_c, self.param_b)
|
||||
while self.param_c > self.param_b:
|
||||
self.assign(self.param_b, self.param_b + self.param_a + 2)
|
||||
self.param_b = self.sub(y, self.param_b)
|
||||
x = self.mul(self.param_b, self.param_c)
|
||||
for _ in range(0, 4):
|
||||
y = y + self.param_b
|
||||
self.assign(self.param_b, x * 3 - y)
|
||||
return x
|
||||
|
||||
class GradNet(nn.Cell):
|
||||
def __init__(self, net):
|
||||
super(GradNet, self).__init__()
|
||||
self.net = net
|
||||
|
||||
def construct(self, *inputs):
|
||||
return grad_all(self.net)(*inputs)
|
||||
|
||||
x = Tensor([11], mstype.int32)
|
||||
y = Tensor([7], mstype.int32)
|
||||
|
||||
# graph mode
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
for_after_while_in_for_net = ForAfterWhileInForNet()
|
||||
net = GradNet(for_after_while_in_for_net)
|
||||
graph_forward_res = for_after_while_in_for_net(x, y)
|
||||
graph_backward_res = net(x, y)
|
||||
|
||||
# pynative mode
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
for_after_while_in_for_net = ForAfterWhileInForNet()
|
||||
net = GradNet(for_after_while_in_for_net)
|
||||
pynative_forward_res = for_after_while_in_for_net(x, y)
|
||||
pynative_backward_res = net(x, y)
|
||||
|
||||
assert graph_forward_res == pynative_forward_res
|
||||
assert graph_backward_res == pynative_backward_res
|
||||
|
|
|
@ -23,7 +23,7 @@ from mindspore.common import dtype as mstype
|
|||
grad_all = C.GradOperation(get_all=True)
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
def test_for_after_for_in_while():
|
||||
def test_for_after_for_in_while_01():
|
||||
class ForAfterForInWhileNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
@ -86,3 +86,56 @@ def test_for_after_for_in_while():
|
|||
|
||||
assert graph_forward_res == pynative_forward_res
|
||||
assert graph_backward_res == pynative_backward_res
|
||||
|
||||
|
||||
def test_for_after_for_in_while_02():
|
||||
class ForAfterForInWhileNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.mul = P.Mul()
|
||||
self.add = P.Add()
|
||||
self.sub = P.Sub()
|
||||
self.assign = P.Assign()
|
||||
self.param_a = Parameter(Tensor(5, mstype.int32), name='a')
|
||||
self.param_b = Parameter(Tensor(2, mstype.int32), name='b')
|
||||
self.param_c = Parameter(Tensor(-10, mstype.int32), name='c')
|
||||
|
||||
def construct(self, x, y):
|
||||
while self.param_c > x:
|
||||
self.param_b = self.add(self.param_c, self.param_b)
|
||||
for _ in range(0, 20):
|
||||
self.assign(self.param_b, self.param_a + 2)
|
||||
self.assign(self.param_c, self.param_c - 1)
|
||||
x = x + 2
|
||||
for _ in range(0, 4):
|
||||
self.assign(self.param_c, y + self.param_b)
|
||||
x = self.param_a - x - y
|
||||
return x
|
||||
|
||||
class GradNet(nn.Cell):
|
||||
def __init__(self, net):
|
||||
super(GradNet, self).__init__()
|
||||
self.net = net
|
||||
|
||||
def construct(self, *inputs):
|
||||
return grad_all(self.net)(*inputs)
|
||||
|
||||
x = Tensor([11], mstype.int32)
|
||||
y = Tensor([7], mstype.int32)
|
||||
|
||||
# graph mode
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
for_after_for_in_while_net = ForAfterForInWhileNet()
|
||||
net = GradNet(for_after_for_in_while_net)
|
||||
graph_forward_res = for_after_for_in_while_net(x, y)
|
||||
graph_backward_res = net(x, y)
|
||||
|
||||
# pynative mode
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
for_after_for_in_while_net = ForAfterForInWhileNet()
|
||||
net = GradNet(for_after_for_in_while_net)
|
||||
pynative_forward_res = for_after_for_in_while_net(x, y)
|
||||
pynative_backward_res = net(x, y)
|
||||
|
||||
assert graph_forward_res == pynative_forward_res
|
||||
assert graph_backward_res == pynative_backward_res
|
||||
|
|
|
@ -23,7 +23,7 @@ from mindspore.common import dtype as mstype
|
|||
grad_all = C.GradOperation(get_all=True)
|
||||
context.set_context(device_target="Ascend")
|
||||
|
||||
def test_for_after_for_in_for():
|
||||
def test_for_after_for_in_for_01():
|
||||
class ForAfterForInForNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
@ -45,7 +45,7 @@ def test_for_after_for_in_for():
|
|||
for _ in range(0, 4):
|
||||
self.param_b = self.add(self.param_c, self.param_b)
|
||||
for _ in range(0, 8):
|
||||
self.param_b = self.param_a + j
|
||||
self.param_b = self.param_a + x
|
||||
self.param_c = self.param_a * self.param_b
|
||||
|
||||
for _ in range(0, 3):
|
||||
|
@ -82,3 +82,59 @@ def test_for_after_for_in_for():
|
|||
|
||||
assert graph_forward_res == pynative_forward_res
|
||||
assert graph_backward_res == pynative_backward_res
|
||||
|
||||
|
||||
def test_for_after_for_in_for_02():
|
||||
class ForAfterForInForNet(nn.Cell):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.mul = P.Mul()
|
||||
self.add = P.Add()
|
||||
self.sub = P.Sub()
|
||||
self.div = P.Div()
|
||||
self.assign = P.Assign()
|
||||
self.param_a = Parameter(Tensor(5, mstype.int32), name='a')
|
||||
self.param_b = Parameter(Tensor(2, mstype.int32), name='b')
|
||||
self.param_c = Parameter(Tensor(20, mstype.int32), name='c')
|
||||
|
||||
def construct(self, x, y):
|
||||
for _ in range(0, 6):
|
||||
self.param_b = self.add(self.param_c, self.param_b)
|
||||
for _ in range(0, 2):
|
||||
self.assign(self.param_b, self.param_a + x)
|
||||
self.assign(self.param_c, self.param_a * self.param_b)
|
||||
|
||||
for _ in range(0, 3):
|
||||
y = y + self.param_b
|
||||
x = self.relu(self.param_c * 3)
|
||||
self.assign(self.param_b, x - y)
|
||||
z = y + self.param_b
|
||||
return z
|
||||
|
||||
class GradNet(nn.Cell):
|
||||
def __init__(self, net):
|
||||
super(GradNet, self).__init__()
|
||||
self.net = net
|
||||
|
||||
def construct(self, *inputs):
|
||||
return grad_all(self.net)(*inputs)
|
||||
|
||||
x = Tensor([11], mstype.int32)
|
||||
y = Tensor([7], mstype.int32)
|
||||
|
||||
# graph mode
|
||||
context.set_context(mode=context.GRAPH_MODE)
|
||||
for_after_for_in_for_net = ForAfterForInForNet()
|
||||
net = GradNet(for_after_for_in_for_net)
|
||||
graph_forward_res = for_after_for_in_for_net(x, y)
|
||||
graph_backward_res = net(x, y)
|
||||
|
||||
# pynative mode
|
||||
context.set_context(mode=context.PYNATIVE_MODE)
|
||||
for_after_for_in_for_net = ForAfterForInForNet()
|
||||
net = GradNet(for_after_for_in_for_net)
|
||||
pynative_forward_res = for_after_for_in_for_net(x, y)
|
||||
pynative_backward_res = net(x, y)
|
||||
|
||||
assert graph_forward_res == pynative_forward_res
|
||||
assert graph_backward_res == pynative_backward_res
|
||||
|
|
Loading…
Reference in New Issue