forked from mindspore-Ecosystem/mindspore
!6183 fix opencl fp16 convertion
Merge pull request !6183 from wandongdong/master
This commit is contained in:
commit
3b4d855160
|
@ -0,0 +1,72 @@
|
||||||
|
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
|
||||||
|
__constant sampler_t smp_zero = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;
|
||||||
|
__kernel void gather_NHWC4(__read_only image2d_t src_data, __global int *indices, __write_only image2d_t dst_data,
|
||||||
|
int4 src_size, int4 dst_size, int indices_num, int axis) {
|
||||||
|
int X = get_global_id(0); // w
|
||||||
|
int Y = get_global_id(1); // h
|
||||||
|
int Z = get_global_id(2); // c
|
||||||
|
if (X >= dst_size.x || Y >= dst_size.y || Y >= dst_size.z) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
FLT4 res_data = (FLT4)(0.0f, 0.0f, 0.0f, 0.0f);
|
||||||
|
if (axis == 1) {
|
||||||
|
res_data = READ_IMAGE(src_data, smp_zero, (int2)(X * src_size.z + Z, indices[Y]));
|
||||||
|
} else if (axis == 2) {
|
||||||
|
res_data = READ_IMAGE(src_data, smp_zero, (int2)(indices[X] * src_size.z + Z, Y));
|
||||||
|
} else if (axis == 3) {
|
||||||
|
int offset[4] = {indices[Z * 4] / 4, indices[Z * 4 + 1] / 4, indices[Z * 4 + 2] / 4, indices[Z * 4 + 3] / 4};
|
||||||
|
FLT tmp[4];
|
||||||
|
FLT res_tmp[4];
|
||||||
|
for (int i = 0; i < 4; ++i) {
|
||||||
|
if (i >= 1 && offset[i] != offset[i - 1]) {
|
||||||
|
FLT4 rd_data = (FLT4)(0.0f, 0.0f, 0.0f, 0.0f);
|
||||||
|
rd_data = READ_IMAGE(src_data, smp_zero, (int2)(X * src_size.z + offset[i], Y));
|
||||||
|
tmp[0] = rd_data.x;
|
||||||
|
tmp[1] = rd_data.y;
|
||||||
|
tmp[2] = rd_data.z;
|
||||||
|
tmp[3] = rd_data.w;
|
||||||
|
}
|
||||||
|
res_tmp[i] = tmp[indices[Z * 4 + i] % 4];
|
||||||
|
}
|
||||||
|
res_data.x = res_tmp[0];
|
||||||
|
res_data.y = res_tmp[1];
|
||||||
|
res_data.z = res_tmp[2];
|
||||||
|
res_data.w = res_tmp[3];
|
||||||
|
}
|
||||||
|
WRITE_IMAGE(dst_data, (int2)(X * dst_size.z + Z, Y), res_data);
|
||||||
|
}
|
||||||
|
__kernel void gather_NC4HW4(__read_only image2d_t src_data, __global int *indices, __write_only image2d_t dst_data,
|
||||||
|
int4 src_size, int4 dst_size, int indices_num, int axis) {
|
||||||
|
int X = get_global_id(0); // w
|
||||||
|
int Y = get_global_id(1); // h
|
||||||
|
int Z = get_global_id(2); // c
|
||||||
|
if (X >= dst_size.x || Y >= dst_size.y || Y >= dst_size.z) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
FLT4 res_data = (FLT4)(0.0f, 0.0f, 0.0f, 0.0f);
|
||||||
|
if (axis == 1) {
|
||||||
|
res_data = READ_IMAGE(src_data, smp_zero, (int2)(X, Z * dst_size.y + indices[Y]));
|
||||||
|
} else if (axis == 2) {
|
||||||
|
res_data = READ_IMAGE(src_data, smp_zero, (int2)(indices[X], Z * dst_size.y + Y));
|
||||||
|
} else if (axis == 3) {
|
||||||
|
int offset[4] = {indices[Z * 4] / 4, indices[Z * 4 + 1] / 4, indices[Z * 4 + 2] / 4, indices[Z * 4 + 3] / 4};
|
||||||
|
FLT tmp[4];
|
||||||
|
FLT res_tmp[4];
|
||||||
|
for (int i = 0; i < 4; ++i) {
|
||||||
|
if (i >= 1 && offset[i] != offset[i - 1]) {
|
||||||
|
FLT4 rd_data = (FLT4)(0.0f, 0.0f, 0.0f, 0.0f);
|
||||||
|
rd_data = READ_IMAGE(src_data, smp_zero, (int2)(X, offset[i] * dst_size.y + Y));
|
||||||
|
tmp[0] = rd_data.x;
|
||||||
|
tmp[1] = rd_data.y;
|
||||||
|
tmp[2] = rd_data.z;
|
||||||
|
tmp[3] = rd_data.w;
|
||||||
|
}
|
||||||
|
res_tmp[i] = tmp[indices[Z * 4 + i] % 4];
|
||||||
|
}
|
||||||
|
res_data.x = res_tmp[0];
|
||||||
|
res_data.y = res_tmp[1];
|
||||||
|
res_data.z = res_tmp[2];
|
||||||
|
res_data.w = res_tmp[3];
|
||||||
|
}
|
||||||
|
WRITE_IMAGE(dst_data, (int2)(X, (Z * dst_size.y + Y)), res_data);
|
||||||
|
}
|
|
@ -101,8 +101,8 @@ int DepthwiseConv2dOpenCLKernel::InitBuffer() {
|
||||||
std::function<int16_t(int16_t)> to_dtype = [](int16_t x) -> int16_t { return x; };
|
std::function<int16_t(int16_t)> to_dtype = [](int16_t x) -> int16_t { return x; };
|
||||||
PackNCHWToNC4HW4<int16_t, int16_t>(origin_weight, packed_weight_, 1, plane, out_tensors_[0]->Channel(), to_dtype);
|
PackNCHWToNC4HW4<int16_t, int16_t>(origin_weight, packed_weight_, 1, plane, out_tensors_[0]->Channel(), to_dtype);
|
||||||
} else if (in_tensors_.at(kWeightIndex)->data_type() == kNumberTypeFloat32) {
|
} else if (in_tensors_.at(kWeightIndex)->data_type() == kNumberTypeFloat32) {
|
||||||
std::function<int16_t(float)> to_dtype = Float32ToShort;
|
std::function<float16_t(float)> to_dtype = [](float x) -> float16_t { return static_cast<float16_t>(x); };
|
||||||
PackNCHWToNC4HW4<float, int16_t>(origin_weight, packed_weight_, 1, plane, out_tensors_[0]->Channel(), to_dtype);
|
PackNCHWToNC4HW4<float, float16_t>(origin_weight, packed_weight_, 1, plane, out_tensors_[0]->Channel(), to_dtype);
|
||||||
} else {
|
} else {
|
||||||
MS_LOG(ERROR) << "Only support float16/float32, actual data type " << in_tensors_.at(kWeightIndex)->data_type();
|
MS_LOG(ERROR) << "Only support float16/float32, actual data type " << in_tensors_.at(kWeightIndex)->data_type();
|
||||||
return RET_ERROR;
|
return RET_ERROR;
|
||||||
|
@ -111,8 +111,11 @@ int DepthwiseConv2dOpenCLKernel::InitBuffer() {
|
||||||
packed_weight_ = allocator->Malloc(pack_weight_size * sizeof(float));
|
packed_weight_ = allocator->Malloc(pack_weight_size * sizeof(float));
|
||||||
packed_weight_ = allocator->MapBuffer(packed_weight_, CL_MAP_WRITE, nullptr, true);
|
packed_weight_ = allocator->MapBuffer(packed_weight_, CL_MAP_WRITE, nullptr, true);
|
||||||
if (in_tensors_.at(kWeightIndex)->data_type() == kNumberTypeFloat32) {
|
if (in_tensors_.at(kWeightIndex)->data_type() == kNumberTypeFloat32) {
|
||||||
std::function<float(float)> to_dtype = [](float x) -> float { return (float)x; };
|
std::function<float(float)> to_dtype = [](float x) -> float { return x; };
|
||||||
PackNCHWToNC4HW4<float, float>(origin_weight, packed_weight_, 1, plane, out_tensors_[0]->Channel(), to_dtype);
|
PackNCHWToNC4HW4<float, float>(origin_weight, packed_weight_, 1, plane, out_tensors_[0]->Channel(), to_dtype);
|
||||||
|
} else if (in_tensors_.at(kWeightIndex)->data_type() == kNumberTypeFloat16) {
|
||||||
|
std::function<float(float16_t)> to_dtype = [](float16_t x) -> float { return static_cast<float>(x); };
|
||||||
|
PackNCHWToNC4HW4<float16_t, float>(origin_weight, packed_weight_, 1, plane, out_tensors_[0]->Channel(), to_dtype);
|
||||||
} else {
|
} else {
|
||||||
MS_LOG(ERROR) << "Only support float16/float32, actual data type " << in_tensors_.at(kWeightIndex)->data_type();
|
MS_LOG(ERROR) << "Only support float16/float32, actual data type " << in_tensors_.at(kWeightIndex)->data_type();
|
||||||
return RET_ERROR;
|
return RET_ERROR;
|
||||||
|
|
|
@ -0,0 +1,170 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2019 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
#include <cstring>
|
||||||
|
#include <string>
|
||||||
|
#include <algorithm>
|
||||||
|
#include <set>
|
||||||
|
#include <utility>
|
||||||
|
#include "src/kernel_registry.h"
|
||||||
|
#include "src/runtime/opencl/opencl_runtime.h"
|
||||||
|
#include "src/runtime/kernel/opencl/kernel/gather.h"
|
||||||
|
#include "src/runtime/kernel/opencl/cl/gather.cl.inc"
|
||||||
|
|
||||||
|
using mindspore::kernel::KERNEL_ARCH::kGPU;
|
||||||
|
using mindspore::lite::KernelRegistrar;
|
||||||
|
using mindspore::schema::PrimitiveType_Gather;
|
||||||
|
|
||||||
|
namespace mindspore::kernel {
|
||||||
|
|
||||||
|
int GatherOpenCLKernel::Init() {
|
||||||
|
std::string kernel_name = "gather";
|
||||||
|
auto in_format = op_format_;
|
||||||
|
if (in_format != schema::Format_NHWC4 && in_format != schema::Format_NC4HW4) {
|
||||||
|
MS_LOG(ERROR) << "input format(" << in_format << ") "
|
||||||
|
<< "format not support!";
|
||||||
|
return RET_ERROR;
|
||||||
|
}
|
||||||
|
in_ori_format_ = in_tensors_[0]->GetFormat();
|
||||||
|
out_ori_format_ = out_tensors_[0]->GetFormat();
|
||||||
|
in_tensors_[0]->SetFormat(op_format_);
|
||||||
|
out_tensors_[0]->SetFormat(op_format_);
|
||||||
|
if (in_format == schema::Format_NC4HW4) {
|
||||||
|
kernel_name += "_NC4HW4";
|
||||||
|
} else {
|
||||||
|
kernel_name += "_NHWC4";
|
||||||
|
}
|
||||||
|
std::set<std::string> build_options;
|
||||||
|
std::string source = gather_source;
|
||||||
|
std::string program_name = "gather";
|
||||||
|
auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance();
|
||||||
|
ocl_runtime->LoadSource(program_name, source);
|
||||||
|
ocl_runtime->BuildKernel(kernel_, program_name, kernel_name, build_options);
|
||||||
|
// init indices_data_
|
||||||
|
auto indices_tensor = in_tensors_.at(1);
|
||||||
|
int indices_num = indices_tensor->ElementsNum();
|
||||||
|
bool isIndicesInt32 = indices_tensor->data_type() == kNumberTypeInt32;
|
||||||
|
auto allocator = lite::opencl::OpenCLRuntime::GetInstance()->GetAllocator();
|
||||||
|
if (!isIndicesInt32) {
|
||||||
|
indices_data_ = reinterpret_cast<int32_t *>(allocator->Malloc(sizeof(int32_t) * indices_num));
|
||||||
|
if (indices_data_ == nullptr) {
|
||||||
|
MS_LOG(ERROR) << "Memory allocation failed";
|
||||||
|
return RET_ERROR;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return RET_OK;
|
||||||
|
}
|
||||||
|
int GatherOpenCLKernel::InitBuffer() {
|
||||||
|
auto indices_tensor = in_tensors_.at(1);
|
||||||
|
int indices_num = indices_tensor->ElementsNum();
|
||||||
|
bool isIndicesInt32 = indices_tensor->data_type() == kNumberTypeInt32;
|
||||||
|
if (!isIndicesInt32) {
|
||||||
|
if (indices_tensor->data_type() == kNumberTypeInt64) {
|
||||||
|
for (int i = 0; i < indices_num; i++) {
|
||||||
|
indices_data_[i] = reinterpret_cast<int64_t *>(indices_tensor->data_c())[i];
|
||||||
|
}
|
||||||
|
} else if (indices_tensor->data_type() == kNumberTypeFloat32) {
|
||||||
|
for (int i = 0; i < indices_num; i++) {
|
||||||
|
indices_data_[i] = reinterpret_cast<float *>(indices_tensor->data_c())[i];
|
||||||
|
}
|
||||||
|
} else if (indices_tensor->data_type() == kNumberTypeFloat16) {
|
||||||
|
for (int i = 0; i < indices_num; i++) {
|
||||||
|
indices_data_[i] = reinterpret_cast<float16_t *>(indices_tensor->data_c())[i];
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
MS_LOG(ERROR) << "Unsupported data type: " << indices_tensor->data_type();
|
||||||
|
return RET_ERROR;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
indices_data_ = reinterpret_cast<int32_t *>(indices_tensor->data_c());
|
||||||
|
}
|
||||||
|
return RET_OK;
|
||||||
|
}
|
||||||
|
int GatherOpenCLKernel::ReSize() { return RET_OK; }
|
||||||
|
int GatherOpenCLKernel::GetImageSize(size_t idx, std::vector<size_t> *img_size) {
|
||||||
|
size_t CO4 = UP_DIV(out_tensors_[0]->Channel(), C4NUM);
|
||||||
|
size_t im_dst_x, im_dst_y;
|
||||||
|
if (in_tensors_[0]->GetFormat() == schema::Format::Format_NHWC4) {
|
||||||
|
im_dst_x = out_tensors_[0]->Width() * CO4;
|
||||||
|
im_dst_y = out_tensors_[0]->Height();
|
||||||
|
} else {
|
||||||
|
im_dst_y = out_tensors_[0]->Batch() * out_tensors_[0]->Height() * CO4;
|
||||||
|
im_dst_x = out_tensors_[0]->Width();
|
||||||
|
}
|
||||||
|
size_t img_dtype = CL_FLOAT;
|
||||||
|
auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance();
|
||||||
|
auto enable_fp16_ = ocl_runtime->GetFp16Enable();
|
||||||
|
if (enable_fp16_) {
|
||||||
|
img_dtype = CL_HALF_FLOAT;
|
||||||
|
}
|
||||||
|
img_size->clear();
|
||||||
|
std::vector<size_t> vec{im_dst_x, im_dst_y, img_dtype};
|
||||||
|
*img_size = std::move(vec);
|
||||||
|
return RET_OK;
|
||||||
|
}
|
||||||
|
int GatherOpenCLKernel::Run() {
|
||||||
|
MS_LOG(DEBUG) << this->name() << " Running! ";
|
||||||
|
auto param = reinterpret_cast<GatherParameter *>(this->op_parameter_);
|
||||||
|
auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance();
|
||||||
|
|
||||||
|
if (InitBuffer() != RET_OK) {
|
||||||
|
return RET_ERROR;
|
||||||
|
}
|
||||||
|
|
||||||
|
auto input_shape = in_tensors_[0]->shape();
|
||||||
|
auto output_shape = out_tensors_[0]->shape();
|
||||||
|
int indices_num = in_tensors_[1]->ElementsNum();
|
||||||
|
size_t CO4 = UP_DIV(out_tensors_[0]->Channel(), C4NUM);
|
||||||
|
size_t CI4 = UP_DIV(in_tensors_[0]->Channel(), C4NUM);
|
||||||
|
cl_int4 src_size = {in_tensors_[0]->Width(), in_tensors_[0]->Height(), (cl_int)CI4, in_tensors_[0]->Batch()};
|
||||||
|
cl_int4 dst_size = {(cl_int)out_tensors_[0]->Width(), (cl_int)out_tensors_[0]->Height(), (cl_int)CO4,
|
||||||
|
(cl_int)out_tensors_[0]->Batch()};
|
||||||
|
std::vector<size_t> local = {1, 1, 1};
|
||||||
|
std::vector<size_t> global = {(size_t)out_tensors_[0]->Width(), (size_t)out_tensors_[0]->Height(), CO4};
|
||||||
|
int arg_cn = 0;
|
||||||
|
ocl_runtime->SetKernelArg(kernel_, arg_cn++, in_tensors_[0]->data_c(), lite::opencl::MemType::IMG);
|
||||||
|
ocl_runtime->SetKernelArg(kernel_, arg_cn++, indices_data_, lite::opencl::MemType::BUF);
|
||||||
|
ocl_runtime->SetKernelArg(kernel_, arg_cn++, out_tensors_[0]->data_c(), lite::opencl::MemType::IMG);
|
||||||
|
ocl_runtime->SetKernelArg(kernel_, arg_cn++, src_size);
|
||||||
|
ocl_runtime->SetKernelArg(kernel_, arg_cn++, dst_size);
|
||||||
|
ocl_runtime->SetKernelArg(kernel_, arg_cn++, indices_num);
|
||||||
|
ocl_runtime->SetKernelArg(kernel_, arg_cn++, param->axis_);
|
||||||
|
ocl_runtime->RunKernel(kernel_, global, local, nullptr);
|
||||||
|
|
||||||
|
return RET_OK;
|
||||||
|
}
|
||||||
|
|
||||||
|
kernel::LiteKernel *OpenCLGatherKernelCreator(const std::vector<lite::Tensor *> &inputs,
|
||||||
|
const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter,
|
||||||
|
const lite::Context *ctx, const kernel::KernelKey &desc,
|
||||||
|
const mindspore::lite::PrimitiveC *primitive) {
|
||||||
|
auto *kernel = new (std::nothrow) GatherOpenCLKernel(opParameter, inputs, outputs);
|
||||||
|
if (kernel == nullptr) {
|
||||||
|
MS_LOG(ERROR) << "Kernel " << opParameter->name_ << " new failed.";
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
auto ret = kernel->Init();
|
||||||
|
if (ret != RET_OK) {
|
||||||
|
MS_LOG(ERROR) << "Kernel " << opParameter->name_ << " init failed.";
|
||||||
|
delete kernel;
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
return kernel;
|
||||||
|
}
|
||||||
|
|
||||||
|
REG_KERNEL(kGPU, kNumberTypeFloat32, PrimitiveType_Gather, OpenCLGatherKernelCreator);
|
||||||
|
REG_KERNEL(kGPU, kNumberTypeFloat16, PrimitiveType_Gather, OpenCLGatherKernelCreator);
|
||||||
|
|
||||||
|
} // namespace mindspore::kernel
|
|
@ -0,0 +1,51 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2019 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_OPENCL_KERNEL_GATHER_H_
|
||||||
|
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_OPENCL_KERNEL_GATHER_H_
|
||||||
|
|
||||||
|
#include <vector>
|
||||||
|
#include "ir/anf.h"
|
||||||
|
#include "src/runtime/kernel/opencl/opencl_kernel.h"
|
||||||
|
#include "src/runtime/opencl/opencl_runtime.h"
|
||||||
|
#include "nnacl/gather_parameter.h"
|
||||||
|
|
||||||
|
namespace mindspore::kernel {
|
||||||
|
|
||||||
|
class GatherOpenCLKernel : public OpenCLKernel {
|
||||||
|
public:
|
||||||
|
explicit GatherOpenCLKernel(OpParameter *parameter, const std::vector<lite::Tensor *> &inputs,
|
||||||
|
const std::vector<lite::Tensor *> &outputs)
|
||||||
|
: OpenCLKernel(parameter, inputs, outputs), indices_data_(nullptr) {}
|
||||||
|
|
||||||
|
~GatherOpenCLKernel() override{};
|
||||||
|
|
||||||
|
int Init() override;
|
||||||
|
|
||||||
|
int ReSize() override;
|
||||||
|
|
||||||
|
int Run() override;
|
||||||
|
|
||||||
|
int GetImageSize(size_t idx, std::vector<size_t> *img_size) override;
|
||||||
|
|
||||||
|
int InitBuffer();
|
||||||
|
|
||||||
|
private:
|
||||||
|
cl::Kernel kernel_;
|
||||||
|
int32_t *indices_data_;
|
||||||
|
};
|
||||||
|
} // namespace mindspore::kernel
|
||||||
|
#endif
|
|
@ -52,7 +52,7 @@ void PReluOpenCLKernel::InitBuffer() {
|
||||||
auto PReluWeight_fp16 = reinterpret_cast<uint16_t *>(PReluWeight_);
|
auto PReluWeight_fp16 = reinterpret_cast<uint16_t *>(PReluWeight_);
|
||||||
auto in_tensor_data_fp32 = reinterpret_cast<float *>(in_tensors_[1]->MutableData());
|
auto in_tensor_data_fp32 = reinterpret_cast<float *>(in_tensors_[1]->MutableData());
|
||||||
for (int i = 0; i < elem_num; i++) {
|
for (int i = 0; i < elem_num; i++) {
|
||||||
PReluWeight_fp16[i] = Float32ToShort(in_tensor_data_fp32[i]);
|
PReluWeight_fp16[i] = static_cast<float16_t>(in_tensor_data_fp32[i]);
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
memcpy(PReluWeight_, in_tensors_[1]->MutableData(), elem_num * fp_size);
|
memcpy(PReluWeight_, in_tensors_[1]->MutableData(), elem_num * fp_size);
|
||||||
|
@ -60,9 +60,9 @@ void PReluOpenCLKernel::InitBuffer() {
|
||||||
} else {
|
} else {
|
||||||
if (in_tensors_[1]->data_type() == kNumberTypeFloat16) {
|
if (in_tensors_[1]->data_type() == kNumberTypeFloat16) {
|
||||||
auto PReluWeight_fp32 = reinterpret_cast<float *>(PReluWeight_);
|
auto PReluWeight_fp32 = reinterpret_cast<float *>(PReluWeight_);
|
||||||
auto in_tensor_data_fp16 = reinterpret_cast<uint16_t *>(in_tensors_[1]->MutableData());
|
auto in_tensor_data_fp16 = reinterpret_cast<float16_t *>(in_tensors_[1]->MutableData());
|
||||||
for (int i = 0; i < elem_num; i++) {
|
for (int i = 0; i < elem_num; i++) {
|
||||||
PReluWeight_fp32[i] = ShortToFloat32(in_tensor_data_fp16[i]);
|
PReluWeight_fp32[i] = static_cast<float>(in_tensor_data_fp16[i]);
|
||||||
}
|
}
|
||||||
} else {
|
} else {
|
||||||
memcpy(PReluWeight_, in_tensors_[1]->MutableData(), elem_num * fp_size);
|
memcpy(PReluWeight_, in_tensors_[1]->MutableData(), elem_num * fp_size);
|
||||||
|
|
|
@ -55,6 +55,9 @@ int SubGraphOpenCLKernel::GenToFormatOp(const std::vector<lite::Tensor *> &in_te
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
for (size_t i = 0; i < in_tensors.size(); ++i) {
|
for (size_t i = 0; i < in_tensors.size(); ++i) {
|
||||||
|
if (in_tensors.at(i)->shape().size() <= 1) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
OpenCLKernel *cur_opencl_op = reinterpret_cast<OpenCLKernel *>(in_kernels[i][0]);
|
OpenCLKernel *cur_opencl_op = reinterpret_cast<OpenCLKernel *>(in_kernels[i][0]);
|
||||||
schema::Format out_ori_format = cur_opencl_op->GetOutOriFormat();
|
schema::Format out_ori_format = cur_opencl_op->GetOutOriFormat();
|
||||||
schema::Format in_ori_format = cur_opencl_op->GetInOriFormat();
|
schema::Format in_ori_format = cur_opencl_op->GetInOriFormat();
|
||||||
|
|
|
@ -95,6 +95,7 @@ class OpenCLRuntime {
|
||||||
}
|
}
|
||||||
default:
|
default:
|
||||||
MS_LOG(ERROR) << "Unsupport opencl memory type: " << static_cast<int>(mem_type);
|
MS_LOG(ERROR) << "Unsupport opencl memory type: " << static_cast<int>(mem_type);
|
||||||
|
return CL_IMAGE_FORMAT_NOT_SUPPORTED;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -104,30 +104,14 @@ if (ENABLE_FP16)
|
||||||
endif ()
|
endif ()
|
||||||
### gpu kernel
|
### gpu kernel
|
||||||
if (SUPPORT_GPU)
|
if (SUPPORT_GPU)
|
||||||
|
file(GLOB GPU_KERNEL_OP_SRC
|
||||||
|
${LITE_DIR}/src/runtime/kernel/opencl/kernel/*.cc
|
||||||
|
)
|
||||||
set(KERNEL_OP_SRC
|
set(KERNEL_OP_SRC
|
||||||
${KERNEL_OP_SRC}
|
${KERNEL_OP_SRC}
|
||||||
|
${GPU_KERNEL_OP_SRC}
|
||||||
${LITE_DIR}/src/runtime/kernel/opencl/subgraph_opencl_kernel.cc
|
${LITE_DIR}/src/runtime/kernel/opencl/subgraph_opencl_kernel.cc
|
||||||
${LITE_DIR}/src/runtime/kernel/opencl/utils.cc
|
${LITE_DIR}/src/runtime/kernel/opencl/utils.cc
|
||||||
${LITE_DIR}/src/runtime/kernel/opencl/kernel/arithmetic.cc
|
|
||||||
${LITE_DIR}/src/runtime/kernel/opencl/kernel/convolution.cc
|
|
||||||
${LITE_DIR}/src/runtime/kernel/opencl/kernel/depthwise_conv2d.cc
|
|
||||||
${LITE_DIR}/src/runtime/kernel/opencl/kernel/pooling2d.cc
|
|
||||||
${LITE_DIR}/src/runtime/kernel/opencl/kernel/matmul.cc
|
|
||||||
${LITE_DIR}/src/runtime/kernel/opencl/kernel/softmax.cc
|
|
||||||
${LITE_DIR}/src/runtime/kernel/opencl/kernel/concat.cc
|
|
||||||
${LITE_DIR}/src/runtime/kernel/opencl/kernel/arithmetic_self.cc
|
|
||||||
${LITE_DIR}/src/runtime/kernel/opencl/kernel/batchnorm.cc
|
|
||||||
${LITE_DIR}/src/runtime/kernel/opencl/kernel/slice.cc
|
|
||||||
${LITE_DIR}/src/runtime/kernel/opencl/kernel/activation.cc
|
|
||||||
${LITE_DIR}/src/runtime/kernel/opencl/kernel/conv2d_transpose.cc
|
|
||||||
${LITE_DIR}/src/runtime/kernel/opencl/kernel/transpose.cc
|
|
||||||
${LITE_DIR}/src/runtime/kernel/opencl/kernel/reshape.cc
|
|
||||||
${LITE_DIR}/src/runtime/kernel/opencl/kernel/to_format.cc
|
|
||||||
${LITE_DIR}/src/runtime/kernel/opencl/kernel/prelu.cc
|
|
||||||
${LITE_DIR}/src/runtime/kernel/opencl/kernel/to_format.cc
|
|
||||||
${LITE_DIR}/src/runtime/kernel/opencl/kernel/biasadd.cc
|
|
||||||
${LITE_DIR}/src/runtime/kernel/opencl/kernel/scale.cc
|
|
||||||
${LITE_DIR}/src/runtime/kernel/opencl/kernel/reduce.cc
|
|
||||||
)
|
)
|
||||||
endif()
|
endif()
|
||||||
### minddata lite
|
### minddata lite
|
||||||
|
@ -294,29 +278,12 @@ else()
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
if (SUPPORT_GPU)
|
if (SUPPORT_GPU)
|
||||||
|
file(GLOB_RECURSE TEST_CASE_KERNEL_GPU_SRC
|
||||||
|
${TEST_DIR}/ut/src/runtime/kernel/opencl/*.cc
|
||||||
|
)
|
||||||
set(TEST_SRC
|
set(TEST_SRC
|
||||||
${TEST_SRC}
|
${TEST_SRC}
|
||||||
${TEST_DIR}/ut/src/runtime/kernel/opencl/matmul_tests.cc
|
${TEST_CASE_KERNEL_GPU_SRC}
|
||||||
${TEST_DIR}/ut/src/runtime/kernel/opencl/depthwise_conv2d_tests.cc
|
|
||||||
${TEST_DIR}/ut/src/runtime/kernel/opencl/concat_tests.cc
|
|
||||||
${TEST_DIR}/ut/src/runtime/kernel/opencl/batchnorm_tests.cc
|
|
||||||
${TEST_DIR}/ut/src/runtime/kernel/opencl/slice_tests.cc
|
|
||||||
${TEST_DIR}/ut/src/runtime/kernel/opencl/arithmetic_self_tests.cc
|
|
||||||
${TEST_DIR}/ut/src/runtime/kernel/opencl/softmax_tests.cc
|
|
||||||
${TEST_DIR}/ut/src/runtime/kernel/opencl/arithmetic_tests.cc
|
|
||||||
${TEST_DIR}/ut/src/runtime/kernel/opencl/avg_pooling_tests.cc
|
|
||||||
${TEST_DIR}/ut/src/runtime/kernel/opencl/max_pooling_tests.cc
|
|
||||||
${TEST_DIR}/ut/src/runtime/kernel/opencl/utils_tests.cc
|
|
||||||
${TEST_DIR}/ut/src/runtime/kernel/opencl/conv2d_transpose_tests.cc
|
|
||||||
${TEST_DIR}/ut/src/runtime/kernel/opencl/transpose_tests.cc
|
|
||||||
${TEST_DIR}/ut/src/runtime/kernel/opencl/convolution_tests.cc
|
|
||||||
${TEST_DIR}/ut/src/runtime/kernel/opencl/activation_tests.cc
|
|
||||||
${TEST_DIR}/ut/src/runtime/kernel/opencl/to_format_tests.cc
|
|
||||||
${TEST_DIR}/ut/src/runtime/kernel/opencl/prelu_tests.cc
|
|
||||||
${TEST_DIR}/ut/src/runtime/kernel/opencl/reshape_tests.cc
|
|
||||||
${TEST_DIR}/ut/src/runtime/kernel/opencl/biasadd_tests.cc
|
|
||||||
${TEST_DIR}/ut/src/runtime/kernel/opencl/scale_tests.cc
|
|
||||||
${TEST_DIR}/ut/src/runtime/kernel/opencl/reduce_tests.cc
|
|
||||||
)
|
)
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
|
|
|
@ -0,0 +1,120 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
#include <iostream>
|
||||||
|
#include <memory>
|
||||||
|
#include "utils/log_adapter.h"
|
||||||
|
#include "common/common_test.h"
|
||||||
|
#include "src/runtime/kernel/opencl/utils.h"
|
||||||
|
#include "mindspore/lite/src/runtime/opencl/opencl_runtime.h"
|
||||||
|
#include "mindspore/lite/src/runtime/kernel/opencl/subgraph_opencl_kernel.h"
|
||||||
|
#include "mindspore/lite/src/runtime/kernel/opencl/kernel/gather.h"
|
||||||
|
|
||||||
|
namespace mindspore {
|
||||||
|
class TestGatherOpenCL : public mindspore::CommonTest {
|
||||||
|
public:
|
||||||
|
TestGatherOpenCL() {}
|
||||||
|
};
|
||||||
|
template <typename T>
|
||||||
|
void test_main_gather(void *input_data, void *correct_data, const std::vector<int> &input_shape,
|
||||||
|
const std::vector<int> &indices, GatherParameter *param, TypeId data_type,
|
||||||
|
schema::Format format) {
|
||||||
|
MS_LOG(INFO) << " begin test ";
|
||||||
|
auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance();
|
||||||
|
ocl_runtime->Init();
|
||||||
|
auto allocator = ocl_runtime->GetAllocator();
|
||||||
|
|
||||||
|
std::vector<int> indices_shape = {static_cast<int>(indices.size())};
|
||||||
|
std::vector<int> output_shape = input_shape;
|
||||||
|
output_shape[param->axis_] = indices.size();
|
||||||
|
|
||||||
|
auto tensor_a = lite::Tensor(TypeId(data_type), input_shape, format);
|
||||||
|
auto tensor_b = lite::Tensor(TypeId(data_type), indices_shape, schema::Format_NC);
|
||||||
|
auto tensor_c = lite::Tensor(TypeId(data_type), output_shape, format);
|
||||||
|
std::vector<lite::Tensor *> inputs{&tensor_a, &tensor_b};
|
||||||
|
std::vector<lite::Tensor *> outputs{&tensor_c};
|
||||||
|
size_t input_size = tensor_a.Size();
|
||||||
|
|
||||||
|
auto *pkernel =
|
||||||
|
new (std::nothrow) kernel::GatherOpenCLKernel(reinterpret_cast<OpParameter *>(param), inputs, outputs);
|
||||||
|
if (pkernel == nullptr) {
|
||||||
|
MS_LOG(INFO) << "new GatherOpenCLKernel failed ";
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
pkernel->Init();
|
||||||
|
|
||||||
|
// to do allocate memory for inputs and outputs
|
||||||
|
for (auto &input_tensor : inputs) {
|
||||||
|
input_tensor->MallocData(allocator);
|
||||||
|
}
|
||||||
|
|
||||||
|
MS_LOG(INFO) << " initialize sub_graph ";
|
||||||
|
std::vector<kernel::LiteKernel *> kernels{pkernel};
|
||||||
|
auto *sub_graph = new (std::nothrow) kernel::SubGraphOpenCLKernel(inputs, outputs, kernels, kernels, kernels);
|
||||||
|
if (sub_graph == nullptr) {
|
||||||
|
delete pkernel;
|
||||||
|
MS_LOG(INFO) << " new SubGraphOpenCLKernel failed ";
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
sub_graph->Init();
|
||||||
|
|
||||||
|
MS_LOG(INFO) << " init tensors ";
|
||||||
|
memcpy(inputs[0]->MutableData(), input_data, input_size);
|
||||||
|
|
||||||
|
sub_graph->Run();
|
||||||
|
|
||||||
|
std::cout << "==================output data================" << std::endl;
|
||||||
|
auto *output_data = reinterpret_cast<T *>(outputs[0]->data_c());
|
||||||
|
CommonTest::CompareOutputData<T>(output_data, static_cast<T*>(correct_data), outputs[0]->ElementsNum(), 0.0001);
|
||||||
|
delete pkernel;
|
||||||
|
delete sub_graph;
|
||||||
|
}
|
||||||
|
TEST_F(TestGatherOpenCL, Axis1Fp32) {
|
||||||
|
std::vector<int> input_shape{1, 5, 4, 4};
|
||||||
|
std::vector<int> indices{1, 3};
|
||||||
|
GatherParameter *param = std::make_unique<GatherParameter>().release();
|
||||||
|
param->axis_ = 1;
|
||||||
|
float input_data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
|
||||||
|
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
|
||||||
|
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
|
||||||
|
60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79};
|
||||||
|
float correct_data[] = {16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
|
||||||
|
48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63};
|
||||||
|
if (param == nullptr) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
TypeId data_type = kNumberTypeFloat32;
|
||||||
|
schema::Format format = schema::Format_NHWC;
|
||||||
|
test_main_gather<float>(input_data, correct_data, input_shape, indices, param, data_type, format);
|
||||||
|
}
|
||||||
|
TEST_F(TestGatherOpenCL, Axis2Int32) {
|
||||||
|
std::vector<int> input_shape{1, 5, 4, 4};
|
||||||
|
std::vector<int> indices{1, 3};
|
||||||
|
GatherParameter *param = std::make_unique<GatherParameter>().release();
|
||||||
|
param->axis_ = 1;
|
||||||
|
float input_data[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
|
||||||
|
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
|
||||||
|
40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,
|
||||||
|
60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79};
|
||||||
|
float correct_data[] = {4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31, 36, 37, 38, 39,
|
||||||
|
44, 45, 46, 47, 52, 53, 54, 55, 60, 61, 62, 63, 68, 69, 70, 71, 76, 77, 78, 79};
|
||||||
|
if (param == nullptr) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
TypeId data_type = kNumberTypeFloat32;
|
||||||
|
schema::Format format = schema::Format_NHWC;
|
||||||
|
test_main_gather<int>(input_data, correct_data, input_shape, indices, param, data_type, format);
|
||||||
|
}
|
||||||
|
} // namespace mindspore
|
Loading…
Reference in New Issue