forked from mindspore-Ecosystem/mindspore
!16729 mass & transformer & advanced_east 310 infer
From: @zhangxiaoxiao16 Reviewed-by: @c_34,@linqingke Signed-off-by: @c_34
This commit is contained in:
commit
38afecfddc
|
@ -26,6 +26,10 @@
|
||||||
- [Pre-training](#pre-training)
|
- [Pre-training](#pre-training)
|
||||||
- [Fine-tuning](#fine-tuning)
|
- [Fine-tuning](#fine-tuning)
|
||||||
- [Inference](#inference)
|
- [Inference](#inference)
|
||||||
|
- [Mindir Inference Process](#mindir-inference-process)
|
||||||
|
- [Export MindIR](#export-mindir)
|
||||||
|
- [Infer on Ascend310](#infer-on-ascend310)
|
||||||
|
- [result](#result)
|
||||||
- [Performance](#performance)
|
- [Performance](#performance)
|
||||||
- [Results](#results)
|
- [Results](#results)
|
||||||
- [Fine-Tuning on Text Summarization](#fine-tuning-on-text-summarization)
|
- [Fine-Tuning on Text Summarization](#fine-tuning-on-text-summarization)
|
||||||
|
@ -587,6 +591,33 @@ You can also run the shell script `run_gpu.sh` on gpu as followed:
|
||||||
sh run_gpu.sh -t i -n 1 -i 1 -c config/config.json -o {outputfile}
|
sh run_gpu.sh -t i -n 1 -i 1 -c config/config.json -o {outputfile}
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## Mindir Inference Process
|
||||||
|
|
||||||
|
### [Export MindIR](#contents)
|
||||||
|
|
||||||
|
```shell
|
||||||
|
python export.py --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [FILE_FORMAT]
|
||||||
|
```
|
||||||
|
|
||||||
|
The ckpt_file parameter is required,
|
||||||
|
`EXPORT_FORMAT` should be in ["AIR", "MINDIR"]
|
||||||
|
|
||||||
|
### Infer on Ascend310
|
||||||
|
|
||||||
|
Before performing inference, the mindir file must be exported by `export.py` script. We only provide an example of inference using MINDIR model.
|
||||||
|
|
||||||
|
```shell
|
||||||
|
# Ascend310 inference
|
||||||
|
bash run_infer_310.sh [MINDIR_PATH] [CONFIG] [VOCAB] [OUTPUT] [NEED_PREPROCESS] [DEVICE_ID]
|
||||||
|
```
|
||||||
|
|
||||||
|
- `NEED_PREPROCESS` means weather need preprocess or not, it's value is 'y' or 'n'.
|
||||||
|
- `DEVICE_ID` is optional, default value is 0.
|
||||||
|
|
||||||
|
### result
|
||||||
|
|
||||||
|
Inference result is saved in current path, you can find result in acc.log file.
|
||||||
|
|
||||||
# Performance
|
# Performance
|
||||||
|
|
||||||
## Results
|
## Results
|
||||||
|
|
|
@ -27,6 +27,10 @@
|
||||||
- [预训练](#预训练)
|
- [预训练](#预训练)
|
||||||
- [微调](#微调)
|
- [微调](#微调)
|
||||||
- [推理](#推理)
|
- [推理](#推理)
|
||||||
|
- [Mindir推理](#Mindir推理)
|
||||||
|
- [导出模型](#导出模型)
|
||||||
|
- [在Ascend310执行推理](#在Ascend310执行推理)
|
||||||
|
- [结果](#结果)
|
||||||
- [性能](#性能)
|
- [性能](#性能)
|
||||||
- [结果](#结果)
|
- [结果](#结果)
|
||||||
- [文本摘要微调](#文本摘要微调)
|
- [文本摘要微调](#文本摘要微调)
|
||||||
|
@ -586,6 +590,33 @@ sh run_ascend.sh -t i -n 1 -i 1 -c config/config.json -o {outputfile}
|
||||||
sh run_gpu.sh -t i -n 1 -i 1 -c config/config.json -o {outputfile}
|
sh run_gpu.sh -t i -n 1 -i 1 -c config/config.json -o {outputfile}
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## Mindir推理
|
||||||
|
|
||||||
|
### [导出模型](#contents)
|
||||||
|
|
||||||
|
```shell
|
||||||
|
python export.py --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [FILE_FORMAT]
|
||||||
|
```
|
||||||
|
|
||||||
|
参数ckpt_file为必填项,
|
||||||
|
`EXPORT_FORMAT` 必须在 ["AIR", "MINDIR"]中选择。
|
||||||
|
|
||||||
|
### 在Ascend310执行推理
|
||||||
|
|
||||||
|
在执行推理前,mindir文件必须通过`export.py`脚本导出。以下展示了使用minir模型执行推理的示例。
|
||||||
|
|
||||||
|
```shell
|
||||||
|
# Ascend310推理
|
||||||
|
bash run_infer_310.sh [MINDIR_PATH] [CONFIG] [VOCAB] [OUTPUT] [NEED_PREPROCESS] [DEVICE_ID]
|
||||||
|
```
|
||||||
|
|
||||||
|
- `NEED_PREPROCESS` 表示数据是否需要预处理,取值范围为:'y' 或者 'n'。
|
||||||
|
- `DEVICE_ID` 可选,默认值为0。
|
||||||
|
|
||||||
|
### 结果
|
||||||
|
|
||||||
|
推理结果保存在脚本执行的当前路径,精度计算结果可以在acc.log中看到。
|
||||||
|
|
||||||
# 性能
|
# 性能
|
||||||
|
|
||||||
## 结果
|
## 结果
|
||||||
|
|
|
@ -0,0 +1,14 @@
|
||||||
|
cmake_minimum_required(VERSION 3.14.1)
|
||||||
|
project(Ascend310Infer)
|
||||||
|
add_compile_definitions(_GLIBCXX_USE_CXX11_ABI=0)
|
||||||
|
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O0 -g -std=c++17 -Werror -Wall -fPIE -Wl,--allow-shlib-undefined")
|
||||||
|
set(PROJECT_SRC_ROOT ${CMAKE_CURRENT_LIST_DIR}/)
|
||||||
|
option(MINDSPORE_PATH "mindspore install path" "")
|
||||||
|
include_directories(${MINDSPORE_PATH})
|
||||||
|
include_directories(${MINDSPORE_PATH}/include)
|
||||||
|
include_directories(${PROJECT_SRC_ROOT})
|
||||||
|
find_library(MS_LIB libmindspore.so ${MINDSPORE_PATH}/lib)
|
||||||
|
file(GLOB_RECURSE MD_LIB ${MINDSPORE_PATH}/_c_dataengine*)
|
||||||
|
|
||||||
|
add_executable(main src/main.cc src/utils.cc)
|
||||||
|
target_link_libraries(main ${MS_LIB} ${MD_LIB} gflags)
|
|
@ -0,0 +1,29 @@
|
||||||
|
#!/bin/bash
|
||||||
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
if [ -d out ]; then
|
||||||
|
rm -rf out
|
||||||
|
fi
|
||||||
|
|
||||||
|
mkdir out
|
||||||
|
cd out || exit
|
||||||
|
|
||||||
|
if [ -f "Makefile" ]; then
|
||||||
|
make clean
|
||||||
|
fi
|
||||||
|
|
||||||
|
cmake .. \
|
||||||
|
-DMINDSPORE_PATH="`pip3.7 show mindspore-ascend | grep Location | awk '{print $2"/mindspore"}' | xargs realpath`"
|
||||||
|
make
|
|
@ -0,0 +1,32 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef MINDSPORE_INFERENCE_UTILS_H_
|
||||||
|
#define MINDSPORE_INFERENCE_UTILS_H_
|
||||||
|
|
||||||
|
#include <sys/stat.h>
|
||||||
|
#include <dirent.h>
|
||||||
|
#include <vector>
|
||||||
|
#include <string>
|
||||||
|
#include <memory>
|
||||||
|
#include "include/api/types.h"
|
||||||
|
|
||||||
|
std::vector<std::string> GetAllFiles(std::string_view dirName);
|
||||||
|
DIR *OpenDir(std::string_view dirName);
|
||||||
|
std::string RealPath(std::string_view path);
|
||||||
|
mindspore::MSTensor ReadFileToTensor(const std::string &file);
|
||||||
|
int WriteResult(const std::string& imageFile, const std::vector<mindspore::MSTensor> &outputs);
|
||||||
|
#endif
|
|
@ -0,0 +1,137 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
#include <sys/time.h>
|
||||||
|
#include <gflags/gflags.h>
|
||||||
|
#include <dirent.h>
|
||||||
|
#include <iostream>
|
||||||
|
#include <string>
|
||||||
|
#include <algorithm>
|
||||||
|
#include <iosfwd>
|
||||||
|
#include <vector>
|
||||||
|
#include <fstream>
|
||||||
|
#include <sstream>
|
||||||
|
|
||||||
|
#include "include/api/model.h"
|
||||||
|
#include "include/api/context.h"
|
||||||
|
#include "include/api/types.h"
|
||||||
|
#include "include/api/serialization.h"
|
||||||
|
#include "include/dataset/execute.h"
|
||||||
|
#include "include/dataset/vision.h"
|
||||||
|
#include "inc/utils.h"
|
||||||
|
|
||||||
|
using mindspore::Context;
|
||||||
|
using mindspore::Serialization;
|
||||||
|
using mindspore::Model;
|
||||||
|
using mindspore::Status;
|
||||||
|
using mindspore::MSTensor;
|
||||||
|
using mindspore::dataset::Execute;
|
||||||
|
using mindspore::ModelType;
|
||||||
|
using mindspore::GraphCell;
|
||||||
|
using mindspore::kSuccess;
|
||||||
|
|
||||||
|
DEFINE_string(mindir_path, "", "mindir path");
|
||||||
|
DEFINE_string(input0_path, ".", "input0 path");
|
||||||
|
DEFINE_string(input1_path, ".", "input1 path");
|
||||||
|
DEFINE_int32(device_id, 0, "device id");
|
||||||
|
|
||||||
|
int main(int argc, char **argv) {
|
||||||
|
gflags::ParseCommandLineFlags(&argc, &argv, true);
|
||||||
|
if (RealPath(FLAGS_mindir_path).empty()) {
|
||||||
|
std::cout << "Invalid mindir" << std::endl;
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
auto context = std::make_shared<Context>();
|
||||||
|
auto ascend310 = std::make_shared<mindspore::Ascend310DeviceInfo>();
|
||||||
|
ascend310->SetDeviceID(FLAGS_device_id);
|
||||||
|
ascend310->SetPrecisionMode("allow_fp32_to_fp16");
|
||||||
|
ascend310->SetOpSelectImplMode("high_precision");
|
||||||
|
context->MutableDeviceInfo().push_back(ascend310);
|
||||||
|
mindspore::Graph graph;
|
||||||
|
Serialization::Load(FLAGS_mindir_path, ModelType::kMindIR, &graph);
|
||||||
|
|
||||||
|
Model model;
|
||||||
|
Status ret = model.Build(GraphCell(graph), context);
|
||||||
|
if (ret != kSuccess) {
|
||||||
|
std::cout << "ERROR: Build failed." << std::endl;
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<MSTensor> model_inputs = model.GetInputs();
|
||||||
|
if (model_inputs.empty()) {
|
||||||
|
std::cout << "Invalid model, inputs is empty." << std::endl;
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
auto input0_files = GetAllFiles(FLAGS_input0_path);
|
||||||
|
auto input1_files = GetAllFiles(FLAGS_input1_path);
|
||||||
|
|
||||||
|
if (input0_files.empty() || input1_files.empty()) {
|
||||||
|
std::cout << "ERROR: input data empty." << std::endl;
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::map<double, double> costTime_map;
|
||||||
|
size_t size = input0_files.size();
|
||||||
|
|
||||||
|
for (size_t i = 0; i < size; ++i) {
|
||||||
|
struct timeval start = {0};
|
||||||
|
struct timeval end = {0};
|
||||||
|
double startTimeMs;
|
||||||
|
double endTimeMs;
|
||||||
|
std::vector<MSTensor> inputs;
|
||||||
|
std::vector<MSTensor> outputs;
|
||||||
|
std::cout << "Start predict input files:" << input0_files[i] << std::endl;
|
||||||
|
|
||||||
|
auto input0 = ReadFileToTensor(input0_files[i]);
|
||||||
|
auto input1 = ReadFileToTensor(input1_files[i]);
|
||||||
|
inputs.emplace_back(model_inputs[0].Name(), model_inputs[0].DataType(), model_inputs[0].Shape(),
|
||||||
|
input0.Data().get(), input0.DataSize());
|
||||||
|
inputs.emplace_back(model_inputs[1].Name(), model_inputs[1].DataType(), model_inputs[1].Shape(),
|
||||||
|
input1.Data().get(), input1.DataSize());
|
||||||
|
|
||||||
|
gettimeofday(&start, nullptr);
|
||||||
|
ret = model.Predict(inputs, &outputs);
|
||||||
|
gettimeofday(&end, nullptr);
|
||||||
|
if (ret != kSuccess) {
|
||||||
|
std::cout << "Predict " << input0_files[i] << " failed." << std::endl;
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
startTimeMs = (1.0 * start.tv_sec * 1000000 + start.tv_usec) / 1000;
|
||||||
|
endTimeMs = (1.0 * end.tv_sec * 1000000 + end.tv_usec) / 1000;
|
||||||
|
costTime_map.insert(std::pair<double, double>(startTimeMs, endTimeMs));
|
||||||
|
WriteResult(input0_files[i], outputs);
|
||||||
|
}
|
||||||
|
double average = 0.0;
|
||||||
|
int inferCount = 0;
|
||||||
|
|
||||||
|
for (auto iter = costTime_map.begin(); iter != costTime_map.end(); iter++) {
|
||||||
|
double diff = 0.0;
|
||||||
|
diff = iter->second - iter->first;
|
||||||
|
average += diff;
|
||||||
|
inferCount++;
|
||||||
|
}
|
||||||
|
average = average / inferCount;
|
||||||
|
std::stringstream timeCost;
|
||||||
|
timeCost << "NN inference cost average time: "<< average << " ms of infer_count " << inferCount << std::endl;
|
||||||
|
std::cout << "NN inference cost average time: "<< average << "ms of infer_count " << inferCount << std::endl;
|
||||||
|
std::string fileName = "./time_Result" + std::string("/test_perform_static.txt");
|
||||||
|
std::ofstream fileStream(fileName.c_str(), std::ios::trunc);
|
||||||
|
fileStream << timeCost.str();
|
||||||
|
fileStream.close();
|
||||||
|
costTime_map.clear();
|
||||||
|
return 0;
|
||||||
|
}
|
|
@ -0,0 +1,129 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <fstream>
|
||||||
|
#include <algorithm>
|
||||||
|
#include <iostream>
|
||||||
|
#include "inc/utils.h"
|
||||||
|
|
||||||
|
using mindspore::MSTensor;
|
||||||
|
using mindspore::DataType;
|
||||||
|
|
||||||
|
std::vector<std::string> GetAllFiles(std::string_view dirName) {
|
||||||
|
struct dirent *filename;
|
||||||
|
DIR *dir = OpenDir(dirName);
|
||||||
|
if (dir == nullptr) {
|
||||||
|
return {};
|
||||||
|
}
|
||||||
|
std::vector<std::string> res;
|
||||||
|
while ((filename = readdir(dir)) != nullptr) {
|
||||||
|
std::string dName = std::string(filename->d_name);
|
||||||
|
if (dName == "." || dName == ".." || filename->d_type != DT_REG) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
res.emplace_back(std::string(dirName) + "/" + filename->d_name);
|
||||||
|
}
|
||||||
|
std::sort(res.begin(), res.end());
|
||||||
|
for (auto &f : res) {
|
||||||
|
std::cout << "image file: " << f << std::endl;
|
||||||
|
}
|
||||||
|
return res;
|
||||||
|
}
|
||||||
|
|
||||||
|
int WriteResult(const std::string& imageFile, const std::vector<MSTensor> &outputs) {
|
||||||
|
std::string homePath = "./result_Files";
|
||||||
|
for (size_t i = 0; i < outputs.size(); ++i) {
|
||||||
|
size_t outputSize;
|
||||||
|
std::shared_ptr<const void> netOutput;
|
||||||
|
netOutput = outputs[i].Data();
|
||||||
|
outputSize = outputs[i].DataSize();
|
||||||
|
int pos = imageFile.rfind('/');
|
||||||
|
std::string fileName(imageFile, pos + 1);
|
||||||
|
fileName.replace(fileName.find('.'), fileName.size() - fileName.find('.'), '_' + std::to_string(i) + ".bin");
|
||||||
|
std::string outFileName = homePath + "/" + fileName;
|
||||||
|
FILE * outputFile = fopen(outFileName.c_str(), "wb");
|
||||||
|
fwrite(netOutput.get(), outputSize, sizeof(char), outputFile);
|
||||||
|
fclose(outputFile);
|
||||||
|
outputFile = nullptr;
|
||||||
|
}
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
mindspore::MSTensor ReadFileToTensor(const std::string &file) {
|
||||||
|
if (file.empty()) {
|
||||||
|
std::cout << "Pointer file is nullptr" << std::endl;
|
||||||
|
return mindspore::MSTensor();
|
||||||
|
}
|
||||||
|
|
||||||
|
std::ifstream ifs(file);
|
||||||
|
if (!ifs.good()) {
|
||||||
|
std::cout << "File: " << file << " is not exist" << std::endl;
|
||||||
|
return mindspore::MSTensor();
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!ifs.is_open()) {
|
||||||
|
std::cout << "File: " << file << "open failed" << std::endl;
|
||||||
|
return mindspore::MSTensor();
|
||||||
|
}
|
||||||
|
|
||||||
|
ifs.seekg(0, std::ios::end);
|
||||||
|
size_t size = ifs.tellg();
|
||||||
|
mindspore::MSTensor buffer(file, mindspore::DataType::kNumberTypeUInt8, {static_cast<int64_t>(size)}, nullptr, size);
|
||||||
|
|
||||||
|
ifs.seekg(0, std::ios::beg);
|
||||||
|
ifs.read(reinterpret_cast<char *>(buffer.MutableData()), size);
|
||||||
|
ifs.close();
|
||||||
|
|
||||||
|
return buffer;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
DIR *OpenDir(std::string_view dirName) {
|
||||||
|
if (dirName.empty()) {
|
||||||
|
std::cout << " dirName is null ! " << std::endl;
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
std::string realPath = RealPath(dirName);
|
||||||
|
struct stat s;
|
||||||
|
lstat(realPath.c_str(), &s);
|
||||||
|
if (!S_ISDIR(s.st_mode)) {
|
||||||
|
std::cout << "dirName is not a valid directory !" << std::endl;
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
DIR *dir;
|
||||||
|
dir = opendir(realPath.c_str());
|
||||||
|
if (dir == nullptr) {
|
||||||
|
std::cout << "Can not open dir " << dirName << std::endl;
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
std::cout << "Successfully opened the dir " << dirName << std::endl;
|
||||||
|
return dir;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string RealPath(std::string_view path) {
|
||||||
|
char realPathMem[PATH_MAX] = {0};
|
||||||
|
char *realPathRet = nullptr;
|
||||||
|
realPathRet = realpath(path.data(), realPathMem);
|
||||||
|
|
||||||
|
if (realPathRet == nullptr) {
|
||||||
|
std::cout << "File: " << path << " is not exist.";
|
||||||
|
return "";
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string realPath(realPathMem);
|
||||||
|
std::cout << path << " realpath is: " << realPath << std::endl;
|
||||||
|
return realPath;
|
||||||
|
}
|
|
@ -0,0 +1,99 @@
|
||||||
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""Evaluation api."""
|
||||||
|
import os
|
||||||
|
import argparse
|
||||||
|
import pickle
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
from config import TransformerConfig
|
||||||
|
from src.utils import Dictionary
|
||||||
|
from src.utils import get_score
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(description='postprocess.')
|
||||||
|
parser.add_argument("--config", type=str, required=True,
|
||||||
|
help="Model config json file path.")
|
||||||
|
parser.add_argument("--vocab", type=str, required=True,
|
||||||
|
help="Vocabulary to use.")
|
||||||
|
parser.add_argument("--output", type=str, required=True,
|
||||||
|
help="Result file path.")
|
||||||
|
parser.add_argument("--metric", type=str, default='rouge',
|
||||||
|
help='Set eval method.')
|
||||||
|
parser.add_argument("--source_id_folder", type=str, default='',
|
||||||
|
help="source_eos_ids folder path.")
|
||||||
|
parser.add_argument("--target_id_folder", type=str, default='',
|
||||||
|
help="target_eos_ids folder path.")
|
||||||
|
parser.add_argument("--result_dir", type=str, default='./result_Files',
|
||||||
|
help="result dir path.")
|
||||||
|
args, _ = parser.parse_known_args()
|
||||||
|
|
||||||
|
def read_from_file(config):
|
||||||
|
'''
|
||||||
|
calculate accuraty.
|
||||||
|
'''
|
||||||
|
predictions = []
|
||||||
|
probs = []
|
||||||
|
source_sentences = []
|
||||||
|
target_sentences = []
|
||||||
|
file_num = len(os.listdir(args.source_id_folder))
|
||||||
|
for i in range(file_num):
|
||||||
|
f_name = "gigaword_bs_" + str(config.batch_size) + "_" + str(i)
|
||||||
|
source_ids = np.fromfile(os.path.join(args.source_id_folder, f_name + ".bin"), np.int32)
|
||||||
|
source_ids = source_ids.reshape(1, config.max_decode_length)
|
||||||
|
target_ids = np.fromfile(os.path.join(args.target_id_folder, f_name + ".bin"), np.int32)
|
||||||
|
target_ids = target_ids.reshape(1, config.max_decode_length)
|
||||||
|
predicted_ids = np.fromfile(os.path.join(args.result_dir, f_name + "_0.bin"), np.int32)
|
||||||
|
predicted_ids = predicted_ids.reshape(1, config.max_decode_length + 1)
|
||||||
|
entire_probs = np.fromfile(os.path.join(args.result_dir, f_name + "_1.bin"), np.float32)
|
||||||
|
entire_probs = entire_probs.reshape(1, config.beam_width, config.max_decode_length + 1)
|
||||||
|
|
||||||
|
source_sentences.append(source_ids)
|
||||||
|
target_sentences.append(target_ids)
|
||||||
|
predictions.append(predicted_ids)
|
||||||
|
probs.append(entire_probs)
|
||||||
|
|
||||||
|
output = []
|
||||||
|
for inputs, ref, batch_out, batch_probs in zip(source_sentences,
|
||||||
|
target_sentences,
|
||||||
|
predictions,
|
||||||
|
probs):
|
||||||
|
for i in range(config.batch_size):
|
||||||
|
if batch_out.ndim == 3:
|
||||||
|
batch_out = batch_out[:, 0]
|
||||||
|
|
||||||
|
example = {
|
||||||
|
"source": inputs[i].tolist(),
|
||||||
|
"target": ref[i].tolist(),
|
||||||
|
"prediction": batch_out[i].tolist(),
|
||||||
|
"prediction_prob": batch_probs[i].tolist()
|
||||||
|
}
|
||||||
|
output.append(example)
|
||||||
|
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
conf = TransformerConfig.from_json_file(args.config)
|
||||||
|
result = read_from_file(conf)
|
||||||
|
vocab = Dictionary.load_from_persisted_dict(args.vocab)
|
||||||
|
|
||||||
|
with open(args.output, "wb") as f:
|
||||||
|
pickle.dump(result, f, 1)
|
||||||
|
|
||||||
|
# get score by given metric
|
||||||
|
score = get_score(result, vocab, metric=args.metric)
|
||||||
|
print(score)
|
|
@ -0,0 +1,63 @@
|
||||||
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""Evaluation api."""
|
||||||
|
import os
|
||||||
|
import argparse
|
||||||
|
from config import TransformerConfig
|
||||||
|
from src.dataset import load_dataset
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(description='preprocess.')
|
||||||
|
parser.add_argument("--config", type=str, required=True,
|
||||||
|
help="Model config json file path.")
|
||||||
|
parser.add_argument("--result_path", type=str, default='./preprocess_Result/',
|
||||||
|
help="preprocess result path.")
|
||||||
|
args, _ = parser.parse_known_args()
|
||||||
|
|
||||||
|
def generate_bin():
|
||||||
|
'''
|
||||||
|
Generate bin files.
|
||||||
|
'''
|
||||||
|
config = TransformerConfig.from_json_file(args.config)
|
||||||
|
ds = load_dataset(data_files=config.test_dataset,
|
||||||
|
batch_size=config.batch_size,
|
||||||
|
epoch_count=1,
|
||||||
|
sink_mode=config.dataset_sink_mode,
|
||||||
|
shuffle=False) if config.test_dataset else None
|
||||||
|
cur_dir = args.result_path
|
||||||
|
source_eos_ids_path = os.path.join(cur_dir, "00_source_eos_ids")
|
||||||
|
source_eos_mask_path = os.path.join(cur_dir, "01_source_eos_mask")
|
||||||
|
target_eos_ids_path = os.path.join(cur_dir, " target_eos_ids")
|
||||||
|
|
||||||
|
if not os.path.isdir(source_eos_ids_path):
|
||||||
|
os.makedirs(source_eos_ids_path)
|
||||||
|
if not os.path.isdir(source_eos_mask_path):
|
||||||
|
os.makedirs(source_eos_mask_path)
|
||||||
|
if not os.path.isdir(target_eos_ids_path):
|
||||||
|
os.makedirs(target_eos_ids_path)
|
||||||
|
for i, data in enumerate(ds.create_dict_iterator(output_numpy=True, num_epochs=1)):
|
||||||
|
file_name = "gigaword_bs_" + str(config.batch_size) + "_" + str(i) + ".bin"
|
||||||
|
source_eos_ids = data['source_eos_ids']
|
||||||
|
source_eos_ids.tofile(os.path.join(source_eos_ids_path, file_name))
|
||||||
|
|
||||||
|
source_eos_mask = data['source_eos_mask']
|
||||||
|
source_eos_mask.tofile(os.path.join(source_eos_mask_path, file_name))
|
||||||
|
|
||||||
|
target_eos_ids = data['target_eos_ids']
|
||||||
|
target_eos_ids.tofile(os.path.join(target_eos_ids_path, file_name))
|
||||||
|
|
||||||
|
print("="*20, "export bin files finished", "="*20)
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
generate_bin()
|
|
@ -0,0 +1,126 @@
|
||||||
|
#!/bin/bash
|
||||||
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
if [[ $# -lt 5 || $# -gt 6 ]]; then
|
||||||
|
echo "Usage: bash run_infer_310.sh [MINDIR_PATH] [CONFIG] [VOCAB] [OUTPUT] [NEED_PREPROCESS] [DEVICE_ID]
|
||||||
|
NEED_PREPROCESS means weather need preprocess or not, it's value is 'y' or 'n'.
|
||||||
|
DEVICE_ID is optional, it can be set by environment variable device_id, otherwise the value is zero"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
get_real_path(){
|
||||||
|
if [ "${1:0:1}" == "/" ]; then
|
||||||
|
echo "$1"
|
||||||
|
else
|
||||||
|
echo "$(realpath -m $PWD/$1)"
|
||||||
|
fi
|
||||||
|
}
|
||||||
|
model=$(get_real_path $1)
|
||||||
|
config=$(get_real_path $2)
|
||||||
|
vocab=$(get_real_path $3)
|
||||||
|
output=$(get_real_path $4)
|
||||||
|
|
||||||
|
if [ "$5" == "y" ] || [ "$5" == "n" ];then
|
||||||
|
need_preprocess=$5
|
||||||
|
else
|
||||||
|
echo "weather need preprocess or not, it's value must be in [y, n]"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
device_id=0
|
||||||
|
if [ $# == 6 ]; then
|
||||||
|
device_id=$6
|
||||||
|
fi
|
||||||
|
|
||||||
|
echo "mindir name: "$model
|
||||||
|
echo "config: "$config
|
||||||
|
echo "vocab: "$vocab
|
||||||
|
echo "output: "$output
|
||||||
|
echo "need preprocess: "$need_preprocess
|
||||||
|
echo "device id: "$device_id
|
||||||
|
|
||||||
|
export ASCEND_HOME=/usr/local/Ascend/
|
||||||
|
if [ -d ${ASCEND_HOME}/ascend-toolkit ]; then
|
||||||
|
export PATH=$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/atc/bin:$PATH
|
||||||
|
export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/ascend-toolkit/latest/atc/lib64:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
|
||||||
|
export TBE_IMPL_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp/op_impl/built-in/ai_core/tbe
|
||||||
|
export PYTHONPATH=${TBE_IMPL_PATH}:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/python/site-packages:$PYTHONPATH
|
||||||
|
export ASCEND_OPP_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp
|
||||||
|
else
|
||||||
|
export PATH=$ASCEND_HOME/atc/ccec_compiler/bin:$ASCEND_HOME/atc/bin:$PATH
|
||||||
|
export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/atc/lib64:$ASCEND_HOME/acllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
|
||||||
|
export PYTHONPATH=$ASCEND_HOME/atc/python/site-packages:$PYTHONPATH
|
||||||
|
export ASCEND_OPP_PATH=$ASCEND_HOME/opp
|
||||||
|
fi
|
||||||
|
|
||||||
|
function preprocess_data()
|
||||||
|
{
|
||||||
|
if [ -d preprocess_Result ]; then
|
||||||
|
rm -rf ./preprocess_Result
|
||||||
|
fi
|
||||||
|
mkdir preprocess_Result
|
||||||
|
python3.7 ../preprocess.py --config=$config --result_path=./preprocess_Result/
|
||||||
|
}
|
||||||
|
|
||||||
|
function compile_app()
|
||||||
|
{
|
||||||
|
cd ../ascend310_infer || exit
|
||||||
|
bash build.sh &> build.log
|
||||||
|
}
|
||||||
|
|
||||||
|
function infer()
|
||||||
|
{
|
||||||
|
cd - || exit
|
||||||
|
if [ -d result_Files ]; then
|
||||||
|
rm -rf ./result_Files
|
||||||
|
fi
|
||||||
|
if [ -d time_Result ]; then
|
||||||
|
rm -rf ./time_Result
|
||||||
|
fi
|
||||||
|
mkdir result_Files
|
||||||
|
mkdir time_Result
|
||||||
|
|
||||||
|
../ascend310_infer/out/main --mindir_path=$model --input0_path=./preprocess_Result/00_source_eos_ids --input1_path=./preprocess_Result/01_source_eos_mask --device_id=$device_id &> infer.log
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
function cal_acc()
|
||||||
|
{
|
||||||
|
python3.7 ../postprocess.py --config=$config --vocab=$vocab --output=$output --source_id_folder=./preprocess_Result/00_source_eos_ids --target_id_folder=./preprocess_Result/01_source_eos_mask --result_dir=./result_Files &> acc.log
|
||||||
|
}
|
||||||
|
|
||||||
|
if [ $need_preprocess == "y" ]; then
|
||||||
|
preprocess_data
|
||||||
|
if [ $? -ne 0 ]; then
|
||||||
|
echo "preprocess dataset failed"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
compile_app
|
||||||
|
if [ $? -ne 0 ]; then
|
||||||
|
echo "compile app code failed"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
infer
|
||||||
|
if [ $? -ne 0 ]; then
|
||||||
|
echo " execute inference failed"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
cal_acc
|
||||||
|
if [ $? -ne 0 ]; then
|
||||||
|
echo "calculate accuracy failed"
|
||||||
|
exit 1
|
||||||
|
fi
|
|
@ -13,6 +13,10 @@
|
||||||
- [Dataset Preparation](#dataset-preparation)
|
- [Dataset Preparation](#dataset-preparation)
|
||||||
- [Training Process](#training-process)
|
- [Training Process](#training-process)
|
||||||
- [Evaluation Process](#evaluation-process)
|
- [Evaluation Process](#evaluation-process)
|
||||||
|
- [Inference Process](#inference-process)
|
||||||
|
- [Export MindIR](#export-mindir)
|
||||||
|
- [Infer on Ascend310](#infer-on-ascend310)
|
||||||
|
- [result](#result)
|
||||||
- [Model Description](#model-description)
|
- [Model Description](#model-description)
|
||||||
- [Performance](#performance)
|
- [Performance](#performance)
|
||||||
- [Training Performance](#training-performance)
|
- [Training Performance](#training-performance)
|
||||||
|
@ -232,6 +236,33 @@ Parameters for learning rate:
|
||||||
perl multi-bleu.perl REF_DATA.forbleu < EVAL_OUTPUT.forbleu
|
perl multi-bleu.perl REF_DATA.forbleu < EVAL_OUTPUT.forbleu
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## Inference Process
|
||||||
|
|
||||||
|
### [Export MindIR](#contents)
|
||||||
|
|
||||||
|
```shell
|
||||||
|
python export.py --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [FILE_FORMAT]
|
||||||
|
```
|
||||||
|
|
||||||
|
The ckpt_file parameter is required,
|
||||||
|
`EXPORT_FORMAT` should be in ["AIR", "MINDIR"]
|
||||||
|
|
||||||
|
### Infer on Ascend310
|
||||||
|
|
||||||
|
Before performing inference, the mindir file must be exported by `export.py` script. We only provide an example of inference using MINDIR model.
|
||||||
|
|
||||||
|
```shell
|
||||||
|
# Ascend310 inference
|
||||||
|
bash run_infer_310.sh [MINDIR_PATH] [NEED_PREPROCESS] [DEVICE_ID]
|
||||||
|
```
|
||||||
|
|
||||||
|
- `NEED_PREPROCESS` means weather need preprocess or not, it's value is 'y' or 'n'.
|
||||||
|
- `DEVICE_ID` is optional, default value is 0.
|
||||||
|
|
||||||
|
### result
|
||||||
|
|
||||||
|
Inference result is saved in current path, 'output_file' will generate in path specified, For details about how to get BLEU score, see [Evaluation Process](#evaluation-process).
|
||||||
|
|
||||||
## [Model Description](#contents)
|
## [Model Description](#contents)
|
||||||
|
|
||||||
### [Performance](#contents)
|
### [Performance](#contents)
|
||||||
|
|
|
@ -19,6 +19,10 @@
|
||||||
- [准备数据集](#准备数据集)
|
- [准备数据集](#准备数据集)
|
||||||
- [训练过程](#训练过程)
|
- [训练过程](#训练过程)
|
||||||
- [评估过程](#评估过程)
|
- [评估过程](#评估过程)
|
||||||
|
- [推理过程](#推理过程)
|
||||||
|
- [导出MindIR](#导出mindir)
|
||||||
|
- [在Ascend310执行推理](#在ascend310执行推理)
|
||||||
|
- [结果](#结果)
|
||||||
- [模型描述](#模型描述)
|
- [模型描述](#模型描述)
|
||||||
- [性能](#性能)
|
- [性能](#性能)
|
||||||
- [训练性能](#训练性能)
|
- [训练性能](#训练性能)
|
||||||
|
@ -239,6 +243,33 @@ Parameters for learning rate:
|
||||||
perl multi-bleu.perl REF_DATA.forbleu < EVAL_OUTPUT.forbleu
|
perl multi-bleu.perl REF_DATA.forbleu < EVAL_OUTPUT.forbleu
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## 推理过程
|
||||||
|
|
||||||
|
### [导出MindIR](#contents)
|
||||||
|
|
||||||
|
```shell
|
||||||
|
python export.py --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [FILE_FORMAT]
|
||||||
|
```
|
||||||
|
|
||||||
|
参数ckpt_file为必填项,
|
||||||
|
`EXPORT_FORMAT` 必须在 ["AIR", "MINDIR"]中选择。
|
||||||
|
|
||||||
|
### 在Ascend310执行推理
|
||||||
|
|
||||||
|
在执行推理前,mindir文件必须通过`export.py`脚本导出。以下展示了使用minir模型执行推理的示例。
|
||||||
|
|
||||||
|
```shell
|
||||||
|
# Ascend310 推理
|
||||||
|
bash run_infer_310.sh [MINDIR_PATH] [NEED_PREPROCESS] [DEVICE_ID]
|
||||||
|
```
|
||||||
|
|
||||||
|
- `NEED_PREPROCESS` 表示是否需要对数据集进行预处理, 取值为'y' 或者 'n'。
|
||||||
|
- `DEVICE_ID` 可选,默认值为0。
|
||||||
|
|
||||||
|
### 结果
|
||||||
|
|
||||||
|
推理结果保存在脚本执行的当前路径,'output_file' 将会生成在指定路径,生成BLEU分数的过程请参照[评估过程](#评估过程).
|
||||||
|
|
||||||
## 模型描述
|
## 模型描述
|
||||||
|
|
||||||
### 性能
|
### 性能
|
||||||
|
|
|
@ -0,0 +1,14 @@
|
||||||
|
cmake_minimum_required(VERSION 3.14.1)
|
||||||
|
project(Ascend310Infer)
|
||||||
|
add_compile_definitions(_GLIBCXX_USE_CXX11_ABI=0)
|
||||||
|
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O0 -g -std=c++17 -Werror -Wall -fPIE -Wl,--allow-shlib-undefined")
|
||||||
|
set(PROJECT_SRC_ROOT ${CMAKE_CURRENT_LIST_DIR}/)
|
||||||
|
option(MINDSPORE_PATH "mindspore install path" "")
|
||||||
|
include_directories(${MINDSPORE_PATH})
|
||||||
|
include_directories(${MINDSPORE_PATH}/include)
|
||||||
|
include_directories(${PROJECT_SRC_ROOT})
|
||||||
|
find_library(MS_LIB libmindspore.so ${MINDSPORE_PATH}/lib)
|
||||||
|
file(GLOB_RECURSE MD_LIB ${MINDSPORE_PATH}/_c_dataengine*)
|
||||||
|
|
||||||
|
add_executable(main src/main.cc src/utils.cc)
|
||||||
|
target_link_libraries(main ${MS_LIB} ${MD_LIB} gflags)
|
|
@ -0,0 +1,29 @@
|
||||||
|
#!/bin/bash
|
||||||
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
if [ -d out ]; then
|
||||||
|
rm -rf out
|
||||||
|
fi
|
||||||
|
|
||||||
|
mkdir out
|
||||||
|
cd out || exit
|
||||||
|
|
||||||
|
if [ -f "Makefile" ]; then
|
||||||
|
make clean
|
||||||
|
fi
|
||||||
|
|
||||||
|
cmake .. \
|
||||||
|
-DMINDSPORE_PATH="`pip3.7 show mindspore-ascend | grep Location | awk '{print $2"/mindspore"}' | xargs realpath`"
|
||||||
|
make
|
|
@ -0,0 +1,32 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef MINDSPORE_INFERENCE_UTILS_H_
|
||||||
|
#define MINDSPORE_INFERENCE_UTILS_H_
|
||||||
|
|
||||||
|
#include <sys/stat.h>
|
||||||
|
#include <dirent.h>
|
||||||
|
#include <vector>
|
||||||
|
#include <string>
|
||||||
|
#include <memory>
|
||||||
|
#include "include/api/types.h"
|
||||||
|
|
||||||
|
std::vector<std::string> GetAllFiles(std::string_view dirName);
|
||||||
|
DIR *OpenDir(std::string_view dirName);
|
||||||
|
std::string RealPath(std::string_view path);
|
||||||
|
mindspore::MSTensor ReadFileToTensor(const std::string &file);
|
||||||
|
int WriteResult(const std::string& imageFile, const std::vector<mindspore::MSTensor> &outputs);
|
||||||
|
#endif
|
|
@ -0,0 +1,137 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
#include <sys/time.h>
|
||||||
|
#include <gflags/gflags.h>
|
||||||
|
#include <dirent.h>
|
||||||
|
#include <iostream>
|
||||||
|
#include <string>
|
||||||
|
#include <algorithm>
|
||||||
|
#include <iosfwd>
|
||||||
|
#include <vector>
|
||||||
|
#include <fstream>
|
||||||
|
#include <sstream>
|
||||||
|
|
||||||
|
#include "include/api/model.h"
|
||||||
|
#include "include/api/context.h"
|
||||||
|
#include "include/api/types.h"
|
||||||
|
#include "include/api/serialization.h"
|
||||||
|
#include "include/dataset/execute.h"
|
||||||
|
#include "include/dataset/vision.h"
|
||||||
|
#include "inc/utils.h"
|
||||||
|
|
||||||
|
using mindspore::Context;
|
||||||
|
using mindspore::Serialization;
|
||||||
|
using mindspore::Model;
|
||||||
|
using mindspore::Status;
|
||||||
|
using mindspore::MSTensor;
|
||||||
|
using mindspore::dataset::Execute;
|
||||||
|
using mindspore::ModelType;
|
||||||
|
using mindspore::GraphCell;
|
||||||
|
using mindspore::kSuccess;
|
||||||
|
|
||||||
|
DEFINE_string(mindir_path, "", "mindir path");
|
||||||
|
DEFINE_string(input0_path, ".", "input0 path");
|
||||||
|
DEFINE_string(input1_path, ".", "input1 path");
|
||||||
|
DEFINE_int32(device_id, 0, "device id");
|
||||||
|
|
||||||
|
int main(int argc, char **argv) {
|
||||||
|
gflags::ParseCommandLineFlags(&argc, &argv, true);
|
||||||
|
if (RealPath(FLAGS_mindir_path).empty()) {
|
||||||
|
std::cout << "Invalid mindir" << std::endl;
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
auto context = std::make_shared<Context>();
|
||||||
|
auto ascend310 = std::make_shared<mindspore::Ascend310DeviceInfo>();
|
||||||
|
ascend310->SetDeviceID(FLAGS_device_id);
|
||||||
|
ascend310->SetPrecisionMode("allow_fp32_to_fp16");
|
||||||
|
ascend310->SetOpSelectImplMode("high_precision");
|
||||||
|
context->MutableDeviceInfo().push_back(ascend310);
|
||||||
|
mindspore::Graph graph;
|
||||||
|
Serialization::Load(FLAGS_mindir_path, ModelType::kMindIR, &graph);
|
||||||
|
|
||||||
|
Model model;
|
||||||
|
Status ret = model.Build(GraphCell(graph), context);
|
||||||
|
if (ret != kSuccess) {
|
||||||
|
std::cout << "ERROR: Build failed." << std::endl;
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<MSTensor> model_inputs = model.GetInputs();
|
||||||
|
if (model_inputs.empty()) {
|
||||||
|
std::cout << "Invalid model, inputs is empty." << std::endl;
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
auto input0_files = GetAllFiles(FLAGS_input0_path);
|
||||||
|
auto input1_files = GetAllFiles(FLAGS_input1_path);
|
||||||
|
|
||||||
|
if (input0_files.empty() || input1_files.empty()) {
|
||||||
|
std::cout << "ERROR: input data empty." << std::endl;
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::map<double, double> costTime_map;
|
||||||
|
size_t size = input0_files.size();
|
||||||
|
|
||||||
|
for (size_t i = 0; i < size; ++i) {
|
||||||
|
struct timeval start = {0};
|
||||||
|
struct timeval end = {0};
|
||||||
|
double startTimeMs;
|
||||||
|
double endTimeMs;
|
||||||
|
std::vector<MSTensor> inputs;
|
||||||
|
std::vector<MSTensor> outputs;
|
||||||
|
std::cout << "Start predict input files:" << input0_files[i] << std::endl;
|
||||||
|
|
||||||
|
auto input0 = ReadFileToTensor(input0_files[i]);
|
||||||
|
auto input1 = ReadFileToTensor(input1_files[i]);
|
||||||
|
inputs.emplace_back(model_inputs[0].Name(), model_inputs[0].DataType(), model_inputs[0].Shape(),
|
||||||
|
input0.Data().get(), input0.DataSize());
|
||||||
|
inputs.emplace_back(model_inputs[1].Name(), model_inputs[1].DataType(), model_inputs[1].Shape(),
|
||||||
|
input1.Data().get(), input1.DataSize());
|
||||||
|
|
||||||
|
gettimeofday(&start, nullptr);
|
||||||
|
ret = model.Predict(inputs, &outputs);
|
||||||
|
gettimeofday(&end, nullptr);
|
||||||
|
if (ret != kSuccess) {
|
||||||
|
std::cout << "Predict " << input0_files[i] << " failed." << std::endl;
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
startTimeMs = (1.0 * start.tv_sec * 1000000 + start.tv_usec) / 1000;
|
||||||
|
endTimeMs = (1.0 * end.tv_sec * 1000000 + end.tv_usec) / 1000;
|
||||||
|
costTime_map.insert(std::pair<double, double>(startTimeMs, endTimeMs));
|
||||||
|
WriteResult(input0_files[i], outputs);
|
||||||
|
}
|
||||||
|
double average = 0.0;
|
||||||
|
int inferCount = 0;
|
||||||
|
|
||||||
|
for (auto iter = costTime_map.begin(); iter != costTime_map.end(); iter++) {
|
||||||
|
double diff = 0.0;
|
||||||
|
diff = iter->second - iter->first;
|
||||||
|
average += diff;
|
||||||
|
inferCount++;
|
||||||
|
}
|
||||||
|
average = average / inferCount;
|
||||||
|
std::stringstream timeCost;
|
||||||
|
timeCost << "NN inference cost average time: "<< average << " ms of infer_count " << inferCount << std::endl;
|
||||||
|
std::cout << "NN inference cost average time: "<< average << "ms of infer_count " << inferCount << std::endl;
|
||||||
|
std::string fileName = "./time_Result" + std::string("/test_perform_static.txt");
|
||||||
|
std::ofstream fileStream(fileName.c_str(), std::ios::trunc);
|
||||||
|
fileStream << timeCost.str();
|
||||||
|
fileStream.close();
|
||||||
|
costTime_map.clear();
|
||||||
|
return 0;
|
||||||
|
}
|
|
@ -0,0 +1,129 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <fstream>
|
||||||
|
#include <algorithm>
|
||||||
|
#include <iostream>
|
||||||
|
#include "inc/utils.h"
|
||||||
|
|
||||||
|
using mindspore::MSTensor;
|
||||||
|
using mindspore::DataType;
|
||||||
|
|
||||||
|
std::vector<std::string> GetAllFiles(std::string_view dirName) {
|
||||||
|
struct dirent *filename;
|
||||||
|
DIR *dir = OpenDir(dirName);
|
||||||
|
if (dir == nullptr) {
|
||||||
|
return {};
|
||||||
|
}
|
||||||
|
std::vector<std::string> res;
|
||||||
|
while ((filename = readdir(dir)) != nullptr) {
|
||||||
|
std::string dName = std::string(filename->d_name);
|
||||||
|
if (dName == "." || dName == ".." || filename->d_type != DT_REG) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
res.emplace_back(std::string(dirName) + "/" + filename->d_name);
|
||||||
|
}
|
||||||
|
std::sort(res.begin(), res.end());
|
||||||
|
for (auto &f : res) {
|
||||||
|
std::cout << "image file: " << f << std::endl;
|
||||||
|
}
|
||||||
|
return res;
|
||||||
|
}
|
||||||
|
|
||||||
|
int WriteResult(const std::string& imageFile, const std::vector<MSTensor> &outputs) {
|
||||||
|
std::string homePath = "./result_Files";
|
||||||
|
for (size_t i = 0; i < outputs.size(); ++i) {
|
||||||
|
size_t outputSize;
|
||||||
|
std::shared_ptr<const void> netOutput;
|
||||||
|
netOutput = outputs[i].Data();
|
||||||
|
outputSize = outputs[i].DataSize();
|
||||||
|
int pos = imageFile.rfind('/');
|
||||||
|
std::string fileName(imageFile, pos + 1);
|
||||||
|
fileName.replace(fileName.find('.'), fileName.size() - fileName.find('.'), '_' + std::to_string(i) + ".bin");
|
||||||
|
std::string outFileName = homePath + "/" + fileName;
|
||||||
|
FILE * outputFile = fopen(outFileName.c_str(), "wb");
|
||||||
|
fwrite(netOutput.get(), outputSize, sizeof(char), outputFile);
|
||||||
|
fclose(outputFile);
|
||||||
|
outputFile = nullptr;
|
||||||
|
}
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
mindspore::MSTensor ReadFileToTensor(const std::string &file) {
|
||||||
|
if (file.empty()) {
|
||||||
|
std::cout << "Pointer file is nullptr" << std::endl;
|
||||||
|
return mindspore::MSTensor();
|
||||||
|
}
|
||||||
|
|
||||||
|
std::ifstream ifs(file);
|
||||||
|
if (!ifs.good()) {
|
||||||
|
std::cout << "File: " << file << " is not exist" << std::endl;
|
||||||
|
return mindspore::MSTensor();
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!ifs.is_open()) {
|
||||||
|
std::cout << "File: " << file << "open failed" << std::endl;
|
||||||
|
return mindspore::MSTensor();
|
||||||
|
}
|
||||||
|
|
||||||
|
ifs.seekg(0, std::ios::end);
|
||||||
|
size_t size = ifs.tellg();
|
||||||
|
mindspore::MSTensor buffer(file, mindspore::DataType::kNumberTypeUInt8, {static_cast<int64_t>(size)}, nullptr, size);
|
||||||
|
|
||||||
|
ifs.seekg(0, std::ios::beg);
|
||||||
|
ifs.read(reinterpret_cast<char *>(buffer.MutableData()), size);
|
||||||
|
ifs.close();
|
||||||
|
|
||||||
|
return buffer;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
DIR *OpenDir(std::string_view dirName) {
|
||||||
|
if (dirName.empty()) {
|
||||||
|
std::cout << " dirName is null ! " << std::endl;
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
std::string realPath = RealPath(dirName);
|
||||||
|
struct stat s;
|
||||||
|
lstat(realPath.c_str(), &s);
|
||||||
|
if (!S_ISDIR(s.st_mode)) {
|
||||||
|
std::cout << "dirName is not a valid directory !" << std::endl;
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
DIR *dir;
|
||||||
|
dir = opendir(realPath.c_str());
|
||||||
|
if (dir == nullptr) {
|
||||||
|
std::cout << "Can not open dir " << dirName << std::endl;
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
std::cout << "Successfully opened the dir " << dirName << std::endl;
|
||||||
|
return dir;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string RealPath(std::string_view path) {
|
||||||
|
char realPathMem[PATH_MAX] = {0};
|
||||||
|
char *realPathRet = nullptr;
|
||||||
|
realPathRet = realpath(path.data(), realPathMem);
|
||||||
|
|
||||||
|
if (realPathRet == nullptr) {
|
||||||
|
std::cout << "File: " << path << " is not exist.";
|
||||||
|
return "";
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string realPath(realPathMem);
|
||||||
|
std::cout << path << " realpath is: " << realPath << std::endl;
|
||||||
|
return realPath;
|
||||||
|
}
|
|
@ -0,0 +1,51 @@
|
||||||
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""Transformer evaluation script."""
|
||||||
|
|
||||||
|
import os
|
||||||
|
import argparse
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from src.eval_config import cfg, transformer_net_cfg
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(description='postprocess')
|
||||||
|
parser.add_argument("--result_dir", type=str, default="./result_Files",
|
||||||
|
help="infer result path.")
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
def generate_output():
|
||||||
|
'''
|
||||||
|
Generate output.
|
||||||
|
'''
|
||||||
|
predictions = []
|
||||||
|
file_num = len(os.listdir(args.result_dir))
|
||||||
|
for i in range(file_num):
|
||||||
|
batch = "transformer_bs_" + str(transformer_net_cfg.batch_size) + "_" + str(i) + "_0.bin"
|
||||||
|
pred = np.fromfile(os.path.join(args.result_dir, batch), np.int32)
|
||||||
|
predictions.append(pred.reshape(1, 1, transformer_net_cfg.max_decode_length + 1))
|
||||||
|
|
||||||
|
# decode and write to file
|
||||||
|
f = open(cfg.output_file, 'w')
|
||||||
|
for batch_out in predictions:
|
||||||
|
for i in range(transformer_net_cfg.batch_size):
|
||||||
|
if batch_out.ndim == 3:
|
||||||
|
batch_out = batch_out[:, 0]
|
||||||
|
token_ids = [str(x) for x in batch_out[i].tolist()]
|
||||||
|
f.write(" ".join(token_ids) + "\n")
|
||||||
|
f.close()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
generate_output()
|
|
@ -0,0 +1,58 @@
|
||||||
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""Transformer evaluation script."""
|
||||||
|
|
||||||
|
import os
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
from src.eval_config import cfg, transformer_net_cfg
|
||||||
|
from eval import load_test_data
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(description='preprocess')
|
||||||
|
parser.add_argument("--result_path", type=str, default="./preprocess_Result/",
|
||||||
|
help="preprocess result path.")
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
def generate_bin():
|
||||||
|
'''
|
||||||
|
Generate bin files.
|
||||||
|
'''
|
||||||
|
dataset = load_test_data(batch_size=transformer_net_cfg.batch_size, data_file=cfg.data_file)
|
||||||
|
cur_dir = args.result_path
|
||||||
|
|
||||||
|
source_eos_ids_path = os.path.join(cur_dir, "00_source_eos_ids")
|
||||||
|
source_eos_mask_path = os.path.join(cur_dir, "01_source_eos_mask")
|
||||||
|
|
||||||
|
if not os.path.isdir(source_eos_ids_path):
|
||||||
|
os.makedirs(source_eos_ids_path)
|
||||||
|
if not os.path.isdir(source_eos_mask_path):
|
||||||
|
os.makedirs(source_eos_mask_path)
|
||||||
|
|
||||||
|
batch_size = transformer_net_cfg.batch_size
|
||||||
|
|
||||||
|
for i, data in enumerate(dataset.create_dict_iterator(output_numpy=True, num_epochs=1)):
|
||||||
|
file_name = "transformer_bs_" + str(batch_size) + "_" + str(i) + ".bin"
|
||||||
|
source_eos_ids = data['source_eos_ids']
|
||||||
|
source_eos_ids.tofile(os.path.join(source_eos_ids_path, file_name))
|
||||||
|
|
||||||
|
source_eos_mask = data['source_eos_mask']
|
||||||
|
source_eos_mask.tofile(os.path.join(source_eos_mask_path, file_name))
|
||||||
|
|
||||||
|
print("="*20, "export bin files finished", "="*20)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
generate_bin()
|
|
@ -0,0 +1,120 @@
|
||||||
|
#!/bin/bash
|
||||||
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
if [[ $# -lt 2 || $# -gt 3 ]]; then
|
||||||
|
echo "Usage: bash run_infer_310.sh [MINDIR_PATH] [NEED_PREPROCESS] [DEVICE_ID]
|
||||||
|
NEED_PREPROCESS means weather need preprocess or not, it's value is 'y' or 'n'.
|
||||||
|
DEVICE_ID is optional, it can be set by environment variable device_id, otherwise the value is zero"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
get_real_path(){
|
||||||
|
if [ "${1:0:1}" == "/" ]; then
|
||||||
|
echo "$1"
|
||||||
|
else
|
||||||
|
echo "$(realpath -m $PWD/$1)"
|
||||||
|
fi
|
||||||
|
}
|
||||||
|
model=$(get_real_path $1)
|
||||||
|
|
||||||
|
if [ "$2" == "y" ] || [ "$2" == "n" ];then
|
||||||
|
need_preprocess=$2
|
||||||
|
else
|
||||||
|
echo "weather need preprocess or not, it's value must be in [y, n]"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
device_id=0
|
||||||
|
if [ $# == 3 ]; then
|
||||||
|
device_id=$3
|
||||||
|
fi
|
||||||
|
|
||||||
|
echo "mindir name: "$model
|
||||||
|
echo "need preprocess: "$need_preprocess
|
||||||
|
echo "device id: "$device_id
|
||||||
|
|
||||||
|
export ASCEND_HOME=/usr/local/Ascend/
|
||||||
|
if [ -d ${ASCEND_HOME}/ascend-toolkit ]; then
|
||||||
|
export PATH=$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/atc/bin:$PATH
|
||||||
|
export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/ascend-toolkit/latest/atc/lib64:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
|
||||||
|
export TBE_IMPL_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp/op_impl/built-in/ai_core/tbe
|
||||||
|
export PYTHONPATH=${TBE_IMPL_PATH}:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/python/site-packages:$PYTHONPATH
|
||||||
|
export ASCEND_OPP_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp
|
||||||
|
else
|
||||||
|
export PATH=$ASCEND_HOME/atc/ccec_compiler/bin:$ASCEND_HOME/atc/bin:$PATH
|
||||||
|
export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/atc/lib64:$ASCEND_HOME/acllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
|
||||||
|
export PYTHONPATH=$ASCEND_HOME/atc/python/site-packages:$PYTHONPATH
|
||||||
|
export ASCEND_OPP_PATH=$ASCEND_HOME/opp
|
||||||
|
fi
|
||||||
|
|
||||||
|
function preprocess_data()
|
||||||
|
{
|
||||||
|
if [ -d preprocess_Result ]; then
|
||||||
|
rm -rf ./preprocess_Result
|
||||||
|
fi
|
||||||
|
mkdir preprocess_Result
|
||||||
|
python3.7 ../preprocess.py --result_path=./preprocess_Result/
|
||||||
|
}
|
||||||
|
|
||||||
|
function compile_app()
|
||||||
|
{
|
||||||
|
cd ../ascend310_infer || exit
|
||||||
|
bash build.sh &> build.log
|
||||||
|
}
|
||||||
|
|
||||||
|
function infer()
|
||||||
|
{
|
||||||
|
cd - || exit
|
||||||
|
if [ -d result_Files ]; then
|
||||||
|
rm -rf ./result_Files
|
||||||
|
fi
|
||||||
|
if [ -d time_Result ]; then
|
||||||
|
rm -rf ./time_Result
|
||||||
|
fi
|
||||||
|
mkdir result_Files
|
||||||
|
mkdir time_Result
|
||||||
|
|
||||||
|
../ascend310_infer/out/main --mindir_path=$model --input0_path=./preprocess_Result/00_source_eos_ids --input1_path=./preprocess_Result/01_source_eos_mask --device_id=$device_id &> infer.log
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
function cal_acc()
|
||||||
|
{
|
||||||
|
python3.7 ../postprocess.py --result_dir=./result_Files &> acc.log
|
||||||
|
}
|
||||||
|
|
||||||
|
if [ $need_preprocess == "y" ]; then
|
||||||
|
preprocess_data
|
||||||
|
if [ $? -ne 0 ]; then
|
||||||
|
echo "preprocess dataset failed"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
compile_app
|
||||||
|
if [ $? -ne 0 ]; then
|
||||||
|
echo "compile app code failed"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
infer
|
||||||
|
if [ $? -ne 0 ]; then
|
||||||
|
echo " execute inference failed"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
cal_acc
|
||||||
|
if [ $? -ne 0 ]; then
|
||||||
|
echo "calculate accuracy failed"
|
||||||
|
exit 1
|
||||||
|
fi
|
|
@ -161,6 +161,34 @@ config.py:
|
||||||
|
|
||||||
The above python command will run in the background, you can view the results through the file output.eval.log. You will get the accuracy as following:
|
The above python command will run in the background, you can view the results through the file output.eval.log. You will get the accuracy as following:
|
||||||
|
|
||||||
|
## Inference Process
|
||||||
|
|
||||||
|
### [Export MindIR](#contents)
|
||||||
|
|
||||||
|
```shell
|
||||||
|
python export.py --ckpt_file [CKPT_PATH] --file_name [FILE_NAME] --file_format [FILE_FORMAT]
|
||||||
|
```
|
||||||
|
|
||||||
|
The ckpt_file parameter is required,
|
||||||
|
`EXPORT_FORMAT` should be in ["AIR", "MINDIR"]
|
||||||
|
|
||||||
|
### Infer on Ascend310
|
||||||
|
|
||||||
|
Before performing inference, the mindir file must be exported by `export.py` script. We only provide an example of inference using MINDIR model.
|
||||||
|
Current batch_size can only be set to 1.
|
||||||
|
|
||||||
|
```shell
|
||||||
|
# Ascend310 inference
|
||||||
|
bash run_infer_310.sh [MINDIR_PATH] [NEED_PREPROCESS] [DEVICE_ID]
|
||||||
|
```
|
||||||
|
|
||||||
|
`NEED_PREPROCESS` means weather need preprocess or not, it's value is 'y' or 'n'.
|
||||||
|
`DEVICE_ID` is optional, default value is 0.
|
||||||
|
|
||||||
|
### result
|
||||||
|
|
||||||
|
Inference result is saved in current path, you can find result in acc.log file.
|
||||||
|
|
||||||
## performance
|
## performance
|
||||||
|
|
||||||
### Training performance
|
### Training performance
|
||||||
|
|
|
@ -0,0 +1,14 @@
|
||||||
|
cmake_minimum_required(VERSION 3.14.1)
|
||||||
|
project(Ascend310Infer)
|
||||||
|
add_compile_definitions(_GLIBCXX_USE_CXX11_ABI=0)
|
||||||
|
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O0 -g -std=c++17 -Werror -Wall -fPIE -Wl,--allow-shlib-undefined")
|
||||||
|
set(PROJECT_SRC_ROOT ${CMAKE_CURRENT_LIST_DIR}/)
|
||||||
|
option(MINDSPORE_PATH "mindspore install path" "")
|
||||||
|
include_directories(${MINDSPORE_PATH})
|
||||||
|
include_directories(${MINDSPORE_PATH}/include)
|
||||||
|
include_directories(${PROJECT_SRC_ROOT})
|
||||||
|
find_library(MS_LIB libmindspore.so ${MINDSPORE_PATH}/lib)
|
||||||
|
file(GLOB_RECURSE MD_LIB ${MINDSPORE_PATH}/_c_dataengine*)
|
||||||
|
|
||||||
|
add_executable(main src/main.cc src/utils.cc)
|
||||||
|
target_link_libraries(main ${MS_LIB} ${MD_LIB} gflags)
|
|
@ -0,0 +1,29 @@
|
||||||
|
#!/bin/bash
|
||||||
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
if [ -d out ]; then
|
||||||
|
rm -rf out
|
||||||
|
fi
|
||||||
|
|
||||||
|
mkdir out
|
||||||
|
cd out || exit
|
||||||
|
|
||||||
|
if [ -f "Makefile" ]; then
|
||||||
|
make clean
|
||||||
|
fi
|
||||||
|
|
||||||
|
cmake .. \
|
||||||
|
-DMINDSPORE_PATH="`pip3.7 show mindspore-ascend | grep Location | awk '{print $2"/mindspore"}' | xargs realpath`"
|
||||||
|
make
|
|
@ -0,0 +1,35 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifndef MINDSPORE_INFERENCE_UTILS_H_
|
||||||
|
#define MINDSPORE_INFERENCE_UTILS_H_
|
||||||
|
|
||||||
|
#include <sys/stat.h>
|
||||||
|
#include <dirent.h>
|
||||||
|
#include <vector>
|
||||||
|
#include <string>
|
||||||
|
#include <memory>
|
||||||
|
#include "include/api/types.h"
|
||||||
|
|
||||||
|
std::vector<std::string> GetAllFiles(std::string_view dirName);
|
||||||
|
DIR *OpenDir(std::string_view dirName);
|
||||||
|
std::string RealPath(std::string_view path);
|
||||||
|
mindspore::MSTensor ReadFileToTensor(const std::string &file);
|
||||||
|
int WriteResult(const std::string& imageFile, const std::vector<mindspore::MSTensor> &outputs);
|
||||||
|
std::vector<std::string> GetAllFiles(std::string dir_name);
|
||||||
|
std::vector<std::vector<std::string>> GetAllInputData(std::string dir_name);
|
||||||
|
|
||||||
|
#endif
|
|
@ -0,0 +1,144 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
#include <sys/time.h>
|
||||||
|
#include <gflags/gflags.h>
|
||||||
|
#include <dirent.h>
|
||||||
|
#include <iostream>
|
||||||
|
#include <string>
|
||||||
|
#include <algorithm>
|
||||||
|
#include <iosfwd>
|
||||||
|
#include <vector>
|
||||||
|
#include <fstream>
|
||||||
|
#include <sstream>
|
||||||
|
|
||||||
|
#include "include/api/model.h"
|
||||||
|
#include "include/api/serialization.h"
|
||||||
|
#include "include/api/context.h"
|
||||||
|
#include "include/dataset/execute.h"
|
||||||
|
#include "include/dataset/vision.h"
|
||||||
|
#include "include/dataset/config.h"
|
||||||
|
#include "../inc/utils.h"
|
||||||
|
#include "include/api/types.h"
|
||||||
|
|
||||||
|
|
||||||
|
using mindspore::Context;
|
||||||
|
using mindspore::Serialization;
|
||||||
|
using mindspore::Model;
|
||||||
|
using mindspore::Status;
|
||||||
|
using mindspore::dataset::Execute;
|
||||||
|
using mindspore::MSTensor;
|
||||||
|
using mindspore::ModelType;
|
||||||
|
using mindspore::GraphCell;
|
||||||
|
using mindspore::kSuccess;
|
||||||
|
|
||||||
|
using mindspore::dataset::vision::Decode;
|
||||||
|
using mindspore::dataset::vision::Normalize;
|
||||||
|
using mindspore::dataset::vision::Resize;
|
||||||
|
using mindspore::dataset::vision::HWC2CHW;
|
||||||
|
using mindspore::dataset::InterpolationMode;
|
||||||
|
|
||||||
|
DEFINE_string(mindir_path, "", "mindir path");
|
||||||
|
DEFINE_string(dataset_path, ".", "dataset path");
|
||||||
|
DEFINE_int32(device_id, 0, "device id");
|
||||||
|
|
||||||
|
int main(int argc, char **argv) {
|
||||||
|
gflags::ParseCommandLineFlags(&argc, &argv, true);
|
||||||
|
if (RealPath(FLAGS_mindir_path).empty()) {
|
||||||
|
std::cout << "Invalid mindir" << std::endl;
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
auto context = std::make_shared<Context>();
|
||||||
|
auto ascend310 = std::make_shared<mindspore::Ascend310DeviceInfo>();
|
||||||
|
ascend310->SetDeviceID(FLAGS_device_id);
|
||||||
|
ascend310->SetPrecisionMode("allow_fp32_to_fp16");
|
||||||
|
context->MutableDeviceInfo().push_back(ascend310);
|
||||||
|
|
||||||
|
mindspore::Graph graph;
|
||||||
|
Serialization::Load(FLAGS_mindir_path, ModelType::kMindIR, &graph);
|
||||||
|
Model model;
|
||||||
|
Status ret = model.Build(GraphCell(graph), context);
|
||||||
|
if (ret != kSuccess) {
|
||||||
|
std::cout << "ERROR: Build failed." << std::endl;
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<MSTensor> model_inputs = model.GetInputs();
|
||||||
|
auto all_files = GetAllFiles(FLAGS_dataset_path);
|
||||||
|
if (all_files.empty()) {
|
||||||
|
std::cout << "ERROR: no input data." << std::endl;
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::map<double, double> costTime_map;
|
||||||
|
size_t size = all_files.size();
|
||||||
|
|
||||||
|
auto decode(new Decode());
|
||||||
|
auto resize(new Resize({448, 448}, InterpolationMode::kNearestNeighbour));
|
||||||
|
auto normalize(new Normalize({123.68, 116.779, 103.939}, {1.0, 1.0, 1.0}));
|
||||||
|
auto hwc2chw(new HWC2CHW());
|
||||||
|
Execute preprocess({decode, resize, normalize, hwc2chw});
|
||||||
|
|
||||||
|
for (size_t i = 0; i < size; ++i) {
|
||||||
|
struct timeval start = {0};
|
||||||
|
struct timeval end = {0};
|
||||||
|
double startTimeMs;
|
||||||
|
double endTimeMs;
|
||||||
|
std::vector<MSTensor> inputs;
|
||||||
|
std::vector<MSTensor> outputs;
|
||||||
|
std::cout << "Start predict input files:" << all_files[i] <<std::endl;
|
||||||
|
|
||||||
|
auto img = MSTensor();
|
||||||
|
ret = preprocess(ReadFileToTensor(all_files[i]), &img);
|
||||||
|
if (ret != kSuccess) {
|
||||||
|
std::cout << "preprocess " << all_files[i] << " failed." << std::endl;
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
inputs.emplace_back(model_inputs[0].Name(), model_inputs[0].DataType(), model_inputs[0].Shape(),
|
||||||
|
img.Data().get(), img.DataSize());
|
||||||
|
|
||||||
|
gettimeofday(&start, nullptr);
|
||||||
|
ret = model.Predict(inputs, &outputs);
|
||||||
|
gettimeofday(&end, nullptr);
|
||||||
|
if (ret != kSuccess) {
|
||||||
|
std::cout << "Predict " << all_files[i] << " failed." << std::endl;
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
startTimeMs = (1.0 * start.tv_sec * 1000000 + start.tv_usec) / 1000;
|
||||||
|
endTimeMs = (1.0 * end.tv_sec * 1000000 + end.tv_usec) / 1000;
|
||||||
|
costTime_map.insert(std::pair<double, double>(startTimeMs, endTimeMs));
|
||||||
|
WriteResult(all_files[i], outputs);
|
||||||
|
}
|
||||||
|
double average = 0.0;
|
||||||
|
int inferCount = 0;
|
||||||
|
|
||||||
|
for (auto iter = costTime_map.begin(); iter != costTime_map.end(); iter++) {
|
||||||
|
double diff = 0.0;
|
||||||
|
diff = iter->second - iter->first;
|
||||||
|
average += diff;
|
||||||
|
inferCount++;
|
||||||
|
}
|
||||||
|
average = average / inferCount;
|
||||||
|
std::stringstream timeCost;
|
||||||
|
timeCost << "NN inference cost average time: "<< average << " ms of infer_count " << inferCount << std::endl;
|
||||||
|
std::cout << "NN inference cost average time: "<< average << "ms of infer_count " << inferCount << std::endl;
|
||||||
|
std::string fileName = "./time_Result" + std::string("/test_perform_static.txt");
|
||||||
|
std::ofstream fileStream(fileName.c_str(), std::ios::trunc);
|
||||||
|
fileStream << timeCost.str();
|
||||||
|
fileStream.close();
|
||||||
|
costTime_map.clear();
|
||||||
|
return 0;
|
||||||
|
}
|
|
@ -0,0 +1,185 @@
|
||||||
|
/**
|
||||||
|
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#include <fstream>
|
||||||
|
#include <algorithm>
|
||||||
|
#include <iostream>
|
||||||
|
#include "inc/utils.h"
|
||||||
|
|
||||||
|
using mindspore::MSTensor;
|
||||||
|
using mindspore::DataType;
|
||||||
|
|
||||||
|
|
||||||
|
std::vector<std::vector<std::string>> GetAllInputData(std::string dir_name) {
|
||||||
|
std::vector<std::vector<std::string>> ret;
|
||||||
|
|
||||||
|
DIR *dir = OpenDir(dir_name);
|
||||||
|
if (dir == nullptr) {
|
||||||
|
return {};
|
||||||
|
}
|
||||||
|
struct dirent *filename;
|
||||||
|
/* read all the files in the dir ~ */
|
||||||
|
std::vector<std::string> sub_dirs;
|
||||||
|
while ((filename = readdir(dir)) != nullptr) {
|
||||||
|
std::string d_name = std::string(filename->d_name);
|
||||||
|
// get rid of "." and ".."
|
||||||
|
if (d_name == "." || d_name == ".." || d_name.empty()) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
std::string dir_path = RealPath(std::string(dir_name) + "/" + filename->d_name);
|
||||||
|
struct stat s;
|
||||||
|
lstat(dir_path.c_str(), &s);
|
||||||
|
if (!S_ISDIR(s.st_mode)) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
|
sub_dirs.emplace_back(dir_path);
|
||||||
|
}
|
||||||
|
std::sort(sub_dirs.begin(), sub_dirs.end());
|
||||||
|
|
||||||
|
(void)std::transform(sub_dirs.begin(), sub_dirs.end(), std::back_inserter(ret),
|
||||||
|
[](const std::string &d) { return GetAllFiles(d); });
|
||||||
|
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
std::vector<std::string> GetAllFiles(std::string dir_name) {
|
||||||
|
struct dirent *filename;
|
||||||
|
DIR *dir = OpenDir(dir_name);
|
||||||
|
if (dir == nullptr) {
|
||||||
|
return {};
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<std::string> res;
|
||||||
|
while ((filename = readdir(dir)) != nullptr) {
|
||||||
|
std::string d_name = std::string(filename->d_name);
|
||||||
|
if (d_name == "." || d_name == ".." || d_name.size() <= 3) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
res.emplace_back(std::string(dir_name) + "/" + filename->d_name);
|
||||||
|
}
|
||||||
|
std::sort(res.begin(), res.end());
|
||||||
|
|
||||||
|
return res;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
std::vector<std::string> GetAllFiles(std::string_view dirName) {
|
||||||
|
struct dirent *filename;
|
||||||
|
DIR *dir = OpenDir(dirName);
|
||||||
|
if (dir == nullptr) {
|
||||||
|
return {};
|
||||||
|
}
|
||||||
|
std::vector<std::string> res;
|
||||||
|
while ((filename = readdir(dir)) != nullptr) {
|
||||||
|
std::string dName = std::string(filename->d_name);
|
||||||
|
if (dName == "." || dName == ".." || filename->d_type != DT_REG) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
res.emplace_back(std::string(dirName) + "/" + filename->d_name);
|
||||||
|
}
|
||||||
|
std::sort(res.begin(), res.end());
|
||||||
|
for (auto &f : res) {
|
||||||
|
std::cout << "image file: " << f << std::endl;
|
||||||
|
}
|
||||||
|
return res;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
int WriteResult(const std::string& imageFile, const std::vector<MSTensor> &outputs) {
|
||||||
|
std::string homePath = "./result_Files";
|
||||||
|
for (size_t i = 0; i < outputs.size(); ++i) {
|
||||||
|
size_t outputSize;
|
||||||
|
std::shared_ptr<const void> netOutput;
|
||||||
|
netOutput = outputs[i].Data();
|
||||||
|
outputSize = outputs[i].DataSize();
|
||||||
|
int pos = imageFile.rfind('/');
|
||||||
|
std::string fileName(imageFile, pos + 1);
|
||||||
|
fileName = fileName + '_' + std::to_string(i) + ".bin";
|
||||||
|
std::string outFileName = homePath + "/" + fileName;
|
||||||
|
FILE *outputFile = fopen(outFileName.c_str(), "wb");
|
||||||
|
fwrite(netOutput.get(), outputSize, sizeof(char), outputFile);
|
||||||
|
fclose(outputFile);
|
||||||
|
outputFile = nullptr;
|
||||||
|
}
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
mindspore::MSTensor ReadFileToTensor(const std::string &file) {
|
||||||
|
if (file.empty()) {
|
||||||
|
std::cout << "Pointer file is nullptr" << std::endl;
|
||||||
|
return mindspore::MSTensor();
|
||||||
|
}
|
||||||
|
|
||||||
|
std::ifstream ifs(file);
|
||||||
|
if (!ifs.good()) {
|
||||||
|
std::cout << "File: " << file << " is not exist" << std::endl;
|
||||||
|
return mindspore::MSTensor();
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!ifs.is_open()) {
|
||||||
|
std::cout << "File: " << file << "open failed" << std::endl;
|
||||||
|
return mindspore::MSTensor();
|
||||||
|
}
|
||||||
|
|
||||||
|
ifs.seekg(0, std::ios::end);
|
||||||
|
size_t size = ifs.tellg();
|
||||||
|
mindspore::MSTensor buffer(file, mindspore::DataType::kNumberTypeUInt8, {static_cast<int64_t>(size)}, nullptr, size);
|
||||||
|
|
||||||
|
ifs.seekg(0, std::ios::beg);
|
||||||
|
ifs.read(reinterpret_cast<char *>(buffer.MutableData()), size);
|
||||||
|
ifs.close();
|
||||||
|
|
||||||
|
return buffer;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
DIR *OpenDir(std::string_view dirName) {
|
||||||
|
if (dirName.empty()) {
|
||||||
|
std::cout << " dirName is null ! " << std::endl;
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
std::string realPath = RealPath(dirName);
|
||||||
|
struct stat s;
|
||||||
|
lstat(realPath.c_str(), &s);
|
||||||
|
if (!S_ISDIR(s.st_mode)) {
|
||||||
|
std::cout << "dirName is not a valid directory !" << std::endl;
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
DIR *dir;
|
||||||
|
dir = opendir(realPath.c_str());
|
||||||
|
if (dir == nullptr) {
|
||||||
|
std::cout << "Can not open dir " << dirName << std::endl;
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
std::cout << "Successfully opened the dir " << dirName << std::endl;
|
||||||
|
return dir;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string RealPath(std::string_view path) {
|
||||||
|
char realPathMem[PATH_MAX] = {0};
|
||||||
|
char *realPathRet = nullptr;
|
||||||
|
realPathRet = realpath(path.data(), realPathMem);
|
||||||
|
if (realPathRet == nullptr) {
|
||||||
|
std::cout << "File: " << path << " is not exist.";
|
||||||
|
return "";
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string realPath(realPathMem);
|
||||||
|
std::cout << path << " realpath is: " << realPath << std::endl;
|
||||||
|
return realPath;
|
||||||
|
}
|
|
@ -0,0 +1,60 @@
|
||||||
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""
|
||||||
|
#################postprocess########################
|
||||||
|
"""
|
||||||
|
import os
|
||||||
|
import argparse
|
||||||
|
import numpy as np
|
||||||
|
from mindspore import Tensor
|
||||||
|
from src.config import config as cfg
|
||||||
|
from src.score import eval_pre_rec_f1
|
||||||
|
|
||||||
|
|
||||||
|
def parse_args(cloud_args=None):
|
||||||
|
"""parameters"""
|
||||||
|
parser = argparse.ArgumentParser('postprocess')
|
||||||
|
parser.add_argument('--rst_path', type=str, default='./result_Files/',
|
||||||
|
help='infer result path.')
|
||||||
|
args_opt = parser.parse_args()
|
||||||
|
|
||||||
|
args_opt.data_dir = cfg.data_dir
|
||||||
|
args_opt.train_image_dir_name = os.path.join(cfg.data_dir, cfg.train_image_dir_name)
|
||||||
|
args_opt.val_fname = cfg.val_fname
|
||||||
|
args_opt.train_label_dir_name = os.path.join(cfg.data_dir, cfg.train_label_dir_name)
|
||||||
|
args_opt.batch_size = 1
|
||||||
|
|
||||||
|
return args_opt
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
arg = parse_args()
|
||||||
|
obj = eval_pre_rec_f1()
|
||||||
|
with open(os.path.join(arg.data_dir, arg.val_fname), 'r') as f_val:
|
||||||
|
f_list = f_val.readlines()
|
||||||
|
|
||||||
|
batch_list = np.arange(0, len(f_list), arg.batch_size)
|
||||||
|
for idx in batch_list:
|
||||||
|
gt_list = []
|
||||||
|
for i in range(idx, min(idx + arg.batch_size, len(f_list))):
|
||||||
|
item = f_list[i]
|
||||||
|
img_filename = str(item).strip().split(',')[0]
|
||||||
|
gt_list.append(np.load(os.path.join(arg.train_label_dir_name, img_filename[:-4]) + '.npy'))
|
||||||
|
y = np.fromfile(os.path.join(arg.rst_path, img_filename + '_0.bin'), np.float32)
|
||||||
|
y = Tensor(y.reshape(1, 7, 112, 112))
|
||||||
|
|
||||||
|
obj.add(y, gt_list)
|
||||||
|
|
||||||
|
print(obj.val())
|
|
@ -0,0 +1,50 @@
|
||||||
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""
|
||||||
|
################preprocess########################
|
||||||
|
"""
|
||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
|
||||||
|
from PIL import Image
|
||||||
|
from src.config import config as cfg
|
||||||
|
|
||||||
|
def parse_args(cloud_args=None):
|
||||||
|
"""parameters"""
|
||||||
|
parser = argparse.ArgumentParser('preprocess')
|
||||||
|
parser.add_argument('--result_path', type=str, default='./preprocess_Result/',
|
||||||
|
help='result path')
|
||||||
|
args_opt = parser.parse_args()
|
||||||
|
|
||||||
|
args_opt.data_dir = cfg.data_dir
|
||||||
|
args_opt.train_image_dir_name = os.path.join(cfg.data_dir, cfg.train_image_dir_name)
|
||||||
|
args_opt.val_fname = cfg.val_fname
|
||||||
|
|
||||||
|
return args_opt
|
||||||
|
|
||||||
|
def prepare_valset(arg):
|
||||||
|
"""generate validate dataset."""
|
||||||
|
with open(os.path.join(arg.data_dir, arg.val_fname), 'r') as f_val:
|
||||||
|
f_list = f_val.readlines()
|
||||||
|
for i, _ in enumerate(f_list):
|
||||||
|
item = f_list[i]
|
||||||
|
img_filename = str(item).strip().split(',')[0]
|
||||||
|
img_path = os.path.join(arg.train_image_dir_name, img_filename)
|
||||||
|
img = Image.open(img_path)
|
||||||
|
img.save(os.path.join(arg.result_path, img_filename))
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
args = parse_args()
|
||||||
|
prepare_valset(args)
|
|
@ -0,0 +1,120 @@
|
||||||
|
#!/bin/bash
|
||||||
|
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
if [[ $# -lt 2 || $# -gt 3 ]]; then
|
||||||
|
echo "Usage: bash run_infer_310.sh [MINDIR_PATH] [NEED_PREPROCESS] [DEVICE_ID]
|
||||||
|
NEED_PREPROCESS means weather need preprocess or not, it's value is 'y' or 'n'.
|
||||||
|
DEVICE_ID is optional, it can be set by environment variable device_id, otherwise the value is zero"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
get_real_path(){
|
||||||
|
if [ "${1:0:1}" == "/" ]; then
|
||||||
|
echo "$1"
|
||||||
|
else
|
||||||
|
echo "$(realpath -m $PWD/$1)"
|
||||||
|
fi
|
||||||
|
}
|
||||||
|
model=$(get_real_path $1)
|
||||||
|
|
||||||
|
if [ "$2" == "y" ] || [ "$2" == "n" ];then
|
||||||
|
need_preprocess=$2
|
||||||
|
else
|
||||||
|
echo "weather need preprocess or not, it's value must be in [y, n]"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
device_id=0
|
||||||
|
if [ $# == 3 ]; then
|
||||||
|
device_id=$3
|
||||||
|
fi
|
||||||
|
|
||||||
|
echo "mindir name: "$model
|
||||||
|
echo "need preprocess: "$need_preprocess
|
||||||
|
echo "device id: "$device_id
|
||||||
|
|
||||||
|
export ASCEND_HOME=/usr/local/Ascend/
|
||||||
|
if [ -d ${ASCEND_HOME}/ascend-toolkit ]; then
|
||||||
|
export PATH=$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/ccec_compiler/bin:$ASCEND_HOME/ascend-toolkit/latest/atc/bin:$PATH
|
||||||
|
export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/ascend-toolkit/latest/atc/lib64:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
|
||||||
|
export TBE_IMPL_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp/op_impl/built-in/ai_core/tbe
|
||||||
|
export PYTHONPATH=${TBE_IMPL_PATH}:$ASCEND_HOME/ascend-toolkit/latest/fwkacllib/python/site-packages:$PYTHONPATH
|
||||||
|
export ASCEND_OPP_PATH=$ASCEND_HOME/ascend-toolkit/latest/opp
|
||||||
|
else
|
||||||
|
export PATH=$ASCEND_HOME/atc/ccec_compiler/bin:$ASCEND_HOME/atc/bin:$PATH
|
||||||
|
export LD_LIBRARY_PATH=/usr/local/lib:$ASCEND_HOME/atc/lib64:$ASCEND_HOME/acllib/lib64:$ASCEND_HOME/driver/lib64:$ASCEND_HOME/add-ons:$LD_LIBRARY_PATH
|
||||||
|
export PYTHONPATH=$ASCEND_HOME/atc/python/site-packages:$PYTHONPATH
|
||||||
|
export ASCEND_OPP_PATH=$ASCEND_HOME/opp
|
||||||
|
fi
|
||||||
|
|
||||||
|
function preprocess_data()
|
||||||
|
{
|
||||||
|
if [ -d preprocess_Result ]; then
|
||||||
|
rm -rf ./preprocess_Result
|
||||||
|
fi
|
||||||
|
mkdir preprocess_Result
|
||||||
|
python3.7 ../preprocess.py --result_path=./preprocess_Result/
|
||||||
|
}
|
||||||
|
|
||||||
|
function compile_app()
|
||||||
|
{
|
||||||
|
cd ../ascend310_infer || exit
|
||||||
|
bash build.sh &> build.log
|
||||||
|
}
|
||||||
|
|
||||||
|
function infer()
|
||||||
|
{
|
||||||
|
cd - || exit
|
||||||
|
if [ -d result_Files ]; then
|
||||||
|
rm -rf ./result_Files
|
||||||
|
fi
|
||||||
|
if [ -d time_Result ]; then
|
||||||
|
rm -rf ./time_Result
|
||||||
|
fi
|
||||||
|
mkdir result_Files
|
||||||
|
mkdir time_Result
|
||||||
|
|
||||||
|
../ascend310_infer/out/main --mindir_path=$model --dataset_path=./preprocess_Result/ --device_id=$device_id &> infer.log
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
function cal_acc()
|
||||||
|
{
|
||||||
|
python3.7 ../postprocess.py --rst_path=./result_Files &> acc.log
|
||||||
|
}
|
||||||
|
|
||||||
|
if [ $need_preprocess == "y" ]; then
|
||||||
|
preprocess_data
|
||||||
|
if [ $? -ne 0 ]; then
|
||||||
|
echo "preprocess dataset failed"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
fi
|
||||||
|
compile_app
|
||||||
|
if [ $? -ne 0 ]; then
|
||||||
|
echo "compile app code failed"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
infer
|
||||||
|
if [ $? -ne 0 ]; then
|
||||||
|
echo " execute inference failed"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
cal_acc
|
||||||
|
if [ $? -ne 0 ]; then
|
||||||
|
echo "calculate accuracy failed"
|
||||||
|
exit 1
|
||||||
|
fi
|
Loading…
Reference in New Issue