forked from mindspore-Ecosystem/mindspore
!17807 MD Profiling UT: Add MD Analyze UT for MinddataProfilingAnalyzer
Merge pull request !17807 from cathwong/ckw_mon_py_analyze_ut3
This commit is contained in:
commit
3a63a66d64
|
@ -18,23 +18,50 @@ Testing profiling support in DE
|
|||
import json
|
||||
import os
|
||||
import numpy as np
|
||||
import mindspore.common.dtype as mstype
|
||||
import mindspore.dataset as ds
|
||||
import mindspore.dataset.transforms.c_transforms as C
|
||||
import mindspore.dataset.vision.c_transforms as vision
|
||||
|
||||
FILES = ["../data/dataset/testTFTestAllTypes/test.data"]
|
||||
DATASET_ROOT = "../data/dataset/testTFTestAllTypes/"
|
||||
SCHEMA_FILE = "../data/dataset/testTFTestAllTypes/datasetSchema.json"
|
||||
|
||||
PIPELINE_FILE = "./pipeline_profiling_1.json"
|
||||
CPU_UTIL_FILE = "./minddata_cpu_utilization_1.json"
|
||||
DATASET_ITERATOR_FILE = "./dataset_iterator_profiling_1.txt"
|
||||
|
||||
|
||||
def set_profiling_env_var():
|
||||
"""
|
||||
Set the MindData Profiling environment variables
|
||||
"""
|
||||
os.environ['PROFILING_MODE'] = 'true'
|
||||
os.environ['MINDDATA_PROFILING_DIR'] = '.'
|
||||
os.environ['DEVICE_ID'] = '1'
|
||||
|
||||
|
||||
def delete_profiling_files():
|
||||
"""
|
||||
Delete the MindData profiling files generated from the test.
|
||||
Also disable the MindData Profiling environment variables.
|
||||
"""
|
||||
# Delete MindData profiling files
|
||||
os.remove(PIPELINE_FILE)
|
||||
os.remove(CPU_UTIL_FILE)
|
||||
os.remove(DATASET_ITERATOR_FILE)
|
||||
|
||||
# Disable MindData Profiling environment variables
|
||||
del os.environ['PROFILING_MODE']
|
||||
del os.environ['MINDDATA_PROFILING_DIR']
|
||||
del os.environ['DEVICE_ID']
|
||||
|
||||
|
||||
def test_profiling_simple_pipeline():
|
||||
"""
|
||||
Generator -> Shuffle -> Batch
|
||||
"""
|
||||
os.environ['PROFILING_MODE'] = 'true'
|
||||
os.environ['MINDDATA_PROFILING_DIR'] = '.'
|
||||
os.environ['DEVICE_ID'] = '1'
|
||||
set_profiling_env_var()
|
||||
|
||||
source = [(np.array([x]),) for x in range(1024)]
|
||||
data1 = ds.GeneratorDataset(source, ["data"])
|
||||
|
@ -44,18 +71,27 @@ def test_profiling_simple_pipeline():
|
|||
assert data1.output_shapes() == [[32, 1]]
|
||||
assert [str(tp) for tp in data1.output_types()] == ["int64"]
|
||||
assert data1.get_dataset_size() == 32
|
||||
|
||||
# Confirm profiling files do not (yet) exist
|
||||
assert os.path.exists(PIPELINE_FILE) is False
|
||||
assert os.path.exists(CPU_UTIL_FILE) is False
|
||||
assert os.path.exists(DATASET_ITERATOR_FILE) is False
|
||||
|
||||
for _ in data1:
|
||||
pass
|
||||
try:
|
||||
for _ in data1:
|
||||
pass
|
||||
|
||||
assert os.path.exists(PIPELINE_FILE) is True
|
||||
os.remove(PIPELINE_FILE)
|
||||
assert os.path.exists(DATASET_ITERATOR_FILE) is True
|
||||
os.remove(DATASET_ITERATOR_FILE)
|
||||
del os.environ['PROFILING_MODE']
|
||||
del os.environ['MINDDATA_PROFILING_DIR']
|
||||
# Confirm profiling files now exist
|
||||
assert os.path.exists(PIPELINE_FILE) is True
|
||||
assert os.path.exists(CPU_UTIL_FILE) is True
|
||||
assert os.path.exists(DATASET_ITERATOR_FILE) is True
|
||||
|
||||
except Exception as error:
|
||||
delete_profiling_files()
|
||||
raise error
|
||||
|
||||
else:
|
||||
delete_profiling_files()
|
||||
|
||||
|
||||
def test_profiling_complex_pipeline():
|
||||
|
@ -64,9 +100,7 @@ def test_profiling_complex_pipeline():
|
|||
-> Zip
|
||||
TFReader -> Shuffle ->
|
||||
"""
|
||||
os.environ['PROFILING_MODE'] = 'true'
|
||||
os.environ['MINDDATA_PROFILING_DIR'] = '.'
|
||||
os.environ['DEVICE_ID'] = '1'
|
||||
set_profiling_env_var()
|
||||
|
||||
source = [(np.array([x]),) for x in range(1024)]
|
||||
data1 = ds.GeneratorDataset(source, ["gen"])
|
||||
|
@ -78,28 +112,29 @@ def test_profiling_complex_pipeline():
|
|||
|
||||
data3 = ds.zip((data1, data2))
|
||||
|
||||
for _ in data3:
|
||||
pass
|
||||
try:
|
||||
for _ in data3:
|
||||
pass
|
||||
|
||||
with open(PIPELINE_FILE) as f:
|
||||
data = json.load(f)
|
||||
op_info = data["op_info"]
|
||||
assert len(op_info) == 5
|
||||
for i in range(5):
|
||||
if op_info[i]["op_type"] != "ZipOp":
|
||||
assert "size" in op_info[i]["metrics"]["output_queue"]
|
||||
assert "length" in op_info[i]["metrics"]["output_queue"]
|
||||
assert "throughput" in op_info[i]["metrics"]["output_queue"]
|
||||
else:
|
||||
# Note: Zip is an inline op and hence does not have metrics information
|
||||
assert op_info[i]["metrics"] is None
|
||||
with open(PIPELINE_FILE) as f:
|
||||
data = json.load(f)
|
||||
op_info = data["op_info"]
|
||||
assert len(op_info) == 5
|
||||
for i in range(5):
|
||||
if op_info[i]["op_type"] != "ZipOp":
|
||||
assert "size" in op_info[i]["metrics"]["output_queue"]
|
||||
assert "length" in op_info[i]["metrics"]["output_queue"]
|
||||
assert "throughput" in op_info[i]["metrics"]["output_queue"]
|
||||
else:
|
||||
# Note: Zip is an inline op and hence does not have metrics information
|
||||
assert op_info[i]["metrics"] is None
|
||||
|
||||
assert os.path.exists(PIPELINE_FILE) is True
|
||||
os.remove(PIPELINE_FILE)
|
||||
assert os.path.exists(DATASET_ITERATOR_FILE) is True
|
||||
os.remove(DATASET_ITERATOR_FILE)
|
||||
del os.environ['PROFILING_MODE']
|
||||
del os.environ['MINDDATA_PROFILING_DIR']
|
||||
except Exception as error:
|
||||
delete_profiling_files()
|
||||
raise error
|
||||
|
||||
else:
|
||||
delete_profiling_files()
|
||||
|
||||
|
||||
def test_profiling_inline_ops_pipeline1():
|
||||
|
@ -109,9 +144,7 @@ def test_profiling_inline_ops_pipeline1():
|
|||
Concat -> EpochCtrl
|
||||
Generator ->
|
||||
"""
|
||||
os.environ['PROFILING_MODE'] = 'true'
|
||||
os.environ['MINDDATA_PROFILING_DIR'] = '.'
|
||||
os.environ['DEVICE_ID'] = '1'
|
||||
set_profiling_env_var()
|
||||
|
||||
# In source1 dataset: Number of rows is 3; its values are 0, 1, 2
|
||||
def source1():
|
||||
|
@ -127,33 +160,37 @@ def test_profiling_inline_ops_pipeline1():
|
|||
data2 = ds.GeneratorDataset(source2, ["col1"])
|
||||
data3 = data1.concat(data2)
|
||||
|
||||
# Here i refers to index, d refers to data element
|
||||
for i, d in enumerate(data3.create_tuple_iterator(output_numpy=True)):
|
||||
t = d
|
||||
assert i == t[0][0]
|
||||
try:
|
||||
# Note: If create_tuple_iterator() is called with num_epochs>1, then EpochCtrlOp is added to the pipeline
|
||||
num_iter = 0
|
||||
# Here i refers to index, d refers to data element
|
||||
for i, d in enumerate(data3.create_tuple_iterator(output_numpy=True, num_epochs=2)):
|
||||
num_iter = num_iter + 1
|
||||
t = d
|
||||
assert i == t[0][0]
|
||||
|
||||
assert sum([1 for _ in data3]) == 10
|
||||
assert num_iter == 10
|
||||
|
||||
with open(PIPELINE_FILE) as f:
|
||||
data = json.load(f)
|
||||
op_info = data["op_info"]
|
||||
assert len(op_info) == 4
|
||||
for i in range(4):
|
||||
# Note: The following ops are inline ops: Concat, EpochCtrl
|
||||
if op_info[i]["op_type"] in ("ConcatOp", "EpochCtrlOp"):
|
||||
# Confirm these inline ops do not have metrics information
|
||||
assert op_info[i]["metrics"] is None
|
||||
else:
|
||||
assert "size" in op_info[i]["metrics"]["output_queue"]
|
||||
assert "length" in op_info[i]["metrics"]["output_queue"]
|
||||
assert "throughput" in op_info[i]["metrics"]["output_queue"]
|
||||
with open(PIPELINE_FILE) as f:
|
||||
data = json.load(f)
|
||||
op_info = data["op_info"]
|
||||
assert len(op_info) == 4
|
||||
for i in range(4):
|
||||
# Note: The following ops are inline ops: Concat, EpochCtrl
|
||||
if op_info[i]["op_type"] in ("ConcatOp", "EpochCtrlOp"):
|
||||
# Confirm these inline ops do not have metrics information
|
||||
assert op_info[i]["metrics"] is None
|
||||
else:
|
||||
assert "size" in op_info[i]["metrics"]["output_queue"]
|
||||
assert "length" in op_info[i]["metrics"]["output_queue"]
|
||||
assert "throughput" in op_info[i]["metrics"]["output_queue"]
|
||||
|
||||
assert os.path.exists(PIPELINE_FILE) is True
|
||||
os.remove(PIPELINE_FILE)
|
||||
assert os.path.exists(DATASET_ITERATOR_FILE) is True
|
||||
os.remove(DATASET_ITERATOR_FILE)
|
||||
del os.environ['PROFILING_MODE']
|
||||
del os.environ['MINDDATA_PROFILING_DIR']
|
||||
except Exception as error:
|
||||
delete_profiling_files()
|
||||
raise error
|
||||
|
||||
else:
|
||||
delete_profiling_files()
|
||||
|
||||
|
||||
def test_profiling_inline_ops_pipeline2():
|
||||
|
@ -161,9 +198,7 @@ def test_profiling_inline_ops_pipeline2():
|
|||
Test pipeline with many inline ops
|
||||
Generator -> Rename -> Skip -> Repeat -> Take
|
||||
"""
|
||||
os.environ['PROFILING_MODE'] = 'true'
|
||||
os.environ['MINDDATA_PROFILING_DIR'] = '.'
|
||||
os.environ['DEVICE_ID'] = '1'
|
||||
set_profiling_env_var()
|
||||
|
||||
# In source1 dataset: Number of rows is 10; its values are 0, 1, 2, 3, 4, 5 ... 9
|
||||
def source1():
|
||||
|
@ -176,38 +211,38 @@ def test_profiling_inline_ops_pipeline2():
|
|||
data1 = data1.repeat(2)
|
||||
data1 = data1.take(12)
|
||||
|
||||
for _ in data1:
|
||||
pass
|
||||
try:
|
||||
for _ in data1:
|
||||
pass
|
||||
|
||||
with open(PIPELINE_FILE) as f:
|
||||
data = json.load(f)
|
||||
op_info = data["op_info"]
|
||||
assert len(op_info) == 5
|
||||
for i in range(5):
|
||||
# Check for these inline ops
|
||||
if op_info[i]["op_type"] in ("RenameOp", "RepeatOp", "SkipOp", "TakeOp"):
|
||||
# Confirm these inline ops do not have metrics information
|
||||
assert op_info[i]["metrics"] is None
|
||||
else:
|
||||
assert "size" in op_info[i]["metrics"]["output_queue"]
|
||||
assert "length" in op_info[i]["metrics"]["output_queue"]
|
||||
assert "throughput" in op_info[i]["metrics"]["output_queue"]
|
||||
with open(PIPELINE_FILE) as f:
|
||||
data = json.load(f)
|
||||
op_info = data["op_info"]
|
||||
assert len(op_info) == 5
|
||||
for i in range(5):
|
||||
# Check for these inline ops
|
||||
if op_info[i]["op_type"] in ("RenameOp", "RepeatOp", "SkipOp", "TakeOp"):
|
||||
# Confirm these inline ops do not have metrics information
|
||||
assert op_info[i]["metrics"] is None
|
||||
else:
|
||||
assert "size" in op_info[i]["metrics"]["output_queue"]
|
||||
assert "length" in op_info[i]["metrics"]["output_queue"]
|
||||
assert "throughput" in op_info[i]["metrics"]["output_queue"]
|
||||
|
||||
assert os.path.exists(PIPELINE_FILE) is True
|
||||
os.remove(PIPELINE_FILE)
|
||||
assert os.path.exists(DATASET_ITERATOR_FILE) is True
|
||||
os.remove(DATASET_ITERATOR_FILE)
|
||||
del os.environ['PROFILING_MODE']
|
||||
del os.environ['MINDDATA_PROFILING_DIR']
|
||||
except Exception as error:
|
||||
delete_profiling_files()
|
||||
raise error
|
||||
|
||||
else:
|
||||
delete_profiling_files()
|
||||
|
||||
|
||||
def test_profiling_sampling_interval():
|
||||
"""
|
||||
Test non-default monitor sampling interval
|
||||
"""
|
||||
os.environ['PROFILING_MODE'] = 'true'
|
||||
os.environ['MINDDATA_PROFILING_DIR'] = '.'
|
||||
os.environ['DEVICE_ID'] = '1'
|
||||
set_profiling_env_var()
|
||||
|
||||
interval_origin = ds.config.get_monitor_sampling_interval()
|
||||
|
||||
ds.config.set_monitor_sampling_interval(30)
|
||||
|
@ -219,17 +254,118 @@ def test_profiling_sampling_interval():
|
|||
data1 = data1.shuffle(64)
|
||||
data1 = data1.batch(32)
|
||||
|
||||
for _ in data1:
|
||||
pass
|
||||
try:
|
||||
for _ in data1:
|
||||
pass
|
||||
|
||||
assert os.path.exists(PIPELINE_FILE) is True
|
||||
os.remove(PIPELINE_FILE)
|
||||
assert os.path.exists(DATASET_ITERATOR_FILE) is True
|
||||
os.remove(DATASET_ITERATOR_FILE)
|
||||
except Exception as error:
|
||||
ds.config.set_monitor_sampling_interval(interval_origin)
|
||||
delete_profiling_files()
|
||||
raise error
|
||||
|
||||
ds.config.set_monitor_sampling_interval(interval_origin)
|
||||
del os.environ['PROFILING_MODE']
|
||||
del os.environ['MINDDATA_PROFILING_DIR']
|
||||
else:
|
||||
ds.config.set_monitor_sampling_interval(interval_origin)
|
||||
delete_profiling_files()
|
||||
|
||||
|
||||
def test_profiling_basic_pipeline():
|
||||
"""
|
||||
Test with this basic pipeline
|
||||
Generator -> Map -> Batch -> Repeat -> EpochCtrl
|
||||
"""
|
||||
set_profiling_env_var()
|
||||
|
||||
def source1():
|
||||
for i in range(8000):
|
||||
yield (np.array([i]),)
|
||||
|
||||
# Create this basic and common pipeline
|
||||
# Leaf/Source-Op -> Map -> Batch -> Repeat
|
||||
data1 = ds.GeneratorDataset(source1, ["col1"])
|
||||
|
||||
type_cast_op = C.TypeCast(mstype.int32)
|
||||
data1 = data1.map(operations=type_cast_op, input_columns="col1")
|
||||
data1 = data1.batch(16)
|
||||
data1 = data1.repeat(2)
|
||||
|
||||
try:
|
||||
num_iter = 0
|
||||
# Note: If create_tuple_iterator() is called with num_epochs>1, then EpochCtrlOp is added to the pipeline
|
||||
for _ in data1.create_dict_iterator(num_epochs=2):
|
||||
num_iter = num_iter + 1
|
||||
|
||||
assert num_iter == 1000
|
||||
|
||||
with open(PIPELINE_FILE) as f:
|
||||
data = json.load(f)
|
||||
op_info = data["op_info"]
|
||||
assert len(op_info) == 5
|
||||
for i in range(5):
|
||||
# Check for inline ops
|
||||
if op_info[i]["op_type"] in ("EpochCtrlOp", "RepeatOp"):
|
||||
# Confirm these inline ops do not have metrics information
|
||||
assert op_info[i]["metrics"] is None
|
||||
else:
|
||||
assert "size" in op_info[i]["metrics"]["output_queue"]
|
||||
assert "length" in op_info[i]["metrics"]["output_queue"]
|
||||
assert "throughput" in op_info[i]["metrics"]["output_queue"]
|
||||
|
||||
except Exception as error:
|
||||
delete_profiling_files()
|
||||
raise error
|
||||
|
||||
else:
|
||||
delete_profiling_files()
|
||||
|
||||
|
||||
def test_profiling_cifar10_pipeline():
|
||||
"""
|
||||
Test with this common pipeline with Cifar10
|
||||
Cifar10 -> Map -> Map -> Batch -> Repeat
|
||||
"""
|
||||
set_profiling_env_var()
|
||||
|
||||
# Create this common pipeline
|
||||
# Cifar10 -> Map -> Map -> Batch -> Repeat
|
||||
DATA_DIR_10 = "../data/dataset/testCifar10Data"
|
||||
data1 = ds.Cifar10Dataset(DATA_DIR_10, num_samples=8000)
|
||||
|
||||
type_cast_op = C.TypeCast(mstype.int32)
|
||||
data1 = data1.map(operations=type_cast_op, input_columns="label")
|
||||
random_horizontal_op = vision.RandomHorizontalFlip()
|
||||
data1 = data1.map(operations=random_horizontal_op, input_columns="image")
|
||||
|
||||
data1 = data1.batch(32)
|
||||
data1 = data1.repeat(3)
|
||||
|
||||
try:
|
||||
num_iter = 0
|
||||
# Note: If create_tuple_iterator() is called with num_epochs=1, then EpochCtrlOp is NOT added to the pipeline
|
||||
for _ in data1.create_dict_iterator(num_epochs=1):
|
||||
num_iter = num_iter + 1
|
||||
|
||||
assert num_iter == 750
|
||||
|
||||
with open(PIPELINE_FILE) as f:
|
||||
data = json.load(f)
|
||||
op_info = data["op_info"]
|
||||
assert len(op_info) == 5
|
||||
for i in range(5):
|
||||
# Check for inline ops
|
||||
if op_info[i]["op_type"] == "RepeatOp":
|
||||
# Confirm these inline ops do not have metrics information
|
||||
assert op_info[i]["metrics"] is None
|
||||
else:
|
||||
assert "size" in op_info[i]["metrics"]["output_queue"]
|
||||
assert "length" in op_info[i]["metrics"]["output_queue"]
|
||||
assert "throughput" in op_info[i]["metrics"]["output_queue"]
|
||||
|
||||
except Exception as error:
|
||||
delete_profiling_files()
|
||||
raise error
|
||||
|
||||
else:
|
||||
delete_profiling_files()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
@ -238,3 +374,5 @@ if __name__ == "__main__":
|
|||
test_profiling_inline_ops_pipeline1()
|
||||
test_profiling_inline_ops_pipeline2()
|
||||
test_profiling_sampling_interval()
|
||||
test_profiling_basic_pipeline()
|
||||
test_profiling_cifar10_pipeline()
|
||||
|
|
|
@ -0,0 +1,203 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""
|
||||
Test MindData Profiling Analyzer Support
|
||||
"""
|
||||
import csv
|
||||
import json
|
||||
import os
|
||||
import numpy as np
|
||||
import mindspore.common.dtype as mstype
|
||||
import mindspore.dataset as ds
|
||||
import mindspore.dataset.transforms.c_transforms as C
|
||||
from mindspore.profiler.parser.minddata_analyzer import MinddataProfilingAnalyzer
|
||||
|
||||
PIPELINE_FILE = "./pipeline_profiling_0.json"
|
||||
CPU_UTIL_FILE = "./minddata_cpu_utilization_0.json"
|
||||
DATASET_ITERATOR_FILE = "./dataset_iterator_profiling_0.txt"
|
||||
SUMMARY_JSON_FILE = "./minddata_pipeline_summary_0.json"
|
||||
SUMMARY_CSV_FILE = "./minddata_pipeline_summary_0.csv"
|
||||
ANALYZE_FILE_PATH = "./"
|
||||
|
||||
# This is the minimum subset of expected keys (in alphabetical order) in the MindData Analyzer summary output
|
||||
EXPECTED_SUMMARY_KEYS = ['avg_cpu_pct', 'children_ids', 'num_workers', 'op_ids', 'op_names', 'parent_id',
|
||||
'per_batch_time', 'pipeline_ops', 'queue_average_size', 'queue_empty_freq_pct',
|
||||
'queue_utilization_pct']
|
||||
|
||||
|
||||
def get_csv_result(file_pathname):
|
||||
"""
|
||||
Get result from the CSV file.
|
||||
|
||||
Args:
|
||||
file_pathname (str): The CSV file pathname.
|
||||
|
||||
Returns:
|
||||
list[list], the parsed CSV information.
|
||||
"""
|
||||
result = []
|
||||
with open(file_pathname, 'r') as csvfile:
|
||||
csv_reader = csv.reader(csvfile)
|
||||
for row in csv_reader:
|
||||
result.append(row)
|
||||
return result
|
||||
|
||||
|
||||
def delete_profiling_files():
|
||||
"""
|
||||
Delete the MindData profiling files generated from the test.
|
||||
Also disable the MindData Profiling environment variables.
|
||||
"""
|
||||
# Delete MindData profiling files
|
||||
os.remove(PIPELINE_FILE)
|
||||
os.remove(CPU_UTIL_FILE)
|
||||
os.remove(DATASET_ITERATOR_FILE)
|
||||
|
||||
# Delete MindData profiling analyze summary files
|
||||
os.remove(SUMMARY_JSON_FILE)
|
||||
os.remove(SUMMARY_CSV_FILE)
|
||||
|
||||
# Disable MindData Profiling environment variables
|
||||
del os.environ['PROFILING_MODE']
|
||||
del os.environ['MINDDATA_PROFILING_DIR']
|
||||
del os.environ['DEVICE_ID']
|
||||
|
||||
|
||||
def test_analyze_basic():
|
||||
"""
|
||||
Test MindData profiling analyze summary files exist with basic pipeline.
|
||||
Also test basic content (subset of keys and values) from the returned summary result.
|
||||
"""
|
||||
# Confirm MindData Profiling files do not yet exist
|
||||
assert os.path.exists(PIPELINE_FILE) is False
|
||||
assert os.path.exists(CPU_UTIL_FILE) is False
|
||||
assert os.path.exists(DATASET_ITERATOR_FILE) is False
|
||||
# Confirm MindData Profiling analyze summary files do not yet exist
|
||||
assert os.path.exists(SUMMARY_JSON_FILE) is False
|
||||
assert os.path.exists(SUMMARY_CSV_FILE) is False
|
||||
|
||||
# Enable MindData Profiling environment variables
|
||||
os.environ['PROFILING_MODE'] = 'true'
|
||||
os.environ['MINDDATA_PROFILING_DIR'] = '.'
|
||||
os.environ['DEVICE_ID'] = '0'
|
||||
|
||||
def source1():
|
||||
for i in range(8000):
|
||||
yield (np.array([i]),)
|
||||
|
||||
try:
|
||||
# Create this basic and common linear pipeline
|
||||
# Generator -> Map -> Batch -> Repeat -> EpochCtrl
|
||||
|
||||
data1 = ds.GeneratorDataset(source1, ["col1"])
|
||||
type_cast_op = C.TypeCast(mstype.int32)
|
||||
data1 = data1.map(operations=type_cast_op, input_columns="col1")
|
||||
data1 = data1.batch(16)
|
||||
data1 = data1.repeat(2)
|
||||
|
||||
num_iter = 0
|
||||
# Note: If create_tuple_iterator() is called with num_epochs>1, then EpochCtrlOp is added to the pipeline
|
||||
for _ in data1.create_dict_iterator(num_epochs=2):
|
||||
num_iter = num_iter + 1
|
||||
|
||||
# Confirm number of rows returned
|
||||
assert num_iter == 1000
|
||||
|
||||
# Confirm MindData Profiling files are created
|
||||
assert os.path.exists(PIPELINE_FILE) is True
|
||||
assert os.path.exists(CPU_UTIL_FILE) is True
|
||||
assert os.path.exists(DATASET_ITERATOR_FILE) is True
|
||||
|
||||
# Call MindData Analyzer for generated MindData profiling files to generate MindData pipeline summary result
|
||||
# Note: MindData Analyzer returns the result in 3 formats:
|
||||
# 1. returned dictionary
|
||||
# 2. JSON file
|
||||
# 3. CSV file
|
||||
md_analyzer = MinddataProfilingAnalyzer(ANALYZE_FILE_PATH, "CPU", 0, ANALYZE_FILE_PATH)
|
||||
md_summary_dict = md_analyzer.analyze()
|
||||
|
||||
# Confirm MindData Profiling analyze summary files are created
|
||||
assert os.path.exists(SUMMARY_JSON_FILE) is True
|
||||
assert os.path.exists(SUMMARY_CSV_FILE) is True
|
||||
|
||||
# Build a list of the sorted returned keys
|
||||
summary_returned_keys = list(md_summary_dict.keys())
|
||||
summary_returned_keys.sort()
|
||||
|
||||
# 1. Confirm expected keys are in returned keys
|
||||
for k in EXPECTED_SUMMARY_KEYS:
|
||||
assert k in summary_returned_keys
|
||||
|
||||
# Read summary JSON file
|
||||
with open(SUMMARY_JSON_FILE) as f:
|
||||
summary_json_data = json.load(f)
|
||||
# Build a list of the sorted JSON keys
|
||||
summary_json_keys = list(summary_json_data.keys())
|
||||
summary_json_keys.sort()
|
||||
|
||||
# 2a. Confirm expected keys are in JSON file keys
|
||||
for k in EXPECTED_SUMMARY_KEYS:
|
||||
assert k in summary_json_keys
|
||||
|
||||
# 2b. Confirm returned dictionary keys are identical to JSON file keys
|
||||
np.testing.assert_array_equal(summary_returned_keys, summary_json_keys)
|
||||
|
||||
# Read summary CSV file
|
||||
summary_csv_data = get_csv_result(SUMMARY_CSV_FILE)
|
||||
# Build a list of the sorted CSV keys from the first column in the CSV file
|
||||
summary_csv_keys = []
|
||||
for x in summary_csv_data:
|
||||
summary_csv_keys.append(x[0])
|
||||
summary_csv_keys.sort()
|
||||
|
||||
# 3a. Confirm expected keys are in the first column of the CSV file
|
||||
for k in EXPECTED_SUMMARY_KEYS:
|
||||
assert k in summary_csv_keys
|
||||
|
||||
# 3b. Confirm returned dictionary keys are identical to CSV file first column keys
|
||||
np.testing.assert_array_equal(summary_returned_keys, summary_csv_keys)
|
||||
|
||||
# 4. Verify non-variant values or number of values in the tested pipeline for certain keys
|
||||
# of the returned dictionary
|
||||
# Note: Values of num_workers are not tested since default may change in the future
|
||||
# Note: Values related to queue metrics are not tested since they may vary on different execution environments
|
||||
assert md_summary_dict["pipeline_ops"] == ["EpochCtrl(id=0)", "Repeat(id=1)", "Batch(id=2)", "Map(id=3)",
|
||||
"Generator(id=4)"]
|
||||
assert md_summary_dict["op_names"] == ["EpochCtrl", "Repeat", "Batch", "Map", "Generator"]
|
||||
assert md_summary_dict["op_ids"] == [0, 1, 2, 3, 4]
|
||||
assert len(md_summary_dict["num_workers"]) == 5
|
||||
assert len(md_summary_dict["queue_average_size"]) == 5
|
||||
assert len(md_summary_dict["queue_utilization_pct"]) == 5
|
||||
assert len(md_summary_dict["queue_empty_freq_pct"]) == 5
|
||||
assert md_summary_dict["children_ids"] == [[1], [2], [3], [4], []]
|
||||
assert md_summary_dict["parent_id"] == [-1, 0, 1, 2, 3]
|
||||
assert len(md_summary_dict["avg_cpu_pct"]) == 5
|
||||
|
||||
# 5. Confirm exact list of keys
|
||||
# Note: This is a very strong comparison.
|
||||
# e.g. No bottleneck info is in the result.
|
||||
# e.g. No additional keys are in the returned summary result
|
||||
np.testing.assert_array_equal(summary_returned_keys, EXPECTED_SUMMARY_KEYS)
|
||||
|
||||
except Exception as error:
|
||||
delete_profiling_files()
|
||||
raise error
|
||||
|
||||
else:
|
||||
delete_profiling_files()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_analyze_basic()
|
Loading…
Reference in New Issue