forked from mindspore-Ecosystem/mindspore
Revert "[feat] [assistant] [I3T96T] add new Dataset operator CMUARCTICDataset"
This reverts commitb077aa1cab
. Revert "[feat] [assistant] [I3T96X] add new Dataset operator LibriSpeechDataset" This reverts commit4e6f7dc97d
. delete pass_registry_test.cc comment hiai_nlu_model_multi.pb related line
This commit is contained in:
parent
580a97ba20
commit
36a8886ca2
|
@ -18,7 +18,7 @@
|
|||
SET BASE_PATH=%CD%
|
||||
SET BUILD_PATH=%BASE_PATH%/build
|
||||
|
||||
SET threads=6
|
||||
SET threads=8
|
||||
SET ENABLE_GITEE=OFF
|
||||
|
||||
set VERSION_MAJOR=''
|
||||
|
|
2
build.sh
2
build.sh
|
@ -61,7 +61,7 @@ usage()
|
|||
echo " -l Compile with python dependency, default on"
|
||||
echo " -S Enable enable download cmake compile dependency from gitee , default off"
|
||||
echo " -k Enable make clean, clean up compilation generated cache "
|
||||
echo " -W Enable x86_64 SSE or AVX instruction set, use [sse|neon|avx|avx512|off], default off for lite and avx for CPU"
|
||||
echo " -W Enable SIMD instruction set, use [sse|neon|avx|avx512|off], default avx for cloud CPU backend"
|
||||
echo " -H Enable hidden"
|
||||
echo " -L Link and specify Tensor-RT library path, default disable Tensor-RT lib linking"
|
||||
echo " -y Compile the symbol table switch and save the symbol table to the directory output"
|
||||
|
|
|
@ -1,44 +0,0 @@
|
|||
set(FFMPEG_FLAGS
|
||||
--disable-programs
|
||||
--disable-doc
|
||||
--disable-debug
|
||||
--disable-avdevice
|
||||
--disable-postproc
|
||||
--disable-avfilter
|
||||
--disable-network
|
||||
--disable-encoders
|
||||
--disable-hwaccels
|
||||
--disable-muxers
|
||||
--disable-bsfs
|
||||
--disable-protocols
|
||||
--enable-protocol=file
|
||||
--enable-protocol=pipe
|
||||
--disable-indevs
|
||||
--disable-outdevs
|
||||
--disable-devices
|
||||
--disable-filters
|
||||
--disable-bzlib
|
||||
--disable-iconv
|
||||
--disable-libxcb
|
||||
--disable-lzma
|
||||
--disable-sdl2
|
||||
--disable-xlib
|
||||
--disable-zlib)
|
||||
|
||||
set(REQ_URL "https://github.com/FFmpeg/FFmpeg/archive/n4.3.1.tar.gz")
|
||||
set(MD5 "426ca412ca61634a248c787e29507206")
|
||||
|
||||
mindspore_add_pkg(ffmpeg
|
||||
VER 4.3.1
|
||||
LIBS avcodec avformat avutil swresample swscale
|
||||
URL ${REQ_URL}
|
||||
MD5 ${MD5}
|
||||
CONFIGURE_COMMAND ./configure --disable-static --enable-shared --disable-x86asm ${FFMPEG_FLAGS}
|
||||
)
|
||||
|
||||
include_directories(${ffmpeg_INC})
|
||||
add_library(mindspore::avcodec ALIAS ffmpeg::avcodec)
|
||||
add_library(mindspore::avformat ALIAS ffmpeg::avformat)
|
||||
add_library(mindspore::avutil ALIAS ffmpeg::avutil)
|
||||
add_library(mindspore::swresample ALIAS ffmpeg::swresample)
|
||||
add_library(mindspore::swscale ALIAS ffmpeg::swscale)
|
|
@ -1,13 +1,15 @@
|
|||
set(glog_CXXFLAGS "-D_FORTIFY_SOURCE=2 -O2 ${SECURE_CXX_FLAGS} -Dgoogle=mindspore_private")
|
||||
set(glog_CFLAGS "-D_FORTIFY_SOURCE=2 -O2")
|
||||
if(NOT ENABLE_GLIBCXX)
|
||||
set(glog_CXXFLAGS "${glog_CXXFLAGS} -D_GLIBCXX_USE_CXX11_ABI=0")
|
||||
endif()
|
||||
|
||||
if(BUILD_LITE)
|
||||
set(glog_CXXFLAGS "-D_FORTIFY_SOURCE=2 -O2 ${SECURE_CXX_FLAGS} -Dgoogle=mindspore_private")
|
||||
set(glog_CFLAGS "-D_FORTIFY_SOURCE=2 -O2 ${SECURE_C_FLAGS}")
|
||||
set(glog_LDFLAGS "${SECURE_SHARED_LINKER_FLAGS}")
|
||||
set(glog_patch "")
|
||||
set(glog_lib glog)
|
||||
else()
|
||||
set(glog_CXXFLAGS "-D_FORTIFY_SOURCE=2 -O2 ${SECURE_CXX_FLAGS} -Dgoogle=mindspore_private")
|
||||
set(glog_CFLAGS "-D_FORTIFY_SOURCE=2 -O2")
|
||||
if(NOT ENABLE_GLIBCXX)
|
||||
set(glog_CXXFLAGS "${glog_CXXFLAGS} -D_GLIBCXX_USE_CXX11_ABI=0")
|
||||
endif()
|
||||
set(glog_patch ${CMAKE_SOURCE_DIR}/third_party/patch/glog/glog.patch001)
|
||||
set(glog_lib mindspore_glog)
|
||||
endif()
|
||||
|
|
|
@ -9,7 +9,7 @@ endif()
|
|||
|
||||
if(ENABLE_GITEE)
|
||||
set(REQ_URL "https://gitee.com/mirrors/JSON-for-Modern-CPP/repository/archive/v3.6.1.zip")
|
||||
set(MD5 "5bda78ce308e6cfcf614dcf1d5ff27a7")
|
||||
set(MD5 "36ea0d9a709c6667b2798a62f6b197ae")
|
||||
set(INCLUDE "./include")
|
||||
else()
|
||||
set(REQ_URL "https://github.com/nlohmann/json/releases/download/v3.6.1/include.zip")
|
||||
|
@ -23,4 +23,4 @@ mindspore_add_pkg(nlohmann_json
|
|||
URL ${REQ_URL}
|
||||
MD5 ${MD5})
|
||||
include_directories(${nlohmann_json_INC})
|
||||
add_library(mindspore::json ALIAS nlohmann_json)
|
||||
add_library(mindspore::json ALIAS nlohmann_json)
|
||||
|
|
|
@ -198,12 +198,6 @@ if(NOT ENABLE_GE)
|
|||
set(ASCEND_DRIVER_PATH ${ASCEND_PATH}/driver/lib64/common)
|
||||
|
||||
if(ENABLE_D)
|
||||
install(
|
||||
TARGETS ms_profile
|
||||
DESTINATION ${INSTALL_LIB_DIR}
|
||||
COMPONENT mindspore
|
||||
)
|
||||
|
||||
install(
|
||||
TARGETS hccl_plugin
|
||||
DESTINATION ${INSTALL_LIB_DIR}
|
||||
|
|
|
@ -330,8 +330,6 @@ elseif(WIN32)
|
|||
DESTINATION ${CONVERTER_ROOT_DIR}/include COMPONENT ${RUNTIME_COMPONENT_NAME})
|
||||
install(FILES ${TOP_DIR}/mindspore/lite/tools/converter/model_parser.h
|
||||
DESTINATION ${CONVERTER_ROOT_DIR}/include COMPONENT ${RUNTIME_COMPONENT_NAME})
|
||||
install(FILES ${TOP_DIR}/mindspore/lite/tools/converter/dump_graph.h
|
||||
DESTINATION ${CONVERTER_ROOT_DIR}/include COMPONENT ${RUNTIME_COMPONENT_NAME})
|
||||
install(FILES ${TOP_DIR}/mindspore/lite/tools/converter/ops/ops_def.h
|
||||
DESTINATION ${CONVERTER_ROOT_DIR}/include COMPONENT ${RUNTIME_COMPONENT_NAME})
|
||||
install(DIRECTORY ${TOP_DIR}/build/mindspore/schema/ DESTINATION ${CONVERTER_ROOT_DIR}/include/schema
|
||||
|
@ -462,8 +460,6 @@ else()
|
|||
DESTINATION ${CONVERTER_ROOT_DIR}/include COMPONENT ${RUNTIME_COMPONENT_NAME})
|
||||
install(FILES ${TOP_DIR}/mindspore/lite/tools/converter/model_parser.h
|
||||
DESTINATION ${CONVERTER_ROOT_DIR}/include COMPONENT ${RUNTIME_COMPONENT_NAME})
|
||||
install(FILES ${TOP_DIR}/mindspore/lite/tools/converter/dump_graph.h
|
||||
DESTINATION ${CONVERTER_ROOT_DIR}/include COMPONENT ${RUNTIME_COMPONENT_NAME})
|
||||
install(FILES ${TOP_DIR}/mindspore/lite/tools/converter/ops/ops_def.h
|
||||
DESTINATION ${CONVERTER_ROOT_DIR}/include COMPONENT ${RUNTIME_COMPONENT_NAME})
|
||||
install(DIRECTORY ${TOP_DIR}/mindspore/lite/build/schema/ DESTINATION ${CONVERTER_ROOT_DIR}/include/schema
|
||||
|
|
|
@ -23,12 +23,6 @@
|
|||
#include "include/api/data_type.h"
|
||||
#include "include/api/dual_abi_helper.h"
|
||||
|
||||
#ifdef _WIN32
|
||||
#define MS_API __declspec(dllexport)
|
||||
#else
|
||||
#define MS_API __attribute__((visibility("default")))
|
||||
#endif
|
||||
|
||||
namespace mindspore {
|
||||
class Model;
|
||||
class ModelImpl;
|
||||
|
|
|
@ -22,12 +22,6 @@
|
|||
#include <memory>
|
||||
#include "include/api/callback/callback.h"
|
||||
|
||||
#ifdef _WIN32
|
||||
#define MS_API __declspec(dllexport)
|
||||
#else
|
||||
#define MS_API __attribute__((visibility("default")))
|
||||
#endif
|
||||
|
||||
namespace mindspore {
|
||||
|
||||
class CkptSaver: public TrainCallBack {
|
||||
|
|
|
@ -21,12 +21,6 @@
|
|||
#include <utility>
|
||||
#include "include/api/callback/callback.h"
|
||||
|
||||
#ifdef _WIN32
|
||||
#define MS_API __declspec(dllexport)
|
||||
#else
|
||||
#define MS_API __attribute__((visibility("default")))
|
||||
#endif
|
||||
|
||||
using GraphPoint = std::pair<int, float>;
|
||||
|
||||
namespace mindspore {
|
||||
|
|
|
@ -22,12 +22,6 @@
|
|||
#include <memory>
|
||||
#include "include/api/callback/callback.h"
|
||||
|
||||
#ifdef _WIN32
|
||||
#define MS_API __declspec(dllexport)
|
||||
#else
|
||||
#define MS_API __attribute__((visibility("default")))
|
||||
#endif
|
||||
|
||||
namespace mindspore {
|
||||
|
||||
constexpr int DONT_UPDATE_LR = 0;
|
||||
|
|
|
@ -22,12 +22,6 @@
|
|||
#include <memory>
|
||||
#include "include/api/callback/callback.h"
|
||||
|
||||
#ifdef _WIN32
|
||||
#define MS_API __declspec(dllexport)
|
||||
#else
|
||||
#define MS_API __attribute__((visibility("default")))
|
||||
#endif
|
||||
|
||||
namespace mindspore {
|
||||
|
||||
class TimeMonitor: public TrainCallBack {
|
||||
|
|
|
@ -24,12 +24,6 @@
|
|||
#include "include/api/callback/callback.h"
|
||||
#include "include/api/metrics/accuracy.h"
|
||||
|
||||
#ifdef _WIN32
|
||||
#define MS_API __declspec(dllexport)
|
||||
#else
|
||||
#define MS_API __attribute__((visibility("default")))
|
||||
#endif
|
||||
|
||||
using GraphPoint = std::pair<int, float>;
|
||||
|
||||
namespace mindspore {
|
||||
|
|
|
@ -23,12 +23,6 @@
|
|||
#include "include/api/data_type.h"
|
||||
#include "include/api/dual_abi_helper.h"
|
||||
|
||||
#ifdef _WIN32
|
||||
#define MS_API __declspec(dllexport)
|
||||
#else
|
||||
#define MS_API __attribute__((visibility("default")))
|
||||
#endif
|
||||
|
||||
namespace mindspore {
|
||||
|
||||
class MixPrecisionCfg {
|
||||
|
|
|
@ -105,14 +105,29 @@ class MS_API DeviceInfoContext : public std::enable_shared_from_this<DeviceInfoC
|
|||
|
||||
return std::static_pointer_cast<T>(shared_from_this());
|
||||
}
|
||||
|
||||
/// \brief obtain provider's name
|
||||
///
|
||||
/// \return provider's name.
|
||||
std::string GetProvider() const;
|
||||
/// \brief set provider's name.
|
||||
///
|
||||
/// \param[in] provider define the provider's name.
|
||||
void SetProvider(const std::string &provider);
|
||||
|
||||
/// \brief obtain provider's device type.
|
||||
///
|
||||
/// \return provider's device type.
|
||||
std::string GetProviderDevice() const;
|
||||
/// \brief set provider's device type.
|
||||
///
|
||||
/// \param[in] device define the provider's device type.EG: CPU.
|
||||
void SetProviderDevice(const std::string &device);
|
||||
|
||||
/// \brief set memory allocator.
|
||||
///
|
||||
/// \param[in] allocator define the memory allocator which can be defined by user.
|
||||
void SetAllocator(const std::shared_ptr<Allocator> &allocator);
|
||||
/// \brief obtain memory allocator.
|
||||
///
|
||||
/// \return memory allocator.
|
||||
std::shared_ptr<Allocator> GetAllocator() const;
|
||||
|
||||
protected:
|
||||
|
|
|
@ -24,9 +24,16 @@
|
|||
#include "include/api/context.h"
|
||||
|
||||
namespace mindspore::kernel {
|
||||
/// \brief The Kernel class is used to define a MindSpore Kernel.
|
||||
class Kernel {
|
||||
public:
|
||||
Kernel() = default;
|
||||
/// \brief Constructor.
|
||||
///
|
||||
/// \param[in] inputs define the input tensors for kernel.
|
||||
/// \param[in] outputs define the output tensors for kernel.
|
||||
/// \param[in] primitive define the primitive of kernel generated by flatbuffers.
|
||||
/// \param[in] ctx define the context for kernel.
|
||||
Kernel(const std::vector<mindspore::MSTensor> &inputs, const std::vector<mindspore::MSTensor> &outputs,
|
||||
const schema::Primitive *primitive, const mindspore::Context *ctx)
|
||||
: context_(ctx), inputs_(std::move(inputs)), outputs_(std::move(outputs)), primitive_(primitive) {
|
||||
|
@ -34,32 +41,65 @@ class Kernel {
|
|||
type_ = primitive->value_type();
|
||||
}
|
||||
}
|
||||
/// \brief Destructor.
|
||||
virtual ~Kernel() = default;
|
||||
|
||||
/// \brief prepare for executing kernel.
|
||||
///
|
||||
/// \return result code.
|
||||
virtual int Prepare() = 0;
|
||||
|
||||
/// \brief execute the kernel.
|
||||
///
|
||||
/// \return result code.
|
||||
virtual int Execute() = 0;
|
||||
|
||||
/// \brief resize the kernel input shape, memory need to refresh.
|
||||
///
|
||||
/// \return result code.
|
||||
virtual int ReSize() = 0;
|
||||
|
||||
/// \brief set kernel's input tensors.
|
||||
///
|
||||
/// \param[in] in_tensors define the input tensors.
|
||||
virtual void set_inputs(const std::vector<mindspore::MSTensor> &in_tensors) { this->inputs_ = in_tensors; }
|
||||
|
||||
/// \brief set kernel's input tensor.
|
||||
///
|
||||
/// \param[in] in_tensor define the input tensor.
|
||||
/// \param[in] index define the index of the input tensor.
|
||||
virtual void set_input(mindspore::MSTensor in_tensor, int index) { this->inputs_[index] = in_tensor; }
|
||||
|
||||
/// \brief set kernel's output tensors.
|
||||
///
|
||||
/// \param[in] out_tensors define the output tensors.
|
||||
virtual void set_outputs(const std::vector<mindspore::MSTensor> &out_tensors) { this->outputs_ = out_tensors; }
|
||||
|
||||
/// \brief set kernel's output tensor.
|
||||
///
|
||||
/// \param[in] out_tensor define the output tensor.
|
||||
/// \param[in] index define the index of the output tensor.
|
||||
virtual void set_output(mindspore::MSTensor out_tensor, int index) { this->outputs_[index] = out_tensor; }
|
||||
|
||||
/// \brief obtain kernel's input tensors.
|
||||
///
|
||||
/// \return input tensors.
|
||||
virtual const std::vector<mindspore::MSTensor> &inputs() { return this->inputs_; }
|
||||
|
||||
/// \brief obtain kernel's output tensors.
|
||||
///
|
||||
/// \return output tensors.
|
||||
virtual const std::vector<mindspore::MSTensor> &outputs() { return this->outputs_; }
|
||||
|
||||
/// \brief obtain kernel's name.
|
||||
///
|
||||
/// \return kernel's name.
|
||||
std::string name() const { return this->name_; }
|
||||
|
||||
/// \brief set kernel's name.
|
||||
///
|
||||
/// \param[in] name define the kernel's name.
|
||||
void set_name(const std::string &name) { this->name_ = name; }
|
||||
|
||||
/// \brief obtain kernel's context.
|
||||
///
|
||||
/// \return kernel's context.
|
||||
const mindspore::Context *context() const { return this->context_; }
|
||||
/// \brief obtain kernel's type.
|
||||
///
|
||||
/// \return kernel's type.
|
||||
virtual schema::PrimitiveType type() const { return type_; }
|
||||
/// \brief obtain the primitive of kernel generated by flatbuffers.
|
||||
///
|
||||
/// \return the primitive of kernel generated by flatbuffers.
|
||||
const schema::Primitive *primitive() const { return this->primitive_; }
|
||||
|
||||
protected:
|
||||
|
|
|
@ -27,12 +27,16 @@
|
|||
|
||||
#ifndef MS_API
|
||||
#ifdef _WIN32
|
||||
#ifdef _MSC_VER
|
||||
#ifdef BUILDING_DLL
|
||||
#define MS_API __declspec(dllexport)
|
||||
#else
|
||||
#define MS_API __declspec(dllimport)
|
||||
#endif
|
||||
#else
|
||||
#define MS_API __declspec(dllexport)
|
||||
#endif
|
||||
#else
|
||||
#define MS_API __attribute__((visibility("default")))
|
||||
#endif
|
||||
#endif
|
||||
|
|
|
@ -148,7 +148,7 @@ def check_number(arg_value, value, rel, arg_type=int, arg_name=None, prim_name=N
|
|||
Check argument integer.
|
||||
|
||||
Example:
|
||||
- number = check_int(number, 0, Rel.GE, "number", None) # number >= 0
|
||||
- number = check_number(number, 0, Rel.GE, "number", None) # number >= 0
|
||||
"""
|
||||
rel_fn = Rel.get_fns(rel)
|
||||
prim_name = f'in `{prim_name}`' if prim_name else ''
|
||||
|
|
|
@ -18,7 +18,6 @@ from .addn import AddN
|
|||
from .assign_add import AssignAdd
|
||||
from .batchnorm import BatchNorm
|
||||
from .batchnorm_grad import BatchNormGrad
|
||||
from .bias_add import BiasAdd
|
||||
from .bias_add_grad import BiasAddGrad
|
||||
from .clip_by_norm_no_div_sum import ClipByNormNoDivSum
|
||||
from .conv2d import Conv2D
|
||||
|
@ -26,7 +25,6 @@ from .complex import CAbs, CAdd, CDiv, CMul, CSub
|
|||
from .dropout_grad import DropoutGrad
|
||||
from .equal_count import EqualCount
|
||||
from .erfc import Erfc
|
||||
from .expand_dims import ExpandDims
|
||||
from .fused_adam import FusedAdam
|
||||
from .fused_adam_weight_decay import FusedAdamWeightDecay
|
||||
from .fused_mul_add import FusedMulAdd
|
||||
|
@ -51,6 +49,7 @@ from .sigmoid import Sigmoid
|
|||
from .sigmoid_cross_entropy_with_logits import SigmoidCrossEntropyWithLogits
|
||||
from .sigmoid_cross_entropy_with_logits_grad import SigmoidCrossEntropyWithLogitsGrad
|
||||
from .sigmoid_grad import SigmoidGrad
|
||||
from .slice import Slice
|
||||
from .softmax import Softmax
|
||||
from .softmax_cross_entropy_with_logits import SoftmaxCrossEntropyWithLogits
|
||||
from .softmax_grad_ext import SoftmaxGradExt
|
||||
|
|
|
@ -80,6 +80,9 @@ class Expander:
|
|||
|
||||
class ExpanderInfoValidator:
|
||||
"""ExpanderInfoValidator is the utility class which defines the validator decorator for expanders"""
|
||||
|
||||
def __init__(self):
|
||||
"""Init"""
|
||||
@staticmethod
|
||||
def _add_check_function(kls, func):
|
||||
"""
|
||||
|
@ -198,8 +201,8 @@ def to_frac_z_axis(ori_shape, ori_axis):
|
|||
return frac_z_axis
|
||||
|
||||
|
||||
def infer_shape_from_fractalNz(fractal):
|
||||
"get original shape from fractalNz shape"
|
||||
def infer_shape_from_fractalnz(fractal):
|
||||
"get original shape from fractalnz shape"
|
||||
shape = []
|
||||
dims = len(fractal)
|
||||
batch = dims - 4
|
||||
|
|
|
@ -24,6 +24,7 @@ from .expand_dims import ExpandDims
|
|||
@VLD.check_attrs('is_training', 'momentum', 'epsilon')
|
||||
class BatchNorm(Expander):
|
||||
"""BatchNorm expander"""
|
||||
|
||||
def _expand(self, graph_builder):
|
||||
# get op info
|
||||
input_x = self.inputs[0]
|
||||
|
@ -42,81 +43,8 @@ class BatchNorm(Expander):
|
|||
input_x = graph_builder.emit('Cast', [input_x], attrs={'dst_type': input_x_new_type})
|
||||
|
||||
if self.attrs['is_training']:
|
||||
reduce_axis = ()
|
||||
shape_x = input_x.shape
|
||||
if input_x.data_format == DF.NHWC:
|
||||
reduce_axis = (0, 1, 2)
|
||||
num = shape_x[0] * shape_x[1] * shape_x[2]
|
||||
else:
|
||||
reduce_axis = (0, 2, 3)
|
||||
num = shape_x[0] * shape_x[2] * shape_x[3]
|
||||
num_rec = 1.0 / num
|
||||
num_rec_v = graph_builder.value(input_scale.dtype, num_rec)
|
||||
|
||||
# compute mean value of input_x
|
||||
mean_sum = graph_builder.emit(
|
||||
'ReduceSum', [input_x], attrs={'reduce_axis': reduce_axis, 'keep_dims': False})
|
||||
mean_muls = graph_builder.emit('Mul', [mean_sum, num_rec_v])
|
||||
|
||||
# compute variance of input_x
|
||||
if input_x.data_format in (DF.DEFAULT, DF.NCHW):
|
||||
mean_muls_expand = graph_builder.emit(
|
||||
'Reshape', [mean_muls], attrs={'shape': ExpandDims.infer_shape(mean_muls.shape, [-1, -1])})
|
||||
else:
|
||||
mean_muls_expand = mean_muls
|
||||
var_sub = graph_builder.emit('Sub', [input_x, mean_muls_expand])
|
||||
var_mul = graph_builder.emit('Mul', [var_sub, var_sub])
|
||||
var_sum = graph_builder.emit('ReduceSum', [var_mul], attrs={'reduce_axis': reduce_axis, 'keep_dims': False})
|
||||
var_mul = graph_builder.emit('Mul', [var_sum, num_rec_v])
|
||||
|
||||
# y_sqrt_rec means 1 / sqrt(variance + epsilon), which is calculated in backward pass
|
||||
scalar_one = 1.0
|
||||
scalar_one_v = graph_builder.value(input_scale.dtype, scalar_one)
|
||||
y_add = graph_builder.emit('Add', [var_mul, epsilon_v])
|
||||
y_sqrt = graph_builder.emit('Sqrt', [y_add])
|
||||
y_sqrt_rec = graph_builder.emit('RealDiv', [scalar_one_v, y_sqrt])
|
||||
|
||||
# compute res_y
|
||||
tmp_sub = graph_builder.emit('Sub', [input_x, mean_muls_expand])
|
||||
if input_x.data_format in (DF.DEFAULT, DF.NCHW):
|
||||
y_sqrt_rec_expand = graph_builder.emit(
|
||||
'Reshape', [y_sqrt_rec], attrs={'shape': ExpandDims.infer_shape(y_sqrt_rec.shape, [-1, -1])})
|
||||
else:
|
||||
y_sqrt_rec_expand = y_sqrt_rec
|
||||
y_norm = graph_builder.emit('Mul', [tmp_sub, y_sqrt_rec_expand])
|
||||
if input_x.data_format in (DF.DEFAULT, DF.NCHW):
|
||||
input_scale_expand = graph_builder.emit(
|
||||
'Reshape', [input_scale], attrs={'shape': ExpandDims.infer_shape(input_scale.shape, [-1, -1])})
|
||||
else:
|
||||
input_scale_expand = input_scale
|
||||
res_y_mul = graph_builder.emit('Mul', [input_scale_expand, y_norm])
|
||||
if input_x.data_format in (DF.DEFAULT, DF.NCHW):
|
||||
input_offset_expand = graph_builder.emit(
|
||||
'Reshape', [input_offset], attrs={'shape': ExpandDims.infer_shape(input_offset.shape, [-1, -1])})
|
||||
else:
|
||||
input_offset_expand = input_offset
|
||||
res_y = graph_builder.emit('Add', [res_y_mul, input_offset_expand])
|
||||
|
||||
# compute mean_res
|
||||
momentum_sub = scalar_one - self.attrs['momentum']
|
||||
momentum_v_sub = graph_builder.value(input_scale.dtype, momentum_sub)
|
||||
new_running_mean_tmp = graph_builder.emit('Mul', [momentum_v_sub, input_mean])
|
||||
momentum_v = graph_builder.value(input_scale.dtype, self.attrs['momentum'])
|
||||
current_mean_tmp = graph_builder.emit('Mul', [momentum_v, mean_muls])
|
||||
updated_moving_mean = graph_builder.emit('Add', [new_running_mean_tmp, current_mean_tmp])
|
||||
mean_res = graph_builder.emit(
|
||||
'InplaceAssign', [input_mean, updated_moving_mean, updated_moving_mean], attrs={'fake_output': True})
|
||||
|
||||
# variance_res is calculated by sample variance, and need to multiply by num / (num - 1)
|
||||
var_num = float(num) / (num - 1)
|
||||
var_num_v = graph_builder.value(input_scale.dtype, var_num)
|
||||
var_mul_update = graph_builder.emit('Mul', [var_num_v, var_mul])
|
||||
new_running_var_tmp = graph_builder.emit('Mul', [momentum_v_sub, input_variance])
|
||||
current_var_tmp = graph_builder.emit('Mul', [momentum_v, var_mul_update])
|
||||
updated_moving_variance = graph_builder.emit('Add', [new_running_var_tmp, current_var_tmp])
|
||||
variance_res = graph_builder.emit(
|
||||
'InplaceAssign', [input_variance, updated_moving_variance, updated_moving_variance],
|
||||
attrs={'fake_output': True})
|
||||
self.inputs[0] = input_x
|
||||
res_y, mean_res, variance_res, mean_muls, y_sqrt_rec = self._bn_train(graph_builder)
|
||||
if input_x_new_type != input_x_ori_type:
|
||||
res_y = graph_builder.emit('Cast', [res_y], attrs={'dst_type': input_x_ori_type})
|
||||
return res_y, mean_res, variance_res, mean_muls, y_sqrt_rec
|
||||
|
@ -140,3 +68,88 @@ class BatchNorm(Expander):
|
|||
if input_x_new_type != input_x_ori_type:
|
||||
res_y = graph_builder.emit('Cast', [res_y], attrs={'dst_type': input_x_ori_type})
|
||||
return res_y, var_add, var_add, var_add, var_add
|
||||
|
||||
def _bn_train(self, graph_builder):
|
||||
"""expand BatchNorm for training mode"""
|
||||
input_x = self.inputs[0]
|
||||
input_scale = self.inputs[1]
|
||||
input_offset = self.inputs[2]
|
||||
input_mean = self.inputs[3]
|
||||
input_variance = self.inputs[4]
|
||||
epsilon_v = graph_builder.value(input_scale.dtype, self.attrs['epsilon'])
|
||||
reduce_axis = ()
|
||||
shape_x = input_x.shape
|
||||
if input_x.data_format == DF.NHWC:
|
||||
reduce_axis = (0, 1, 2)
|
||||
num = shape_x[0] * shape_x[1] * shape_x[2]
|
||||
else:
|
||||
reduce_axis = (0, 2, 3)
|
||||
num = shape_x[0] * shape_x[2] * shape_x[3]
|
||||
num_rec = 1.0 / num
|
||||
num_rec_v = graph_builder.value(input_scale.dtype, num_rec)
|
||||
|
||||
# compute mean value of input_x
|
||||
mean_sum = graph_builder.emit(
|
||||
'ReduceSum', [input_x], attrs={'reduce_axis': reduce_axis, 'keep_dims': False})
|
||||
mean_muls = graph_builder.emit('Mul', [mean_sum, num_rec_v])
|
||||
|
||||
# compute variance of input_x
|
||||
if input_x.data_format in (DF.DEFAULT, DF.NCHW):
|
||||
mean_muls_expand = graph_builder.emit(
|
||||
'Reshape', [mean_muls], attrs={'shape': ExpandDims.infer_shape(mean_muls.shape, [-1, -1])})
|
||||
else:
|
||||
mean_muls_expand = mean_muls
|
||||
var_sub = graph_builder.emit('Sub', [input_x, mean_muls_expand])
|
||||
var_mul = graph_builder.emit('Mul', [var_sub, var_sub])
|
||||
var_sum = graph_builder.emit('ReduceSum', [var_mul], attrs={'reduce_axis': reduce_axis, 'keep_dims': False})
|
||||
var_mul = graph_builder.emit('Mul', [var_sum, num_rec_v])
|
||||
|
||||
# y_sqrt_rec means 1 / sqrt(variance + epsilon), which is calculated in backward pass
|
||||
scalar_one = 1.0
|
||||
scalar_one_v = graph_builder.value(input_scale.dtype, scalar_one)
|
||||
y_add = graph_builder.emit('Add', [var_mul, epsilon_v])
|
||||
y_sqrt = graph_builder.emit('Sqrt', [y_add])
|
||||
y_sqrt_rec = graph_builder.emit('RealDiv', [scalar_one_v, y_sqrt])
|
||||
|
||||
# compute res_y
|
||||
tmp_sub = graph_builder.emit('Sub', [input_x, mean_muls_expand])
|
||||
if input_x.data_format in (DF.DEFAULT, DF.NCHW):
|
||||
y_sqrt_rec_expand = graph_builder.emit(
|
||||
'Reshape', [y_sqrt_rec], attrs={'shape': ExpandDims.infer_shape(y_sqrt_rec.shape, [-1, -1])})
|
||||
else:
|
||||
y_sqrt_rec_expand = y_sqrt_rec
|
||||
y_norm = graph_builder.emit('Mul', [tmp_sub, y_sqrt_rec_expand])
|
||||
if input_x.data_format in (DF.DEFAULT, DF.NCHW):
|
||||
input_scale_expand = graph_builder.emit(
|
||||
'Reshape', [input_scale], attrs={'shape': ExpandDims.infer_shape(input_scale.shape, [-1, -1])})
|
||||
else:
|
||||
input_scale_expand = input_scale
|
||||
res_y_mul = graph_builder.emit('Mul', [input_scale_expand, y_norm])
|
||||
if input_x.data_format in (DF.DEFAULT, DF.NCHW):
|
||||
input_offset_expand = graph_builder.emit(
|
||||
'Reshape', [input_offset], attrs={'shape': ExpandDims.infer_shape(input_offset.shape, [-1, -1])})
|
||||
else:
|
||||
input_offset_expand = input_offset
|
||||
res_y = graph_builder.emit('Add', [res_y_mul, input_offset_expand])
|
||||
|
||||
# compute mean_res
|
||||
momentum_sub = scalar_one - self.attrs['momentum']
|
||||
momentum_v_sub = graph_builder.value(input_scale.dtype, momentum_sub)
|
||||
new_running_mean_tmp = graph_builder.emit('Mul', [momentum_v_sub, input_mean])
|
||||
momentum_v = graph_builder.value(input_scale.dtype, self.attrs['momentum'])
|
||||
current_mean_tmp = graph_builder.emit('Mul', [momentum_v, mean_muls])
|
||||
updated_moving_mean = graph_builder.emit('Add', [new_running_mean_tmp, current_mean_tmp])
|
||||
mean_res = graph_builder.emit(
|
||||
'InplaceAssign', [input_mean, updated_moving_mean, updated_moving_mean], attrs={'fake_output': True})
|
||||
|
||||
# variance_res is calculated by sample variance, and need to multiply by num / (num - 1)
|
||||
var_num = float(num) / (num - 1)
|
||||
var_num_v = graph_builder.value(input_scale.dtype, var_num)
|
||||
var_mul_update = graph_builder.emit('Mul', [var_num_v, var_mul])
|
||||
new_running_var_tmp = graph_builder.emit('Mul', [momentum_v_sub, input_variance])
|
||||
current_var_tmp = graph_builder.emit('Mul', [momentum_v, var_mul_update])
|
||||
updated_moving_variance = graph_builder.emit('Add', [new_running_var_tmp, current_var_tmp])
|
||||
variance_res = graph_builder.emit(
|
||||
'InplaceAssign', [input_variance, updated_moving_variance, updated_moving_variance],
|
||||
attrs={'fake_output': True})
|
||||
return res_y, mean_res, variance_res, mean_muls, y_sqrt_rec
|
||||
|
|
|
@ -17,12 +17,14 @@ from mindspore._extends.graph_kernel.model.model import DataFormat as DF
|
|||
from ._utils import Expander, ExpanderInfoValidator as VLD
|
||||
from .expand_dims import ExpandDims
|
||||
|
||||
|
||||
@VLD.add_format(DF.NHWC, DF.NHWC, DF.DEFAULT, DF.DEFAULT, DF.DEFAULT, DF.DEFAULT)
|
||||
@VLD.add_format(DF.NCHW, DF.NCHW, DF.DEFAULT, DF.DEFAULT, DF.DEFAULT, DF.DEFAULT)
|
||||
@VLD.add_format(DF.DEFAULT, DF.DEFAULT, DF.DEFAULT, DF.DEFAULT, DF.DEFAULT, DF.DEFAULT)
|
||||
@VLD.check_attrs('is_training', 'epsilon')
|
||||
class BatchNormGrad(Expander):
|
||||
"""BatchNormGrad expander"""
|
||||
|
||||
def _expand(self, graph_builder):
|
||||
# get op info
|
||||
input_dy = self.inputs[0]
|
||||
|
|
|
@ -1,48 +0,0 @@
|
|||
# Copyright 2020-2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ===========================================================================
|
||||
"""generate json desc for bias_add"""
|
||||
from mindspore._extends.graph_kernel.model.model import DataFormat as DF
|
||||
from ._utils import Expander, ExpanderInfoValidator as VLD
|
||||
from .expand_dims import ExpandDims
|
||||
|
||||
|
||||
@VLD.add_format(DF.DEFAULT, DF.DEFAULT)
|
||||
@VLD.add_format(DF.NCHW, DF.DEFAULT)
|
||||
@VLD.add_format(DF.NHWC, DF.DEFAULT)
|
||||
class BiasAdd(Expander):
|
||||
"""BiasAdd expander"""
|
||||
|
||||
def _expand(self, graph_builder):
|
||||
input_x, input_y = self.inputs
|
||||
|
||||
if input_x.data_format == DF.NCHW:
|
||||
input_y_expand = graph_builder.emit(
|
||||
'Reshape', [input_y], attrs={'shape': ExpandDims.infer_shape(input_y.shape, [1, 2])})
|
||||
result = graph_builder.emit('Add', [input_x, input_y_expand])
|
||||
elif input_x.data_format == DF.DEFAULT:
|
||||
if len(input_x.shape) == 2:
|
||||
result = graph_builder.emit('Add', [input_x, input_y])
|
||||
elif len(input_x.shape) == 3:
|
||||
input_y_expand = graph_builder.emit(
|
||||
'Reshape', [input_y], attrs={'shape': ExpandDims.infer_shape(input_y.shape, 1)})
|
||||
result = graph_builder.emit('Add', [input_x, input_y_expand])
|
||||
else: # len == 4
|
||||
input_y_expand = graph_builder.emit(
|
||||
'Reshape', [input_y], attrs={'shape': ExpandDims.infer_shape(input_y.shape, [1, 2])})
|
||||
result = graph_builder.emit('Add', [input_x, input_y_expand])
|
||||
else: # NHWC
|
||||
result = graph_builder.emit('Add', [input_x, input_y])
|
||||
|
||||
return result
|
|
@ -15,6 +15,7 @@
|
|||
"""generate json desc for FusedMulAdd"""
|
||||
from ._utils import Expander
|
||||
|
||||
|
||||
class FusedMulAdd(Expander):
|
||||
"""FusedMulAdd expander"""
|
||||
|
||||
|
|
|
@ -15,13 +15,15 @@
|
|||
"""generate json desc for LayerNorm"""
|
||||
from mindspore._extends.graph_kernel.model.model import DataFormat as DF
|
||||
from ._utils import Expander, ExpanderInfoValidator as VLD
|
||||
from ._utils import infer_shape_from_fractalNz, get_reduced_ori_shape, to_frac_z_axis
|
||||
from ._utils import infer_shape_from_fractalnz, get_reduced_ori_shape, to_frac_z_axis
|
||||
|
||||
|
||||
@VLD.add_format(DF.FRAC_NZ, DF.DEFAULT, DF.DEFAULT)
|
||||
@VLD.add_format(DF.DEFAULT, DF.DEFAULT, DF.DEFAULT)
|
||||
@VLD.check_attrs('begin_norm_axis', 'begin_params_axis', 'epsilon')
|
||||
class LayerNorm(Expander):
|
||||
"""LayerNorm expander"""
|
||||
|
||||
def _expand(self, graph_builder):
|
||||
input_x, input_gamma, input_beta = self.inputs
|
||||
processor = self.processor
|
||||
|
@ -36,7 +38,7 @@ class LayerNorm(Expander):
|
|||
|
||||
ori_shape_x = input_x.shape
|
||||
if input_x.data_format == DF.FRAC_NZ:
|
||||
ori_shape_x = infer_shape_from_fractalNz(ori_shape_x)
|
||||
ori_shape_x = infer_shape_from_fractalnz(ori_shape_x)
|
||||
|
||||
# Calculate the scaling ratio of the average
|
||||
if begin_norm_axis < 0:
|
||||
|
|
|
@ -17,6 +17,7 @@ from mindspore._extends.graph_kernel.model.model import DataFormat as DF
|
|||
from mindspore._extends.graph_kernel.model.model import GraphKernelUnsupportedException as GKException
|
||||
from ._utils import Expander, ExpanderInfoValidator as VLD
|
||||
|
||||
|
||||
@VLD.check_attrs('transpose_a', 'transpose_b', 'left_format', 'right_format')
|
||||
class MatMul(Expander):
|
||||
"""
|
||||
|
@ -24,7 +25,7 @@ class MatMul(Expander):
|
|||
"""
|
||||
|
||||
def __init__(self, expand_info):
|
||||
super().__init__(expand_info)
|
||||
super(MatMul, self).__init__(expand_info)
|
||||
self.transpose_a = self.attrs['transpose_a']
|
||||
self.transpose_b = self.attrs['transpose_b']
|
||||
self.left_format = self.attrs['left_format']
|
||||
|
@ -47,28 +48,28 @@ class MatMul(Expander):
|
|||
if input_num < 2:
|
||||
raise GKException("matul inputs number should bigger than 1, but got {}.".format(input_num))
|
||||
|
||||
def _trans_shape(self, shape):
|
||||
trans_shape = list(shape)
|
||||
trans_shape[-2] = shape[-1]
|
||||
trans_shape[-1] = shape[-2]
|
||||
return trans_shape
|
||||
|
||||
def _expand(self, graph_builder):
|
||||
def transpose(shape):
|
||||
trans_shape = list(shape)
|
||||
trans_shape[-2] = shape[-1]
|
||||
trans_shape[-1] = shape[-2]
|
||||
return trans_shape
|
||||
if not self._optimize_to_mul():
|
||||
raise GKException("MatMul/BatchMatMul do not need to be replaced by Mul")
|
||||
#Matmul is replaced by Mul([b m k], [b k n]) when k==1
|
||||
# Matmul is replaced by Mul([b m k], [b k n]) when k==1
|
||||
input_a = self.inputs[0]
|
||||
input_b = self.inputs[1]
|
||||
if self.transpose_a:
|
||||
shape_a_trans = self._trans_shape(self.shape_a)
|
||||
shape_a_trans = transpose(self.shape_a)
|
||||
input_a = graph_builder.emit('Reshape', [input_a], attrs={'shape': shape_a_trans})
|
||||
if self.transpose_b:
|
||||
shape_b_trans = self._trans_shape(self.shape_b)
|
||||
shape_b_trans = transpose(self.shape_b)
|
||||
input_b = graph_builder.emit('Reshape', [input_b], attrs={'shape': shape_b_trans})
|
||||
result = graph_builder.emit('Mul', [input_a, input_b])
|
||||
if 'dst_type' in self.attrs and self.inputs[0].dtype != self.attrs['dst_type']:
|
||||
result = graph_builder.emit('Cast', [result], attrs={'dst_type': self.attrs['dst_type']})
|
||||
return result
|
||||
|
||||
|
||||
class BatchMatMul(MatMul):
|
||||
"""BatchMatMul expander"""
|
||||
|
|
|
@ -24,7 +24,7 @@ class MinimumGrad(Expander):
|
|||
def _check(self):
|
||||
if not self.attrs.get('grad_x', True) and not self.attrs.get('grad_y', True):
|
||||
raise GKException("both grad_x and grad_y are False.")
|
||||
return super()._check()
|
||||
return super(MinimumGrad, self)._check()
|
||||
|
||||
def _expand(self, graph_builder):
|
||||
input_x, input_y, input_dout = self.inputs
|
||||
|
@ -34,7 +34,8 @@ class MinimumGrad(Expander):
|
|||
dx = graph_builder.emit('Mul', [le_result, input_dout])
|
||||
dy = graph_builder.emit('Sub', [input_dout, dx])
|
||||
|
||||
# for minimumgrad op, output_shape should be equal to input_shape, but some elementwise operating may broadcast input_shape
|
||||
# for minimumgrad op, output_shape should be equal to input_shape,
|
||||
# but some elementwise operating may broadcast input_shape
|
||||
# then output_shape not equal to original input_shape, so need to reduce output to let them equal
|
||||
reduce_axis_x = self.get_reduce_axis(input_x.shape, dx.shape)
|
||||
reduce_axis_y = self.get_reduce_axis(input_y.shape, dy.shape)
|
||||
|
|
|
@ -15,7 +15,8 @@
|
|||
"""generate json desc for softmax"""
|
||||
from mindspore._extends.graph_kernel.model.model import DataFormat as DF
|
||||
from ._utils import Expander, ExpanderInfoValidator as VLD
|
||||
from ._utils import infer_shape_from_fractalNz, get_reduced_ori_shape, to_frac_z_axis
|
||||
from ._utils import infer_shape_from_fractalnz, get_reduced_ori_shape, to_frac_z_axis
|
||||
|
||||
|
||||
@VLD.add_format(DF.FRAC_NZ)
|
||||
@VLD.add_format(DF.DEFAULT)
|
||||
|
@ -30,7 +31,7 @@ class Softmax(Expander):
|
|||
|
||||
ori_shape = input_x.shape
|
||||
if input_x.data_format == DF.FRAC_NZ:
|
||||
ori_shape = infer_shape_from_fractalNz(input_x.shape)
|
||||
ori_shape = infer_shape_from_fractalnz(input_x.shape)
|
||||
|
||||
for i, _ in enumerate(list(axis)):
|
||||
if axis[i] < 0:
|
||||
|
|
|
@ -15,7 +15,8 @@
|
|||
"""generate json desc for SoftmaxGradExt"""
|
||||
from mindspore._extends.graph_kernel.model.model import DataFormat as DF
|
||||
from ._utils import Expander, ExpanderInfoValidator as VLD
|
||||
from ._utils import infer_shape_from_fractalNz, get_reduced_ori_shape, to_frac_z_axis
|
||||
from ._utils import infer_shape_from_fractalnz, get_reduced_ori_shape, to_frac_z_axis
|
||||
|
||||
|
||||
@VLD.add_format(DF.FRAC_NZ, DF.FRAC_NZ, DF.DEFAULT)
|
||||
@VLD.add_format(DF.DEFAULT, DF.DEFAULT, DF.DEFAULT)
|
||||
|
@ -29,7 +30,7 @@ class SoftmaxGradExt(Expander):
|
|||
|
||||
ori_shape = x.shape
|
||||
if x.data_format == DF.FRAC_NZ:
|
||||
ori_shape = infer_shape_from_fractalNz(ori_shape)
|
||||
ori_shape = infer_shape_from_fractalnz(ori_shape)
|
||||
if not axis:
|
||||
axis = []
|
||||
for i, _ in enumerate(ori_shape):
|
||||
|
|
|
@ -15,7 +15,7 @@
|
|||
"""generate json desc for SquareSumV1"""
|
||||
from mindspore._extends.graph_kernel.model.model import DataFormat as DF
|
||||
from ._utils import Expander, ExpanderInfoValidator as VLD
|
||||
from ._utils import infer_shape_from_fractalNz, get_reduced_ori_shape, to_frac_z_axis
|
||||
from ._utils import infer_shape_from_fractalnz, get_reduced_ori_shape, to_frac_z_axis
|
||||
|
||||
|
||||
@VLD.add_format(DF.FRAC_NZ)
|
||||
|
@ -30,7 +30,7 @@ class SquareSumV1(Expander):
|
|||
|
||||
ori_shape = x.shape
|
||||
if x.data_format == DF.FRAC_NZ:
|
||||
ori_shape = infer_shape_from_fractalNz(ori_shape)
|
||||
ori_shape = infer_shape_from_fractalnz(ori_shape)
|
||||
if not axis:
|
||||
axis = []
|
||||
for i, _ in enumerate(ori_shape):
|
||||
|
|
|
@ -17,6 +17,8 @@ from .model import PrimLib
|
|||
|
||||
|
||||
class ParalGain:
|
||||
"""Paral Gain"""
|
||||
|
||||
def __init__(self, fusion_type, bottleneck, gain, block_assign, type_info):
|
||||
self.fusion_type = fusion_type
|
||||
self.bottleneck = bottleneck
|
||||
|
@ -41,7 +43,9 @@ class ScheduleAnalyzer:
|
|||
self.ops = graph.ops
|
||||
self.dom_op = [out.op for out in outputs]
|
||||
|
||||
def prod(self, shape):
|
||||
@staticmethod
|
||||
def prod(shape):
|
||||
"""Compute shape product"""
|
||||
res = shape[0]
|
||||
for i in range(1, len(shape)):
|
||||
res = res * shape[i]
|
||||
|
@ -254,7 +258,7 @@ class ScheduleAnalyzer:
|
|||
fusion_type = "block_fusion"
|
||||
type_info = None
|
||||
|
||||
activate_pipeline_optimization = False # Disable pipeline optimization for now.
|
||||
activate_pipeline_optimization = False # Disable pipeline optimization for now.
|
||||
if activate_pipeline_optimization:
|
||||
pipeline_info = ScheduleAnalyzer.pipeline_fusion_analyze(
|
||||
blocks, op_sizes, exclude_gid)
|
||||
|
@ -287,4 +291,5 @@ def block_parallel_estimate(graphs):
|
|||
|
||||
|
||||
def parallel_estimate(graphs):
|
||||
"""Estimate parallel gain"""
|
||||
return block_parallel_estimate(graphs)
|
||||
|
|
|
@ -13,7 +13,6 @@
|
|||
# limitations under the License.
|
||||
# ===========================================================================
|
||||
"""Cost model splitter"""
|
||||
import os
|
||||
from functools import reduce as prod_reduce
|
||||
from mindspore import log as logger
|
||||
from .model import PrimLib, Graph, Tensor, Operator
|
||||
|
@ -39,20 +38,24 @@ class GraphSplitByPattern:
|
|||
def sync(self, x, y):
|
||||
"""sync from y to x"""
|
||||
for i in self.alive:
|
||||
if self.map[y][i] and not self.map[x][i]:
|
||||
self.map[x][i] = True
|
||||
self._link(self.map[y][i], x, i)
|
||||
|
||||
def _link(self, cond, f, t):
|
||||
"""link from `f` to `t`"""
|
||||
if cond:
|
||||
self.map[f][t] = True
|
||||
|
||||
def fuse(self, x, y):
|
||||
"""fuse y to x"""
|
||||
for i in self.alive:
|
||||
# i is the succeeding node of y, links the x's previous nodes to i
|
||||
if self.map[y][i] and not self.map[x][i]:
|
||||
for pre in self.alive:
|
||||
if self.map[pre][x] and not self.map[pre][i]:
|
||||
self.map[pre][i] = True
|
||||
self._link(self.map[pre][x], pre, i)
|
||||
# i is the previous node of y, link i to x's succeeding nodes
|
||||
if self.map[i][y] and not self.map[i][x]:
|
||||
for suc in self.alive:
|
||||
if self.map[x][suc] and not self.map[i][suc]:
|
||||
self.map[i][suc] = True
|
||||
self._link(self.map[x][suc], i, suc)
|
||||
self.alive.remove(y)
|
||||
|
||||
class Area:
|
||||
|
@ -67,6 +70,10 @@ class GraphSplitByPattern:
|
|||
self.stitch_ops = set()
|
||||
self.stitch_atomic_ops = set()
|
||||
|
||||
def has_stitch_op(self):
|
||||
"""check stitch_op exists"""
|
||||
return self.stitch_ops or self.stitch_atomic_ops
|
||||
|
||||
def __init__(self, init_op, is_output, unique_id, reach_tab, recompute_ops=None):
|
||||
self.pattern = PrimLib.iter_type(init_op) if init_op is not None else PrimLib.UNKNOWN
|
||||
self.ops = [] if init_op is None else [init_op]
|
||||
|
@ -286,31 +293,35 @@ class GraphSplitByPattern:
|
|||
|
||||
def fuse(self, selector):
|
||||
"""Fuse areas"""
|
||||
changed = False
|
||||
while True:
|
||||
def _fuse_area():
|
||||
for dominant in self.areas:
|
||||
result = selector(dominant)
|
||||
if result is not None and result[0]:
|
||||
fuse_areas, is_forward = result
|
||||
fuse_areas = self.limit_area_size(dominant, fuse_areas)
|
||||
if not fuse_areas:
|
||||
continue
|
||||
if is_forward:
|
||||
for area in fuse_areas:
|
||||
dominant.fuse(area)
|
||||
self.set_area_map(area.ops, dominant)
|
||||
self.areas.remove(area)
|
||||
else:
|
||||
forward_area = dominant
|
||||
for area in fuse_areas:
|
||||
area.fuse(forward_area)
|
||||
self.set_area_map(forward_area.ops, area)
|
||||
self.areas.remove(forward_area)
|
||||
forward_area = area
|
||||
changed = True
|
||||
break
|
||||
else:
|
||||
return changed
|
||||
if result is None or not result[0]:
|
||||
continue
|
||||
fuse_areas, is_forward = result
|
||||
fuse_areas = self.limit_area_size(dominant, fuse_areas)
|
||||
if not fuse_areas:
|
||||
continue
|
||||
if is_forward:
|
||||
for area in fuse_areas:
|
||||
dominant.fuse(area)
|
||||
self.set_area_map(area.ops, dominant)
|
||||
self.areas.remove(area)
|
||||
else:
|
||||
forward_area = dominant
|
||||
for area in fuse_areas:
|
||||
area.fuse(forward_area)
|
||||
self.set_area_map(forward_area.ops, area)
|
||||
self.areas.remove(forward_area)
|
||||
forward_area = area
|
||||
return True
|
||||
return False
|
||||
|
||||
changed, do_again = False, True
|
||||
while do_again:
|
||||
do_again = _fuse_area()
|
||||
changed = changed or do_again
|
||||
return changed
|
||||
|
||||
def fuse_recom(self, selector):
|
||||
"""Fuse recompute area to its user"""
|
||||
|
@ -348,21 +359,6 @@ class GraphSplitByPattern:
|
|||
graphmodes.append("basic" if area.mode == self.Area.MODE_BASIC else "composite")
|
||||
return subgraphs, graphmodes
|
||||
|
||||
def dump_subgraphs(self, subgraphs):
|
||||
"""Dump subgraphs"""
|
||||
if os.environ.get("ENABLE_SUBGRAPHS", "off") == "on":
|
||||
subgraphs_str = "subgraphs:\nlen: " + str(len(subgraphs)) + "\n"
|
||||
for i, sub in enumerate(subgraphs):
|
||||
subgraphs_str += str("============") + str(i) + "\n"
|
||||
subgraphs_str += str(sub)
|
||||
dirname = 'subgraphs'
|
||||
if not os.path.exists(dirname):
|
||||
os.makedirs(dirname)
|
||||
graphname = self.graph.name
|
||||
filename = dirname + '/' + graphname + '.log'
|
||||
with os.fdopen(os.open(filename, os.O_RDWR | os.O_CREAT), 'w+') as f:
|
||||
f.write(subgraphs_str)
|
||||
|
||||
def pattern_fuse(self, fuse_func=None):
|
||||
"""fuse Areas by pattern repeatedly"""
|
||||
del fuse_func
|
||||
|
@ -376,34 +372,38 @@ class GraphSplitByPattern:
|
|||
# Note: after this function, the input output relation is not maintained.
|
||||
self.split_output_reshapes()
|
||||
subgraphs, graphmodes = self.to_subgraphs()
|
||||
self.dump_subgraphs(subgraphs)
|
||||
return subgraphs, graphmodes
|
||||
|
||||
def split_output_reshapes(self):
|
||||
"""Force split the output reshapes into other new """
|
||||
"""Force split the output Reshapes into other new area"""
|
||||
def _remove_output_reshape(reshape_ops, other_ops):
|
||||
def _run():
|
||||
for op in reshape_ops:
|
||||
if any([to_op in other_ops for to_op in op.output.to_ops]):
|
||||
reshape_ops.remove(op)
|
||||
other_ops.append(op)
|
||||
return True
|
||||
return False
|
||||
while _run():
|
||||
pass
|
||||
|
||||
new_areas = []
|
||||
for area in self.areas:
|
||||
out_reshape_ops = [op for op in area.ops if PrimLib.iter_type(op) == PrimLib.RESHAPE]
|
||||
remain_ops = [op for op in area.ops if op not in out_reshape_ops]
|
||||
if not remain_ops or not out_reshape_ops:
|
||||
reshape_ops = [op for op in area.ops if PrimLib.iter_type(op) == PrimLib.RESHAPE]
|
||||
other_ops = [op for op in area.ops if op not in reshape_ops]
|
||||
if not other_ops or not reshape_ops:
|
||||
continue
|
||||
changed = True
|
||||
while changed:
|
||||
changed = False
|
||||
for op in out_reshape_ops:
|
||||
if any([to_op in remain_ops for to_op in op.output.to_ops]):
|
||||
out_reshape_ops.remove(op)
|
||||
remain_ops.append(op)
|
||||
changed = True
|
||||
break
|
||||
if out_reshape_ops:
|
||||
for op in out_reshape_ops:
|
||||
a = self.Area(op, False, 0, self.reach_tab)
|
||||
self.set_default_mode(a)
|
||||
new_areas.append(a)
|
||||
area.ops = remain_ops
|
||||
if len(remain_ops) == 1:
|
||||
self.set_default_mode(area)
|
||||
# remove the output reshape from "reshape_ops" and add it into "other_ops"
|
||||
_remove_output_reshape(reshape_ops, other_ops)
|
||||
if not reshape_ops:
|
||||
continue
|
||||
for op in reshape_ops:
|
||||
a = self.Area(op, False, 0, self.reach_tab)
|
||||
self.set_default_mode(a)
|
||||
new_areas.append(a)
|
||||
area.ops = other_ops
|
||||
if len(other_ops) == 1:
|
||||
self.set_default_mode(area)
|
||||
if new_areas:
|
||||
self.areas += new_areas
|
||||
|
||||
|
@ -472,8 +472,8 @@ class GraphSplitByPattern:
|
|||
region_ops.append(op)
|
||||
return False, None, weight, True
|
||||
# region fails to grow
|
||||
MAX_WEIGHT = 20
|
||||
if weight > MAX_WEIGHT or len(op.inputs) > 1 or PrimLib.iter_type(op) > PrimLib.BROADCAST:
|
||||
max_weight = 20
|
||||
if weight > max_weight or len(op.inputs) > 1 or PrimLib.iter_type(op) > PrimLib.BROADCAST:
|
||||
return False, None, weight, False
|
||||
# region grows successfully
|
||||
weight = weight + 1
|
||||
|
@ -486,7 +486,7 @@ class GraphSplitByPattern:
|
|||
cheap_regions = []
|
||||
for output in outputs:
|
||||
# tensor should have user other than user_area to be fused
|
||||
if output.para_type != Tensor.PARA_OUTPUT and len(output.to_ops) < 2:
|
||||
if len(output.to_ops) < 2:
|
||||
continue
|
||||
region_ops = []
|
||||
grow = True
|
||||
|
@ -533,14 +533,7 @@ class GraphSplitByPattern:
|
|||
"""find recompute regions and copy them out to new Areas"""
|
||||
def do_recompute_fuse():
|
||||
"""split the unfusing pattern by add recompute area"""
|
||||
recompute_suc = False
|
||||
orig_areas = []
|
||||
orig_areas.extend(self.areas)
|
||||
for dom in orig_areas:
|
||||
if dom not in self.areas or not dom.out_relations:
|
||||
continue
|
||||
cheap_regions = self.find_cheap_regions(dom)
|
||||
dom_changed = False
|
||||
def recompute_cheap_region(dom):
|
||||
for cheap_region in cheap_regions:
|
||||
user_areas = self.select_user_area(cheap_region[-1].output)
|
||||
if not user_areas:
|
||||
|
@ -550,12 +543,17 @@ class GraphSplitByPattern:
|
|||
self.pattern_fuse(self.fuse_recom)
|
||||
self.clear_recompute()
|
||||
if self.recom_res:
|
||||
recompute_suc = True
|
||||
# Copy region at most once for this dom
|
||||
dom_changed = True
|
||||
break
|
||||
if dom_changed:
|
||||
break
|
||||
return True
|
||||
return False
|
||||
recompute_suc = False
|
||||
orig_areas = []
|
||||
orig_areas.extend(self.areas)
|
||||
for dom in orig_areas:
|
||||
if dom not in self.areas or not dom.out_relations:
|
||||
continue
|
||||
cheap_regions = self.find_cheap_regions(dom)
|
||||
if recompute_cheap_region(dom):
|
||||
recompute_suc = True
|
||||
return recompute_suc
|
||||
|
||||
if self.enable_recompute:
|
||||
|
@ -563,9 +561,6 @@ class GraphSplitByPattern:
|
|||
self.pattern_fuse()
|
||||
|
||||
|
||||
use_poly_reduce = True
|
||||
|
||||
|
||||
class GraphSplitGpu(GraphSplitByPattern):
|
||||
"""Graph splitter"""
|
||||
BORADCAST_FUSE_DEPTH = 20
|
||||
|
@ -616,7 +611,7 @@ class GraphSplitGpu(GraphSplitByPattern):
|
|||
return fused, True
|
||||
|
||||
def _broadcast_pat_exclude(dom, a, r):
|
||||
if use_poly_reduce and a.pattern == PrimLib.REDUCE:
|
||||
if a.pattern == PrimLib.REDUCE:
|
||||
return dom.pattern > PrimLib.ELEMWISE or r > PrimLib.ELEMWISE
|
||||
return a.pattern > PrimLib.REDUCE or r > PrimLib.BROADCAST
|
||||
|
||||
|
@ -641,34 +636,14 @@ class GraphSplitGpu(GraphSplitByPattern):
|
|||
fused.append(a)
|
||||
return fused, False
|
||||
|
||||
def _check_reduce_exclude(dom):
|
||||
if use_poly_reduce:
|
||||
return False
|
||||
# exclude large all-reduce
|
||||
if len(dom.ops[0].inputs[0].shape) == len(dom.ops[0].attrs["reduce_axis"]) and \
|
||||
dom.ops[0].inputs[0].get_size() > 10000:
|
||||
return True
|
||||
|
||||
# exclude multi output
|
||||
for a in dom.in_relations.keys():
|
||||
if len(a.out_relations) > 1:
|
||||
return True
|
||||
if any([op.output.para_type == Tensor.PARA_OUTPUT for op in a.ops]):
|
||||
return True
|
||||
return False
|
||||
|
||||
def _reduce_pat_exclude(_, a, r):
|
||||
if len(a.ops) > self.REDUCE_FUSE_DEPTH:
|
||||
return True
|
||||
if use_poly_reduce:
|
||||
return a.pattern > PrimLib.ELEMWISE or r > PrimLib.REDUCE or r == PrimLib.BROADCAST
|
||||
return a.pattern > PrimLib.BROADCAST or r > PrimLib.REDUCE
|
||||
return a.pattern > PrimLib.ELEMWISE or r > PrimLib.REDUCE or r == PrimLib.BROADCAST
|
||||
|
||||
def _reduce_depth(dom):
|
||||
if dom.pattern != PrimLib.REDUCE or len(dom.in_relations) != 1:
|
||||
return None
|
||||
if _check_reduce_exclude(dom):
|
||||
return None
|
||||
a, r = list(dom.in_relations.items())[0]
|
||||
if dom.ops[0].inputs[0].dtype == "float16" and a.is_output and len(a.ops) >= 10 and \
|
||||
_is_atomic_add_available(dom):
|
||||
|
@ -681,8 +656,6 @@ class GraphSplitGpu(GraphSplitByPattern):
|
|||
def _reduce_width(dom):
|
||||
if dom.pattern != PrimLib.REDUCE:
|
||||
return None
|
||||
if _check_reduce_exclude(dom):
|
||||
return None
|
||||
fused = []
|
||||
for a, r in dom.in_relations.items():
|
||||
if dom.ops[0].inputs[0].dtype == "float16" and a.is_output and len(a.ops) >= 10 and \
|
||||
|
@ -763,16 +736,16 @@ class GraphSplitGpu(GraphSplitByPattern):
|
|||
|
||||
def _may_stitch(dom, a, r):
|
||||
if a.pattern <= PrimLib.REDUCE and r <= PrimLib.BROADCAST and dom.check_acyclic(a):
|
||||
if _reduce_nums(a.ops) < 2:
|
||||
dom_outs = [op.output for op in dom.ops]
|
||||
a_ins = [op_input for op in a.ops for op_input in op.inputs]
|
||||
a_outs = [op.output for op in a.ops]
|
||||
a_final_outs = [tensor for tensor in a_outs if tensor not in a_ins]
|
||||
stitch_tensors = [tensor for tensor in dom_outs if tensor in a_ins]
|
||||
if _same_stitch_axis(stitch_tensors, a_final_outs):
|
||||
for tensor in stitch_tensors:
|
||||
if _tensor_size(tensor) >= 1024 * 1024:
|
||||
return True
|
||||
if _reduce_nums(a.ops) >= 2:
|
||||
return False
|
||||
dom_outs = [op.output for op in dom.ops]
|
||||
a_ins = [op_input for op in a.ops for op_input in op.inputs]
|
||||
a_outs = [op.output for op in a.ops]
|
||||
a_final_outs = [tensor for tensor in a_outs if tensor not in a_ins]
|
||||
stitch_tensors = [tensor for tensor in dom_outs if tensor in a_ins]
|
||||
if not _same_stitch_axis(stitch_tensors, a_final_outs):
|
||||
return False
|
||||
return any([_tensor_size(tensor) >= 1024 * 1024 for tensor in stitch_tensors])
|
||||
return False
|
||||
|
||||
def _reduce_stitch(dom):
|
||||
|
@ -785,14 +758,15 @@ class GraphSplitGpu(GraphSplitByPattern):
|
|||
|
||||
fused = []
|
||||
for a, r in dom.out_relations.items():
|
||||
if _may_stitch(dom, a, r):
|
||||
if a.pattern == PrimLib.REDUCE:
|
||||
if a.ops[0].attrs['reduce_axis'] == dom.ops[0].attrs['reduce_axis']:
|
||||
dom.stitch_info.stitch_ops.add(dom.ops[0].output.name)
|
||||
fused.append(a)
|
||||
elif a.pattern == PrimLib.BROADCAST:
|
||||
if not _may_stitch(dom, a, r):
|
||||
continue
|
||||
if a.pattern == PrimLib.REDUCE:
|
||||
if a.ops[0].attrs['reduce_axis'] == dom.ops[0].attrs['reduce_axis']:
|
||||
dom.stitch_info.stitch_ops.add(dom.ops[0].output.name)
|
||||
fused.append(a)
|
||||
elif a.pattern == PrimLib.BROADCAST:
|
||||
dom.stitch_info.stitch_ops.add(dom.ops[0].output.name)
|
||||
fused.append(a)
|
||||
return fused, False
|
||||
|
||||
def _transpose(dom):
|
||||
|
@ -804,6 +778,16 @@ class GraphSplitGpu(GraphSplitByPattern):
|
|||
fused.append(a)
|
||||
return fused, True
|
||||
|
||||
def _strided_slice(dom):
|
||||
if dom.dom_op().prim != "StridedSlice":
|
||||
return None
|
||||
fused = []
|
||||
for a, _ in dom.in_relations.items():
|
||||
if a.pattern <= PrimLib.BROADCAST and a.check_acyclic(dom) and \
|
||||
len(a.out_relations) == 1 and not a.is_output:
|
||||
fused.append(a)
|
||||
return fused, True
|
||||
|
||||
def _fuse_loop():
|
||||
changed = True
|
||||
while changed:
|
||||
|
@ -814,10 +798,10 @@ class GraphSplitGpu(GraphSplitByPattern):
|
|||
changed = self.fuse(_reduce_width) or changed
|
||||
changed = self.fuse(_broadcast_depth) or changed
|
||||
changed = self.fuse(_broadcast_width) or changed
|
||||
if use_poly_reduce:
|
||||
changed = self.fuse(_reduce_output) or changed
|
||||
if enable_stitch_fusion:
|
||||
changed = self.fuse(_reduce_stitch) or changed
|
||||
changed = self.fuse(_strided_slice) or changed
|
||||
changed = self.fuse(_reduce_output) or changed
|
||||
if enable_stitch_fusion:
|
||||
changed = self.fuse(_reduce_stitch) or changed
|
||||
self.fuse(_transpose)
|
||||
|
||||
def _fuse_once(fuse_func):
|
||||
|
@ -825,9 +809,8 @@ class GraphSplitGpu(GraphSplitByPattern):
|
|||
fuse_func(_reduce_depth) or fuse_func(_reduce_width) or fuse_func(_broadcast_depth) or \
|
||||
fuse_func(_broadcast_width):
|
||||
return
|
||||
if use_poly_reduce:
|
||||
if fuse_func(_reduce_output) or (enable_stitch_fusion and fuse_func(_reduce_stitch)):
|
||||
return
|
||||
if fuse_func(_reduce_output) or (enable_stitch_fusion and fuse_func(_reduce_stitch)):
|
||||
return
|
||||
fuse_func(_transpose)
|
||||
return
|
||||
|
||||
|
|
|
@ -216,6 +216,7 @@ class PrimLib:
|
|||
'Transpose': Prim(OPAQUE),
|
||||
'Tile': Prim(BROADCAST),
|
||||
'BroadcastTo': Prim(BROADCAST),
|
||||
'StridedSlice': Prim(OPAQUE),
|
||||
'MatMul': Prim(OPAQUE),
|
||||
'TransData': Prim(OPAQUE),
|
||||
'BatchMatMul': Prim(OPAQUE),
|
||||
|
@ -421,14 +422,13 @@ class Graph:
|
|||
for t in op.inputs:
|
||||
if t not in inputs and t.op not in self.ops:
|
||||
inputs.append(t)
|
||||
if op.output not in outputs:
|
||||
if op.output.para_type == Tensor.PARA_OUTPUT or not op.output.to_ops:
|
||||
outputs.append(op.output)
|
||||
else:
|
||||
for d in op.output.to_ops:
|
||||
if d not in self.ops:
|
||||
outputs.append(op.output)
|
||||
break
|
||||
if op.output in outputs:
|
||||
continue
|
||||
if op.output.para_type == Tensor.PARA_OUTPUT or not op.output.to_ops:
|
||||
outputs.append(op.output)
|
||||
continue
|
||||
if any([succ not in self.ops for succ in op.output.to_ops]):
|
||||
outputs.append(op.output)
|
||||
if self.inputs:
|
||||
inputs = self.inputs
|
||||
|
||||
|
|
|
@ -28,11 +28,13 @@ class GraphBuilder:
|
|||
self.graph = Graph(name, [])
|
||||
|
||||
def set_input(self, *para):
|
||||
"""set input to graph inputs"""
|
||||
for t in para:
|
||||
t.para_type = Tensor.PARA_INPUT
|
||||
self.graph.inputs.append(t)
|
||||
|
||||
def set_output(self, *para):
|
||||
"""set output to graph inputs"""
|
||||
for t in para:
|
||||
t.para_type = Tensor.PARA_OUTPUT
|
||||
self.graph.outputs.append(t)
|
||||
|
@ -50,6 +52,8 @@ class GraphBuilder:
|
|||
def graph_scope(self, name):
|
||||
"""The graph scope to be processed"""
|
||||
class GraphScope:
|
||||
"""Graph Scope"""
|
||||
|
||||
def __init__(self, gb):
|
||||
self.gb = gb
|
||||
|
||||
|
@ -77,7 +81,6 @@ class GraphBuilder:
|
|||
"""Create a new Value"""
|
||||
if name in (None, ''):
|
||||
name = self._alloc_tensor_name()
|
||||
|
||||
v = Value(name, dtype, value)
|
||||
return v
|
||||
|
||||
|
@ -105,6 +108,7 @@ class GraphBuilder:
|
|||
return output
|
||||
|
||||
def get(self):
|
||||
"""Get graphs"""
|
||||
return self.graphs
|
||||
|
||||
|
||||
|
@ -123,34 +127,14 @@ class CompositeGraph:
|
|||
|
||||
def load(self, desc):
|
||||
"""Load Graph from json"""
|
||||
def _attr_of(op, inputs, output):
|
||||
def _get_axis_while_none(input_shape, output_shape):
|
||||
red_axis = []
|
||||
if len(output_shape) == len(input_shape):
|
||||
for i, s in enumerate(output_shape):
|
||||
if s == 1 and input_shape[i] > 1:
|
||||
red_axis.append(i)
|
||||
else:
|
||||
red_axis = list(range(len(output_shape)))
|
||||
return red_axis
|
||||
|
||||
def _attr_of(op):
|
||||
if not op['attr']:
|
||||
return dict()
|
||||
attr = {}
|
||||
if op['name'] in ('ReduceSum', 'ReduceMax', 'ReduceMin'):
|
||||
for a in op['attr']:
|
||||
if a['name'] == 'axis':
|
||||
red_axis, dim_size = [], len(inputs[0].shape)
|
||||
if not a['value']:
|
||||
red_axis = _get_axis_while_none(inputs[0].shape, output.shape)
|
||||
else:
|
||||
if isinstance(a['value'], int):
|
||||
a['value'] = [a['value']]
|
||||
for i in a['value']:
|
||||
red_axis.append(i if i >= 0 else dim_size + i)
|
||||
attr['reduce_axis'] = red_axis
|
||||
if a['name'] == "reduce_output_fuse":
|
||||
attr['reduce_output_fuse'] = a['value']
|
||||
elif op['attr']:
|
||||
for a in op['attr']:
|
||||
for a in op['attr']:
|
||||
if a['name'] == 'axis' and op['name'] in ('ReduceSum', 'ReduceMax', 'ReduceMin'):
|
||||
attr['reduce_axis'] = a['value']
|
||||
else:
|
||||
attr[a['name']] = a['value']
|
||||
return attr
|
||||
|
||||
|
@ -166,7 +150,6 @@ class CompositeGraph:
|
|||
'shape'], out_desc['data_type'], out_desc['format']
|
||||
self.tensors[name] = builder.tensor(
|
||||
shape, dtype, data_format, name=name, para_type=Tensor.PARA_OUTPUT)
|
||||
cur_fusion = None
|
||||
for op in desc['op_desc']:
|
||||
inputs = [self.tensors[d['tensor_name']] for x in op['input_desc'] for d in x if 'value' not in d]
|
||||
out_desc = op['output_desc']
|
||||
|
@ -177,25 +160,17 @@ class CompositeGraph:
|
|||
inputs[1].para_type = Tensor.PARA_OUTPUT
|
||||
output = inputs[2]
|
||||
self.tensors[name] = output
|
||||
else:
|
||||
output = self.tensors.get(name, None)
|
||||
if not output:
|
||||
output = builder.tensor(
|
||||
shape, dtype, data_format, name=name)
|
||||
self.tensors[name] = output
|
||||
builder.op(op['name'], output, inputs,
|
||||
attrs=_attr_of(op, inputs, output))
|
||||
if 'fusion' in op:
|
||||
if cur_fusion is None:
|
||||
cur_fusion = output
|
||||
else:
|
||||
cur_fusion.add_buddy(output)
|
||||
if op['fusion'].endswith('_end'):
|
||||
cur_fusion = None
|
||||
continue
|
||||
output = self.tensors.get(name, None)
|
||||
if not output:
|
||||
output = builder.tensor(shape, dtype, data_format, name=name)
|
||||
self.tensors[name] = output
|
||||
builder.op(op['name'], output, inputs, attrs=_attr_of(op))
|
||||
self.graph = builder.get()[0]
|
||||
self.desc = desc
|
||||
|
||||
def add_stitch_info(self, subgraph, desc):
|
||||
"""add stitch info to desc"""
|
||||
if subgraph.stitch_info and subgraph.stitch_info.stitch_ops:
|
||||
buffer_stitch = {'stitch_op': list(subgraph.stitch_info.stitch_ops)}
|
||||
if subgraph.stitch_info.stitch_atomic_ops:
|
||||
|
@ -204,6 +179,7 @@ class CompositeGraph:
|
|||
return desc
|
||||
|
||||
def add_recompute_ops(self, subgraph, desc):
|
||||
"""add recompute ops to desc"""
|
||||
if subgraph.recompute_ops:
|
||||
desc['recompute_ops'] = [op.output.name for op in subgraph.recompute_ops]
|
||||
return desc
|
||||
|
@ -227,43 +203,40 @@ class CompositeGraph:
|
|||
inputs, outputs = subgraph.deduce_parameters()
|
||||
graph_ops = set(subgraph.ops)
|
||||
inplace_assign, inplace_assign_z = self._pre_dump(outputs)
|
||||
for key in self.desc:
|
||||
|
||||
def dump_output(t):
|
||||
if t.name in inplace_assign:
|
||||
z = inplace_assign_z if inplace_assign_z is not None else self.tensors[t.name]
|
||||
return {'data_type': z.dtype, 'shape': z.shape, 'tensor_name': inplace_assign[t.name]}
|
||||
return {'data_type': t.dtype, 'shape': t.shape, 'tensor_name': t.name}
|
||||
|
||||
def dump_op_desc(d):
|
||||
if d['name'] == 'InplaceAssign':
|
||||
y = d['input_desc'][1][0]['tensor_name']
|
||||
if self.tensors[y].op in graph_ops:
|
||||
z, fake = (inplace_assign_z, False) if inplace_assign_z is not None else (self.tensors[y], True)
|
||||
inplace_desc = copy.deepcopy(d)
|
||||
inplace_desc['attr'] = {'name': 'fake_output', 'value': fake}
|
||||
z_desc, out_desc = inplace_desc['input_desc'][2][0], inplace_desc['output_desc'][0]
|
||||
z_desc['shape'] = z.shape
|
||||
z_desc['data_type'] = z.dtype
|
||||
z_desc['tensor_name'] = z.name
|
||||
out_desc['shape'] = z.shape
|
||||
out_desc['data_type'] = z.dtype
|
||||
return inplace_desc
|
||||
op = self.tensors[d['output_desc'][0]['tensor_name']].op
|
||||
if op in graph_ops or op in subgraph.recompute_ops:
|
||||
return d
|
||||
return None
|
||||
|
||||
for key in self.desc.keys():
|
||||
if key == 'input_desc':
|
||||
desc[key] = [
|
||||
[{'data_type': t.dtype, 'shape': t.shape, 'tensor_name': t.name}] for t in inputs]
|
||||
desc[key] = [[{'data_type': t.dtype, 'shape': t.shape, 'tensor_name': t.name}] for t in inputs]
|
||||
elif key == 'output_desc':
|
||||
out_desc = []
|
||||
for t in outputs:
|
||||
if t.name in inplace_assign:
|
||||
z = inplace_assign_z if inplace_assign_z is not None else self.tensors[t.name]
|
||||
out_desc.append(
|
||||
{'data_type': z.dtype, 'shape': z.shape, 'tensor_name': inplace_assign[t.name]})
|
||||
else:
|
||||
out_desc.append(
|
||||
{'data_type': t.dtype, 'shape': t.shape, 'tensor_name': t.name})
|
||||
desc[key] = out_desc
|
||||
desc[key] = list(map(dump_output, outputs))
|
||||
elif key == 'op_desc':
|
||||
op_desc = []
|
||||
for d in self.desc[key]:
|
||||
if d['name'] == 'InplaceAssign':
|
||||
y = d['input_desc'][1][0]['tensor_name']
|
||||
if self.tensors[y].op in graph_ops:
|
||||
z, fake = (inplace_assign_z, False) if inplace_assign_z is not None else (
|
||||
self.tensors[y], True)
|
||||
inplace_desc = copy.deepcopy(d)
|
||||
inplace_desc['attr'] = {'name': 'fake_output', 'value': fake}
|
||||
z_desc, out_desc = inplace_desc['input_desc'][2][0], inplace_desc['output_desc'][0]
|
||||
z_desc['shape'] = z.shape
|
||||
z_desc['data_type'] = z.dtype
|
||||
z_desc['tensor_name'] = z.name
|
||||
out_desc['shape'] = z.shape
|
||||
out_desc['data_type'] = z.dtype
|
||||
op_desc.append(inplace_desc)
|
||||
else:
|
||||
op = self.tensors[d['output_desc'][0]['tensor_name']].op
|
||||
if op in graph_ops or op in subgraph.recompute_ops:
|
||||
op_desc.append(d)
|
||||
desc[key] = op_desc
|
||||
op_desc = map(dump_op_desc, self.desc[key])
|
||||
desc[key] = [d for d in op_desc if d is not None]
|
||||
elif key == 'op':
|
||||
desc[key] = subgraph.name
|
||||
else:
|
||||
|
|
|
@ -16,7 +16,7 @@
|
|||
|
||||
import copy
|
||||
import sys
|
||||
from functools import reduce
|
||||
from functools import reduce as prod_reduce
|
||||
from .model import GraphKernelUnsupportedException as GKException
|
||||
from .model import PrimLib, DataFormat as DF
|
||||
|
||||
|
@ -101,22 +101,24 @@ class OpInfer:
|
|||
|
||||
class _Elemwise(OpInfer):
|
||||
"""Common infer for elementwise operators"""
|
||||
|
||||
def _broadcast_shape(self, shapes):
|
||||
@staticmethod
|
||||
def broadcast_shape(shapes):
|
||||
"""deduce broadcast shape using same rules as numpy"""
|
||||
dim_size = max([len(shape) for shape in shapes])
|
||||
align_shapes = [[1] * (dim_size - len(shape)) + shape for shape in shapes]
|
||||
out_shape = [1] * dim_size
|
||||
for i in range(dim_size):
|
||||
for align_shape in align_shapes:
|
||||
if align_shape[i] > 1:
|
||||
if out_shape[i] == 1:
|
||||
out_shape[i] = align_shape[i]
|
||||
if out_shape[i] != align_shape[i]:
|
||||
raise GKException("shape broadcast failed!")
|
||||
if align_shape[i] == 1:
|
||||
continue
|
||||
if out_shape[i] == 1:
|
||||
out_shape[i] = align_shape[i]
|
||||
elif out_shape[i] != align_shape[i]:
|
||||
raise GKException("shape broadcast failed!")
|
||||
return out_shape
|
||||
|
||||
def _to_nz(self, default_shape):
|
||||
@staticmethod
|
||||
def defaultformat_to_nz(default_shape):
|
||||
"""default format shape to fractal_Nz format shape"""
|
||||
if len(default_shape) not in (1, 2):
|
||||
raise GKException("shape is too long!")
|
||||
|
@ -142,17 +144,17 @@ class _Elemwise(OpInfer):
|
|||
"""returns the output shape with broadcast"""
|
||||
|
||||
# in case all inputs are default format/NHWC/NCHW
|
||||
is_default = [input.data_format in (DF.DEFAULT, DF.NHWC, DF.NCHW) for input in self.inputs]
|
||||
is_default = [op_input.data_format in (DF.DEFAULT, DF.NHWC, DF.NCHW) for op_input in self.inputs]
|
||||
if all(is_default):
|
||||
return self._broadcast_shape([input.shape for input in self.inputs])
|
||||
return self.broadcast_shape([op_input.shape for op_input in self.inputs])
|
||||
|
||||
# in case formats are fractal_nz, default_fromat/NHWC/HCHW(optional)
|
||||
is_default_frac_nz = [input.data_format in (DF.DEFAULT, DF.NHWC, DF.NCHW, DF.FRAC_NZ)
|
||||
for input in self.inputs]
|
||||
is_default_frac_nz = [op_input.data_format in (DF.DEFAULT, DF.NHWC, DF.NCHW, DF.FRAC_NZ)
|
||||
for op_input in self.inputs]
|
||||
if all(is_default_frac_nz):
|
||||
nz_shapes = [self._to_nz(input.shape) if input.data_format != DF.FRAC_NZ else input.shape
|
||||
for input in self.inputs]
|
||||
return self._broadcast_shape(nz_shapes)
|
||||
nz_shapes = [self.defaultformat_to_nz(op_input.shape) if op_input.data_format != DF.FRAC_NZ
|
||||
else op_input.shape for op_input in self.inputs]
|
||||
return self.broadcast_shape(nz_shapes)
|
||||
|
||||
raise GKException("Only support default and fractal_nz")
|
||||
|
||||
|
@ -214,9 +216,11 @@ class _Reshape(OpInfer):
|
|||
|
||||
|
||||
class Reshape(_Reshape):
|
||||
"""Reshape op infer"""
|
||||
|
||||
def _check_shape(self):
|
||||
size_before_reshape = reduce(lambda x, y: x * y, self.inputs[0].shape)
|
||||
size_after_reshape = reduce(lambda x, y: x * y, self.attrs["shape"])
|
||||
size_before_reshape = prod_reduce(lambda x, y: x * y, self.inputs[0].shape)
|
||||
size_after_reshape = prod_reduce(lambda x, y: x * y, self.attrs["shape"])
|
||||
if size_before_reshape != size_after_reshape:
|
||||
raise GKException("The shape product before and after reshaping should be equal")
|
||||
|
||||
|
@ -225,11 +229,15 @@ class Reshape(_Reshape):
|
|||
|
||||
|
||||
class Cast(_Elemwise):
|
||||
"""Cast op infer"""
|
||||
|
||||
def _infer_type(self):
|
||||
return self.attrs["dst_type"]
|
||||
|
||||
|
||||
class InplaceAssign(_Elemwise):
|
||||
"""InplaceAssign op infer"""
|
||||
|
||||
def _infer_shape(self):
|
||||
return self.inputs[2].shape
|
||||
|
||||
|
@ -241,6 +249,8 @@ class InplaceAssign(_Elemwise):
|
|||
|
||||
|
||||
class BroadcastTo(OpInfer):
|
||||
"""BroadcastTo op infer"""
|
||||
|
||||
def _infer_shape(self):
|
||||
return self.attrs["shape"]
|
||||
|
||||
|
@ -256,6 +266,8 @@ class _CompareOp(_Elemwise):
|
|||
|
||||
|
||||
class CImag(OpInfer):
|
||||
"""CImag op infer"""
|
||||
|
||||
def _check_type(self):
|
||||
if self.inputs[0].dtype != "complex64":
|
||||
raise GKException(
|
||||
|
@ -266,6 +278,8 @@ class CImag(OpInfer):
|
|||
|
||||
|
||||
class CReal(OpInfer):
|
||||
"""CReal op infer"""
|
||||
|
||||
def _check_type(self):
|
||||
if self.inputs[0].dtype != "complex64":
|
||||
raise GKException(
|
||||
|
@ -276,6 +290,8 @@ class CReal(OpInfer):
|
|||
|
||||
|
||||
class Complex(OpInfer):
|
||||
"""Complex op infer"""
|
||||
|
||||
def _check_type(self):
|
||||
if self.inputs[0].dtype != "float32":
|
||||
raise GKException(
|
||||
|
@ -288,26 +304,28 @@ class Complex(OpInfer):
|
|||
|
||||
|
||||
class Less(_CompareOp):
|
||||
pass
|
||||
"""Less op infer"""
|
||||
|
||||
|
||||
class LessEqual(_CompareOp):
|
||||
pass
|
||||
"""LessEqual op infer"""
|
||||
|
||||
|
||||
class Equal(_CompareOp):
|
||||
pass
|
||||
"""Equal op infer"""
|
||||
|
||||
|
||||
class Greater(_CompareOp):
|
||||
pass
|
||||
"""Greater op infer"""
|
||||
|
||||
|
||||
class GreaterEqual(_CompareOp):
|
||||
pass
|
||||
"""GreaterEqual op infer"""
|
||||
|
||||
|
||||
class Select(_Elemwise):
|
||||
"""Select op infer"""
|
||||
|
||||
def _check_type(self):
|
||||
if self.inputs[0].dtype != "bool":
|
||||
raise GKException("Select's input[0] should be a bool condition but got {}".format(self.inputs[0].dtype))
|
||||
|
@ -319,6 +337,7 @@ class Select(_Elemwise):
|
|||
|
||||
|
||||
def check_format_any(formats, checked_format):
|
||||
"""Check whether input format in formats list"""
|
||||
if not isinstance(formats, (list, tuple)):
|
||||
raise GKException("formats {} should be list or tuple, but got {}.".format(formats, type(formats)))
|
||||
if checked_format not in formats:
|
||||
|
@ -326,11 +345,13 @@ def check_format_any(formats, checked_format):
|
|||
|
||||
|
||||
def check_nd(data, nd):
|
||||
"""Check whether data are nd format"""
|
||||
if not isinstance(data, (list, tuple)) or len(data) != nd:
|
||||
raise GKException("input should be {}D list or tuple, but got {}.".format(nd, data))
|
||||
|
||||
|
||||
def conv_had_pad(pad_list, pad_mode):
|
||||
"""Check whether conv need to add pad"""
|
||||
if not isinstance(pad_list, (list, tuple)) or len(pad_list) != 4:
|
||||
raise GKException("pad_list should be 4D list or tuple, but got {}".format(pad_list))
|
||||
if pad_list[0] != pad_list[1] or pad_list[2] != pad_list[3]:
|
||||
|
|
|
@ -57,11 +57,11 @@ def _dump_split_info(flags, graph_json, graph_desc, subgraphs, graph_mode):
|
|||
return
|
||||
utils.create_dir(utils.GRAPH_KERNEL_DUMP_PATH)
|
||||
filename = os.path.join(utils.GRAPH_KERNEL_DUMP_PATH, "graph_kernel_split_mode.txt")
|
||||
with open(filename, "a+") as f:
|
||||
with os.fdopen(os.open(filename, os.O_WRONLY | os.O_CREAT), "a+") as f:
|
||||
f.write("********** main graph: {} **********\n".format(graph_desc.name))
|
||||
f.write("input json:\n{}\n".format(graph_json))
|
||||
f.write("graph desc:\n{}\n".format(str(graph_desc)))
|
||||
if len(subgraphs) > 1:
|
||||
if len(subgraphs) > 1 or subgraphs[0].stitch_info.has_stitch_op():
|
||||
for i, g in enumerate(subgraphs):
|
||||
f.write("-------- subgraph {}, mode: {} --------\n".format(i, graph_mode[i]))
|
||||
f.write("{}\n".format(str(g)))
|
||||
|
|
|
@ -26,3 +26,5 @@ def create_dir(pathname):
|
|||
os.mkdir(pathname)
|
||||
except OSError:
|
||||
pass
|
||||
finally:
|
||||
pass
|
||||
|
|
|
@ -32,7 +32,7 @@ from te_fusion.parallel_compilation import init_multi_process_env, start_ga_mult
|
|||
get_finished_compilation_task
|
||||
|
||||
from .tbe_helper import get_soc_info, assemble_op_args, get_compute_op_list, get_options_info, get_fuzz_build_info, \
|
||||
BuildType, adjust_custom_op_info, pack_op_args
|
||||
BuildType, adjust_custom_op_info, pack_op_args, get_module_name
|
||||
from .tbe_job import TbeJob, JobStatus
|
||||
|
||||
PLATFORM_FLAG = ["Ascend310", "Ascend910", "Hi3796CV300ES", "Ascend710", "Ascend610", "Hi3796CV300CS", "SD3403"]
|
||||
|
@ -242,7 +242,7 @@ def check_support(job: TbeJob):
|
|||
op_func_name = compute_op_info["func_name"]
|
||||
if op_func_name in ("resize_nearest_neighbor_v2_grad_d", "resize_bilinear_v2_grad"):
|
||||
attrs.pop(-2)
|
||||
op_module_name = compute_op_info["module_name"]
|
||||
op_module_name = get_module_name(compute_op_info)
|
||||
py_module_path = compute_op_info["py_module_path"]
|
||||
_normalize_module_name(op_module_name, py_module_path)
|
||||
func_name = "check_supported"
|
||||
|
@ -281,7 +281,7 @@ def select_op_format(job: TbeJob):
|
|||
compute_op_info = compute_op_info_list[0]
|
||||
adjust_custom_op_info(compute_op_info)
|
||||
inputs, outputs, attrs = assemble_op_args(compute_op_info)
|
||||
op_module_name = compute_op_info["module_name"]
|
||||
op_module_name = get_module_name(compute_op_info)
|
||||
py_module_path = compute_op_info["py_module_path"]
|
||||
_normalize_module_name(op_module_name, py_module_path)
|
||||
op_func_name = "op_select_format"
|
||||
|
@ -317,7 +317,7 @@ def _pre_build_compute_op_info(compute_op, job):
|
|||
if l1_size != -1:
|
||||
set_L1_info("op_L1_space", -1)
|
||||
inputs, outputs, attrs = assemble_op_args(compute_op)
|
||||
op_module_name = compute_op["module_name"]
|
||||
op_module_name = get_module_name(compute_op)
|
||||
py_module_path = compute_op["py_module_path"]
|
||||
op_func_name = compute_op["func_name"]
|
||||
op_type = compute_op["type"]
|
||||
|
@ -340,8 +340,8 @@ def _pre_build_compute_op_info(compute_op, job):
|
|||
job.info("OpType {} support op_impl_mode, current op_impl_mode:{}".format(op_type, op_impl_mode))
|
||||
options = get_options_info(job.content)
|
||||
dispatch_prebuild_task(job.source_id, job.id, l1_size, op_module_name, op_type, op_func_name, unknown_shape,
|
||||
(inputs, outputs, attrs, options), int64_mode, dynamic_compile_static, job.rl_tune_switch,
|
||||
job.rl_tune_list, job.pass_list, job.op_tune_switch, job.op_tune_list)
|
||||
(inputs, outputs, attrs, options), int64_mode, dynamic_compile_static, unknown_shape,
|
||||
job.rl_tune_switch, job.rl_tune_list, job.pass_list, job.op_tune_switch, job.op_tune_list)
|
||||
|
||||
|
||||
def get_prebuild_output(op_name):
|
||||
|
@ -391,7 +391,7 @@ def build_single_pre_op(job: TbeJob):
|
|||
inputs, outputs, attrs = assemble_op_args(compute_op_info)
|
||||
op_type = compute_op_info["type"]
|
||||
l1_size = job.content["l1_size"]
|
||||
op_module_name = compute_op_info["module_name"]
|
||||
op_module_name = get_module_name(compute_op_info)
|
||||
op_kernel_name = compute_op_info["op_name"]
|
||||
py_module_path = compute_op_info["py_module_path"]
|
||||
op_func_name = compute_op_info["func_name"]
|
||||
|
@ -404,9 +404,9 @@ def build_single_pre_op(job: TbeJob):
|
|||
fuzz_build_info = get_fuzz_build_info(job.content)
|
||||
dispatch_single_op_compile_task(job.source_id, job.id, l1_size, op_module_name, op_type, op_func_name,
|
||||
op_kernel_name, unknown_shape, (inputs, outputs, attrs, options), int64_mode,
|
||||
None, None, dynamic_compile_static, op_pattern, json.dumps(fuzz_build_info),
|
||||
job.rl_tune_switch, job.rl_tune_list, job.pass_list, job.op_tune_switch,
|
||||
job.op_tune_list)
|
||||
None, None, dynamic_compile_static, unknown_shape, op_pattern,
|
||||
json.dumps(fuzz_build_info), job.rl_tune_switch, job.rl_tune_list, job.pass_list,
|
||||
job.op_tune_switch, job.op_tune_list)
|
||||
return True
|
||||
|
||||
|
||||
|
@ -487,7 +487,7 @@ def rl_tune_single_op(job: TbeJob):
|
|||
inputs, outputs, attrs = assemble_op_args(compute_op_info)
|
||||
op_type = compute_op_info["type"]
|
||||
l1_size = job.content["l1_size"]
|
||||
op_module_name = compute_op_info["module_name"]
|
||||
op_module_name = get_module_name(compute_op_info)
|
||||
op_kernel_name = compute_op_info["op_name"]
|
||||
full_name = compute_op_info["name"]
|
||||
py_module_path = compute_op_info["py_module_path"]
|
||||
|
@ -503,7 +503,7 @@ def rl_tune_single_op(job: TbeJob):
|
|||
device_id = job.content["SocInfo"]["deviceId"]
|
||||
try:
|
||||
build_single_op_from_c(op_module_name, op_func_name, op_type, "build", unknown_shape,
|
||||
(inputs, outputs, attrs), int64_mode, dynamic_compile_static, op_pattern,
|
||||
(inputs, outputs, attrs), int64_mode, dynamic_compile_static, unknown_shape, op_pattern,
|
||||
auto_tiling_mode, device_id, json.dumps(fuzz_build_info))
|
||||
# pylint: disable=broad-except
|
||||
except Exception:
|
||||
|
@ -547,7 +547,7 @@ def rl_tune_fusion_op(job: TbeJob):
|
|||
compute_op_list = get_compute_op_list(job.content)
|
||||
op_module_names_str = ""
|
||||
for op in compute_op_list:
|
||||
op_module_names_str = op_module_names_str + "," + op["module_name"]
|
||||
op_module_names_str = op_module_names_str + "," + get_module_name(op)
|
||||
op_module_names_str = op_module_names_str[1:]
|
||||
from schedule_search.rl_online_tune import dispatch_fusion_tune_task
|
||||
res = dispatch_fusion_tune_task(job.source_id, job.id, l1_size, base_kernel, op_kernel_name, op_module_names_str,
|
||||
|
|
|
@ -179,8 +179,6 @@ def get_options_info(job_content):
|
|||
options["op_debug_level"] = job_content["SocInfo"]["op_debug_level"]
|
||||
options["op_impl_mode"] = job_content["SocInfo"]["op_impl_mode"]
|
||||
options["op_debug_dir"] = job_content["SocInfo"]["op_debug_dir"]
|
||||
options["op_compiler_cache_dir"] = job_content["SocInfo"]["op_compiler_cache_dir"]
|
||||
options["op_compiler_cache_mode"] = job_content["SocInfo"]["op_compiler_cache_mode"]
|
||||
options["mdl_bank_path"] = job_content["SocInfo"]["op_debug_level"]
|
||||
options["op_bank_path"] = job_content["SocInfo"]["op_bank_path"]
|
||||
options["deviceId"] = job_content["SocInfo"]["deviceId"]
|
||||
|
@ -220,6 +218,19 @@ def get_func_names(job_content):
|
|||
return func_names
|
||||
|
||||
|
||||
def get_module_name(compute_op_info):
|
||||
"""
|
||||
get compute_op_info
|
||||
:param compute_op_info:
|
||||
:return:
|
||||
"""
|
||||
unknown_shape = compute_op_info["unknown_shape"]
|
||||
op_module_name = compute_op_info["module_name"]
|
||||
if unknown_shape:
|
||||
op_module_name = op_module_name.split(".")[0] + ".dynamic." + op_module_name.split(".")[-1]
|
||||
return op_module_name
|
||||
|
||||
|
||||
def adjust_custom_op_info(compute_op_info):
|
||||
"""
|
||||
adjust custom op info
|
||||
|
|
|
@ -71,12 +71,13 @@ def _get_message(msg, args):
|
|||
class TbeJob:
|
||||
""" Tbe compilation job """
|
||||
|
||||
def __init__(self, source_id, job_id, job_type, content, json_str, sys_info):
|
||||
def __init__(self, source_id, job_id, job_type, content, fusion_op_name, json_str, sys_info):
|
||||
self.source_id = source_id
|
||||
self.id = job_id
|
||||
self.type = JobType(job_type)
|
||||
self.status = JobStatus.JOB_INITIAL
|
||||
self.content = content
|
||||
self.fusion_op_name = fusion_op_name
|
||||
self.result = ""
|
||||
self.process_info = []
|
||||
self.json_string = json_str
|
||||
|
@ -149,8 +150,8 @@ class TbeJob:
|
|||
result["source_id"] = self.source_id
|
||||
result["job_id"] = self.id
|
||||
result["job_type"] = self.type.value
|
||||
result["fusion_op_name"] = self.fusion_op_name
|
||||
result["result"] = self.result
|
||||
self.debug("Resp result:{}".format(json.dumps(result)))
|
||||
process_info = []
|
||||
for info in self.process_info:
|
||||
msg = {"index": info.index, "level": info.level.value, "message": info.info}
|
||||
|
|
|
@ -102,8 +102,9 @@ class TbeJobManager:
|
|||
source_id = job_json["source_id"]
|
||||
job_type = job_json["job_type"]
|
||||
sys_info = self._get_job_sys_info()
|
||||
job = TbeJob(source_id, job_id, job_type, job_json["job_content"], job_str, sys_info)
|
||||
job.debug("Req job string: {}".format(job_str))
|
||||
fusion_op_name = "NA" if "fusion_op_name" not in job_json["job_content"] else job_json["job_content"][
|
||||
"fusion_op_name"]
|
||||
job = TbeJob(source_id, job_id, job_type, job_json["job_content"], fusion_op_name, job_str, sys_info)
|
||||
post_job(self._all_jobs, job)
|
||||
if not self.tbe_initialize and job.type != JobType.INITIALIZE_JOB:
|
||||
job.error(
|
||||
|
@ -115,6 +116,7 @@ class TbeJobManager:
|
|||
return res
|
||||
# pylint: disable=broad-except
|
||||
except Exception:
|
||||
# pylint: disable=no-value-for-parameter
|
||||
sys_info = self._get_job_sys_info()
|
||||
job = TbeJob(-1, -1, "", None, job_str, sys_info) if job is None else job
|
||||
job.status = JobStatus.JOB_FAILED
|
||||
|
@ -261,9 +263,6 @@ class TbeJobManager:
|
|||
return self.add_to_finished_jobs(query_job, JobStatus.JOB_SUCCESS)
|
||||
target_job = get_job(self._running_jobs, target_source_id, target_job_id)
|
||||
if target_job:
|
||||
query_job.debug("Found job in Running jobs, source_id:{}, job_id:{}".format(target_source_id,
|
||||
target_job_id))
|
||||
target_job.debug("Be Queried")
|
||||
query_job.result = target_job.get_result()
|
||||
return self.add_to_finished_jobs(query_job, JobStatus.JOB_SUCCESS)
|
||||
target_job = get_job(self._all_jobs, target_source_id, target_job_id)
|
||||
|
|
|
@ -16,7 +16,6 @@
|
|||
import os
|
||||
from mindspore import log as logger
|
||||
from mindspore._extends.parallel_compile.akg_compiler.akg_process import create_akg_parallel_process
|
||||
from mindspore._extends.parallel_compile.akg_compiler.compiler import run_compiler as akg_compile_single
|
||||
|
||||
|
||||
class Messager:
|
||||
|
@ -146,9 +145,7 @@ class AkgBuilder():
|
|||
|
||||
def handle(self, messager, arg):
|
||||
"""Handle message about akg"""
|
||||
if arg == 'AKG/PID':
|
||||
messager.send_res(os.getpid())
|
||||
elif arg == 'AKG/START':
|
||||
if arg == 'AKG/START':
|
||||
messager.send_ack()
|
||||
process_num_str = messager.get_message()
|
||||
messager.send_ack()
|
||||
|
@ -173,17 +170,8 @@ class AkgBuilder():
|
|||
else:
|
||||
messager.send_ack(False)
|
||||
break
|
||||
elif arg == 'AKG/COMPILE':
|
||||
messager.send_ack()
|
||||
json = messager.get_message()
|
||||
try:
|
||||
akg_compile_single(json, self.attrs)
|
||||
except ValueError:
|
||||
messager.send_ack(False)
|
||||
messager.exit()
|
||||
finally:
|
||||
pass
|
||||
messager.send_ack()
|
||||
else:
|
||||
raise RuntimeError("Unknown message type: %s" % arg)
|
||||
|
||||
|
||||
def get_logger():
|
||||
|
|
|
@ -297,20 +297,14 @@ if(MODE_ASCEND_ALL)
|
|||
${ASCEND_DRIVER_BACK_PATH})
|
||||
find_library(DATATRANSFER datatransfer HINTS ${ASCEND_RUNTIME_PATH} ${ASCEND_TOOLKIT_RUNTIME_PATH}
|
||||
${ASCEND_DRIVER_BACK_PATH})
|
||||
find_library(PROFILING msprofiler_fwkacl ${ASCEND_RUNTIME_PATH} ${ASCEND_TOOLKIT_RUNTIME_PATH})
|
||||
find_library(PROFILING msprofiler ${ASCEND_RUNTIME_PATH} ${ASCEND_TOOLKIT_RUNTIME_PATH})
|
||||
find_library(ACL ascendcl ${ASCEND_RUNTIME_PATH} ${ASCEND_TOOLKIT_RUNTIME_PATH})
|
||||
find_library(PLATFORM platform ${ASCEND_RUNTIME_PATH} ${ASCEND_TOOLKIT_RUNTIME_PATH})
|
||||
find_library(OPTILING optiling ${ASCEND_OPP_PATH} ${ASCEND_TOOLKIT_OPP_PATH})
|
||||
find_library(OPT_FEATURE opt_feature ${ASCEND_RUNTIME_PATH} ${ASCEND_TOOLKIT_RUNTIME_PATH})
|
||||
|
||||
add_library(ms_profile SHARED
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/runtime/device/ascend/profiling/profiling_callback_register.cc)
|
||||
set_target_properties(ms_profile PROPERTIES LINKER_LANGUAGE CXX)
|
||||
target_link_options(ms_profile PRIVATE -Wl,-init,common_log_init)
|
||||
target_link_libraries(ms_profile -Wl,--start-group -Wl,--whole-archive ${PROFILING} -Wl,--no-whole-archive
|
||||
mindspore::protobuf -Wl,--end-group)
|
||||
target_link_libraries(mindspore ${RUNTIME_LIB} ${TSDCLIENT} ${DATATRANSFER} ${ERROR_MANAGER} -Wl,--no-as-needed
|
||||
${OPTILING} ${PLATFORM} ${ACL} ${OPT_FEATURE})
|
||||
${OPTILING} ${PLATFORM} ${ACL} ${OPT_FEATURE} ${PROFILING})
|
||||
target_link_libraries(mindspore -Wl,--start-group proto_input mindspore::protobuf -Wl,--end-group)
|
||||
elseif(CMAKE_SYSTEM_NAME MATCHES "Windows")
|
||||
target_link_libraries(mindspore -Wl,--start-group proto_input mindspore::protobuf mindspore::sentencepiece
|
||||
|
@ -325,7 +319,7 @@ endif()
|
|||
set(CMAKE_BUILD_WITH_INSTALL_RPATH TRUE)
|
||||
set_property(SOURCE "pipeline/jit/init.cc" PROPERTY
|
||||
COMPILE_DEFINITIONS SUBMODULE_ID=mindspore::SubModuleId::SM_PIPELINE)
|
||||
pybind11_add_module(_c_expression NO_EXTRAS "pipeline/jit/init.cc")
|
||||
pybind11_add_module(_c_expression NO_EXTRAS "pipeline/jit/init.cc" NO_EXTRAS)
|
||||
|
||||
MESSAGE(STATUS "operation system is ${CMAKE_SYSTEM}")
|
||||
if(CMAKE_SYSTEM_NAME MATCHES "Linux")
|
||||
|
@ -375,9 +369,6 @@ else()
|
|||
proto_input -Wl,--no-whole-archive)
|
||||
target_link_libraries(_c_expression PRIVATE mindspore::pybind11_module)
|
||||
target_link_libraries(_c_expression PRIVATE mindspore_gvar)
|
||||
if(MODE_ASCEND_ALL)
|
||||
target_link_libraries(_c_expression PRIVATE -Wl,--no-as-needed ms_profile)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
if(USE_GLOG)
|
||||
|
|
|
@ -36,6 +36,7 @@ if(ENABLE_CPU)
|
|||
"cpu/ps/*.cc"
|
||||
"cpu/quantum/*.cc"
|
||||
"cpu/pyfunc/*.cc"
|
||||
"cpu/rl/*.cc"
|
||||
)
|
||||
|
||||
if(NOT ENABLE_MPI)
|
||||
|
@ -84,6 +85,7 @@ if(NOT ENABLE_CPU OR WIN32)
|
|||
list(REMOVE_ITEM CPU_SRC_LIST "cpu/fl/get_model_kernel.cc")
|
||||
list(REMOVE_ITEM CPU_SRC_LIST "cpu/fl/start_fl_job_kernel.cc")
|
||||
list(REMOVE_ITEM CPU_SRC_LIST "cpu/fl/update_model_kernel.cc")
|
||||
list(REMOVE_ITEM CPU_SRC_LIST "cpu/fl/push_metrics_kernel.cc")
|
||||
endif()
|
||||
|
||||
if(ENABLE_GPU)
|
||||
|
|
|
@ -197,17 +197,37 @@ int32_t AkgKernelPool::Init(const std::vector<JsonNodePair> &build_args) {
|
|||
}
|
||||
|
||||
AkgKernelPool::~AkgKernelPool() {
|
||||
// Detach shared memory
|
||||
auto ret = shmdt(reinterpret_cast<void *>(kernel_lists_[0]));
|
||||
if (ret < 0) {
|
||||
MS_LOG(EXCEPTION) << "Shared_mem detach failed, errno:" << strerror(errno);
|
||||
}
|
||||
{
|
||||
LockMng lock(fd_);
|
||||
if (!lock.locked_) {
|
||||
MS_LOG(EXCEPTION) << "Failed to acquire lock.";
|
||||
}
|
||||
|
||||
// Realse shared_memroy
|
||||
if (is_creator_) {
|
||||
ret = shmctl(shm_id_, IPC_RMID, nullptr);
|
||||
struct shmid_ds buf;
|
||||
auto ret = shmctl(shm_id_, IPC_STAT, &buf);
|
||||
if (ret == -1) {
|
||||
MS_LOG(EXCEPTION) << "Failed to get the info of shared memory, errno:" << strerror(errno);
|
||||
}
|
||||
|
||||
bool need_delete_by_last = false;
|
||||
|
||||
// if the creator exits unexpectedly and fails to delete the shm, the last process will try to delete the shm
|
||||
if (((buf.shm_perm.mode & SHM_DEST) == 0) && (buf.shm_nattch == 1)) {
|
||||
need_delete_by_last = true;
|
||||
}
|
||||
|
||||
// Detach shared memory
|
||||
ret = shmdt(reinterpret_cast<void *>(kernel_lists_[0]));
|
||||
if (ret < 0) {
|
||||
MS_LOG(EXCEPTION) << "Realse shared_mem failed, errno:" << strerror(errno);
|
||||
MS_LOG(EXCEPTION) << "Shared_mem detach failed, errno:" << strerror(errno);
|
||||
}
|
||||
|
||||
// Realse shared_memroy
|
||||
if (is_creator_ || need_delete_by_last) {
|
||||
ret = shmctl(shm_id_, IPC_RMID, nullptr);
|
||||
if (ret < 0) {
|
||||
MS_LOG(EXCEPTION) << "Realse shared_mem failed, errno:" << strerror(errno);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -354,35 +374,6 @@ int32_t AkgKernelPool::Wait() {
|
|||
return -1;
|
||||
}
|
||||
|
||||
std::vector<std::string> AkgKernelBuilder::GetNotCachedKernelJsons(const std::vector<JsonNodePair> &build_args) {
|
||||
// Remove cached nodes, gether unique nodes, and collect repeated nodes which need postprecess.
|
||||
std::vector<std::string> jsons;
|
||||
std::unordered_set<std::string> kernel_name_set;
|
||||
for (const auto &[json_generator, anf_node] : build_args) {
|
||||
MS_EXCEPTION_IF_NULL(anf_node);
|
||||
auto kernel_name = json_generator.kernel_name();
|
||||
MS_LOG(DEBUG) << "Akg start compile op: " << kernel_name;
|
||||
|
||||
auto cached_kernel_pack = AkgSearchCache(kernel_name);
|
||||
if (cached_kernel_pack != nullptr) {
|
||||
MS_LOG(DEBUG) << "Use cached kernel, kernel_name[" << kernel_name << "], fullname_with_scope["
|
||||
<< anf_node->fullname_with_scope() << "].";
|
||||
AkgSetKernelMod(cached_kernel_pack, json_generator, anf_node);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (kernel_name_set.count(kernel_name) != 0) {
|
||||
repeat_nodes_.push_back({json_generator, anf_node});
|
||||
continue;
|
||||
}
|
||||
kernel_name_set.insert(kernel_name);
|
||||
auto kernel_json = json_generator.kernel_json_str();
|
||||
AkgSaveJsonInfo(kernel_name, kernel_json);
|
||||
jsons.push_back(kernel_json);
|
||||
}
|
||||
return jsons;
|
||||
}
|
||||
|
||||
std::vector<JsonNodePair> AkgKernelBuilder::GetNotCachedKernels(const std::vector<JsonNodePair> &build_args) {
|
||||
std::unordered_set<std::string> kernel_name_set;
|
||||
std::vector<JsonNodePair> new_build_args;
|
||||
|
@ -432,8 +423,8 @@ bool AkgKernelBuilder::HandleRepeatNodes() {
|
|||
<< anf_node->fullname_with_scope() << "].";
|
||||
return false;
|
||||
}
|
||||
MS_LOG(INFO) << "Use just compiled kernel, kernel_name[" << kernel_name << "], fullname_with_scope["
|
||||
<< anf_node->fullname_with_scope() << "].";
|
||||
MS_LOG(DEBUG) << "Use just compiled kernel, kernel_name[" << kernel_name << "], fullname_with_scope["
|
||||
<< anf_node->fullname_with_scope() << "].";
|
||||
AkgSetKernelMod(cached_kernel_pack, json_generator, anf_node);
|
||||
}
|
||||
return true;
|
||||
|
@ -555,7 +546,7 @@ bool AkgKernelBuilder::AkgKernelParallelBuild(const std::vector<AnfNodePtr> &anf
|
|||
}
|
||||
|
||||
if (json_and_node.empty()) {
|
||||
MS_LOG(DEBUG) << "There is no kernel needed to be compiled.";
|
||||
MS_LOG(INFO) << "There is no akg kernel to be compiled.";
|
||||
return true;
|
||||
}
|
||||
|
||||
|
|
|
@ -47,7 +47,6 @@ class AkgKernelBuilder {
|
|||
bool AkgKernelParallelBuild(const std::vector<AnfNodePtr> &anf_nodes);
|
||||
|
||||
private:
|
||||
std::vector<std::string> GetNotCachedKernelJsons(const std::vector<JsonNodePair> &build_args);
|
||||
std::vector<JsonNodePair> GetNotCachedKernels(const std::vector<JsonNodePair> &build_args);
|
||||
std::vector<std::string> GetKernelJsonsByHashId(const std::vector<JsonNodePair> &build_args,
|
||||
std::set<size_t> fetched_ids);
|
||||
|
@ -91,7 +90,6 @@ class AkgKernelPool {
|
|||
int32_t UpdateAndWait(const std::set<size_t> &ids);
|
||||
|
||||
constexpr inline static size_t kMaxKernelNum_{1000};
|
||||
constexpr inline static key_t kSharedMemKey_{0x57565845};
|
||||
|
||||
// allocate memory for todo_list, doing_list, done_list
|
||||
constexpr inline static size_t kListNum_{3};
|
||||
|
|
|
@ -15,12 +15,6 @@
|
|||
*/
|
||||
#include "backend/kernel_compiler/akg/akg_kernel_json_decoder.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <memory>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <map>
|
||||
#include <vector>
|
||||
#include "backend/kernel_compiler/akg/akg_kernel_json_generator.h"
|
||||
#include "backend/kernel_compiler/common_utils.h"
|
||||
#include "backend/session/anf_runtime_algorithm.h"
|
||||
|
|
|
@ -16,12 +16,6 @@
|
|||
|
||||
#include "backend/kernel_compiler/akg/akg_kernel_json_generator.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <functional>
|
||||
#include <map>
|
||||
#include <set>
|
||||
#include <sstream>
|
||||
#include <tuple>
|
||||
#if ENABLE_GPU
|
||||
#include <cuda.h>
|
||||
#endif
|
||||
|
|
|
@ -15,7 +15,6 @@
|
|||
*/
|
||||
|
||||
#include "backend/kernel_compiler/akg/akg_kernel_metadata.h"
|
||||
#include <memory>
|
||||
#include "backend/session/anf_runtime_algorithm.h"
|
||||
#include "backend/kernel_compiler/oplib/oplib.h"
|
||||
#include "backend/kernel_compiler/common_utils.h"
|
||||
|
|
|
@ -16,13 +16,6 @@
|
|||
|
||||
#include "backend/kernel_compiler/akg/ascend/akg_ascend_kernel_build.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <unordered_set>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
#include "ir/dtype.h"
|
||||
#include "ir/func_graph.h"
|
||||
#include "backend/kernel_compiler/common_utils.h"
|
||||
|
@ -34,11 +27,11 @@
|
|||
namespace mindspore {
|
||||
namespace kernel {
|
||||
KernelPackPtr AkgAscendKernelBuilder::AkgSearchCache(const std::string &kernel_name) {
|
||||
return tbe::TbeUtils::SearchCache(kernel_name, kProcessorAiCore);
|
||||
return tbe::TbeUtils::SearchCache(kernel_name, true);
|
||||
}
|
||||
|
||||
KernelPackPtr AkgAscendKernelBuilder::AkgInsertCache(const std::string &kernel_name) {
|
||||
return tbe::TbeUtils::InsertCache(kernel_name, kProcessorAiCore);
|
||||
return tbe::TbeUtils::InsertCache(kernel_name, kProcessorAiCore, true);
|
||||
}
|
||||
|
||||
void AkgAscendKernelBuilder::AkgSetKernelMod(const KernelPackPtr &kernel_pack,
|
||||
|
|
|
@ -49,6 +49,5 @@ void AkgGpuKernelBuilder::AkgSetKernelMod(const KernelPackPtr &kernel_pack,
|
|||
void AkgGpuKernelBuilder::AkgSaveJsonInfo(const string &kernel_name, const string &kernel_json) {
|
||||
kernel::SaveJsonInfo(kernel_name, kernel_json, kernel::KernelMeta::GetInstance()->kernel_meta_path());
|
||||
}
|
||||
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -15,8 +15,7 @@
|
|||
*/
|
||||
|
||||
#include "backend/kernel_compiler/akg/gpu/akg_gpu_kernel_mod.h"
|
||||
#include <fstream>
|
||||
#include <algorithm>
|
||||
|
||||
#include "nlohmann/json.hpp"
|
||||
#include "utils/ms_utils.h"
|
||||
|
||||
|
@ -126,7 +125,7 @@ bool GpuKernelMod::Launch(const std::vector<AddressPtr> &inputs, const std::vect
|
|||
[](const AddressPtr &output) -> void * { return reinterpret_cast<void *>(&(output->addr)); });
|
||||
if (!workspace.empty()) {
|
||||
(void)std::transform(std::begin(workspace), std::end(workspace), std::back_inserter(runtimeargs),
|
||||
[](const AddressPtr &addr) -> void * { return addr->addr; });
|
||||
[](const AddressPtr &addr) -> void * { return reinterpret_cast<void *>(&(addr->addr)); });
|
||||
}
|
||||
result = cuLaunchKernel(kernel_addr, thread_info[0], thread_info[1], thread_info[2], thread_info[3], thread_info[4],
|
||||
thread_info[5], 0, reinterpret_cast<CUstream>(stream_ptr),
|
||||
|
|
|
@ -970,5 +970,39 @@ size_t CalOffset(const std::vector<int64_t> &start, const std::vector<int64_t> &
|
|||
}
|
||||
return offset;
|
||||
}
|
||||
|
||||
size_t UnitSizeInBytes(const mindspore::TypeId &t) {
|
||||
size_t bytes = 0;
|
||||
switch (t) {
|
||||
case kNumberTypeBool:
|
||||
case kNumberTypeInt8:
|
||||
case kNumberTypeUInt8:
|
||||
bytes = sizeof(int8_t);
|
||||
break;
|
||||
case kNumberTypeInt16:
|
||||
case kNumberTypeUInt16:
|
||||
case kNumberTypeFloat16:
|
||||
bytes = sizeof(int16_t);
|
||||
break;
|
||||
case kNumberTypeInt:
|
||||
case kNumberTypeUInt:
|
||||
case kNumberTypeInt32:
|
||||
case kNumberTypeUInt32:
|
||||
case kNumberTypeFloat:
|
||||
case kNumberTypeFloat32:
|
||||
bytes = sizeof(int32_t);
|
||||
break;
|
||||
case kNumberTypeUInt64:
|
||||
case kNumberTypeInt64:
|
||||
case kNumberTypeFloat64:
|
||||
bytes = sizeof(int64_t);
|
||||
break;
|
||||
default:
|
||||
MS_LOG(EXCEPTION) << "Invalid types " << t;
|
||||
break;
|
||||
}
|
||||
|
||||
return bytes;
|
||||
}
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -143,6 +143,7 @@ size_t CalOffset(const std::vector<int64_t> &start, const std::vector<int64_t> &
|
|||
std::vector<int64_t> CalDimOffset(const std::vector<int64_t> &input_shape);
|
||||
size_t GetCopySize(const std::vector<int64_t> &dim_offset, const std::vector<int64_t> &start,
|
||||
const std::vector<int64_t> &stop);
|
||||
size_t UnitSizeInBytes(const mindspore::TypeId &t);
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
|
|
|
@ -83,7 +83,7 @@ void AdamCPUKernel::LaunchAdamNnacl(const std::vector<kernel::AddressPtr> &input
|
|||
MS_LOG(EXCEPTION) << "AdamFp32 failed.";
|
||||
}
|
||||
};
|
||||
CPUKernelUtils::ParallelForAutoSearch(task, lens, ¶llel_search_info_);
|
||||
ParallelLaunchAutoSearch(task, lens, this, ¶llel_search_info_);
|
||||
}
|
||||
|
||||
void AdamCPUKernel::InitKernel(const CNodePtr &kernel_node) {
|
||||
|
|
|
@ -19,6 +19,7 @@
|
|||
#include "runtime/device/cpu/cpu_device_address.h"
|
||||
#include "nnacl/fp32/power_fp32.h"
|
||||
#include "nnacl/fp32/sub_fp32.h"
|
||||
#include "nnacl/fp32/mul_fp32.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
|
@ -54,7 +55,7 @@ void ArithmeticCPUKernel<T>::Sub(const T *input1, const T *input2, T *out) {
|
|||
auto task = [&](size_t start, size_t end) {
|
||||
ElementSub(input1 + start, input2 + start, out + start, end - start);
|
||||
};
|
||||
CPUKernelUtils::ParallelFor(task, output_size_, MAX_SUB_SERIAL_SIZE);
|
||||
ParallelLaunchAutoSearch(task, output_size_, this, ¶llel_search_info_);
|
||||
return;
|
||||
}
|
||||
if (op_para.in_elements_num0_ == 1 || op_para.in_elements_num1_ == 1) {
|
||||
|
@ -65,7 +66,7 @@ void ArithmeticCPUKernel<T>::Sub(const T *input1, const T *input2, T *out) {
|
|||
ElementOptSub(input1 + start, input2, out + start, end - start, &op_para);
|
||||
}
|
||||
};
|
||||
CPUKernelUtils::ParallelFor(task, output_size_, MAX_SUB_SERIAL_SIZE);
|
||||
ParallelLaunchAutoSearch(task, output_size_, this, ¶llel_search_info_);
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
@ -84,6 +85,26 @@ void ArithmeticCPUKernel<T>::Sub(const T *input1, const T *input2, T *out) {
|
|||
|
||||
template <typename T>
|
||||
void ArithmeticCPUKernel<T>::Mul(const T *input1, const T *input2, T *out) {
|
||||
if constexpr (std::is_same_v<T, float>) {
|
||||
if (input_shape1_ == input_shape2_) {
|
||||
auto task = [&](size_t start, size_t end) {
|
||||
ElementMul(input1 + start, input2 + start, out + start, end - start);
|
||||
};
|
||||
ParallelLaunchAutoSearch(task, output_size_, this, ¶llel_search_info_);
|
||||
return;
|
||||
}
|
||||
if (op_para.in_elements_num0_ == 1 || op_para.in_elements_num1_ == 1) {
|
||||
auto task = [&](size_t start, size_t end) {
|
||||
if (op_para.in_elements_num0_ == 1) {
|
||||
ElementOptMul(input1, input2 + start, out + start, end - start, &op_para);
|
||||
} else {
|
||||
ElementOptMul(input1 + start, input2, out + start, end - start, &op_para);
|
||||
}
|
||||
};
|
||||
ParallelLaunchAutoSearch(task, output_size_, this, ¶llel_search_info_);
|
||||
return;
|
||||
}
|
||||
}
|
||||
BroadcastIterator base_iter(input_shape1_, input_shape2_, output_shape_);
|
||||
auto task = [&input1, &input2, &out, &base_iter](size_t start, size_t end) {
|
||||
auto iter = base_iter;
|
||||
|
@ -128,21 +149,21 @@ void ArithmeticCPUKernel<T>::RealDiv(const T *input1, const T *input2, T *out) {
|
|||
auto task = [&](size_t start, size_t end) {
|
||||
ElementRealDiv<T>(input1 + start, input2 + start, out + start, end - start, 1, 1);
|
||||
};
|
||||
CPUKernelUtils::ParallelFor(task, output_size_, MAX_DIV_SERIAL_SIZE);
|
||||
ParallelLaunchAutoSearch(task, output_size_, this, ¶llel_search_info_);
|
||||
return;
|
||||
}
|
||||
if (op_para.in_elements_num0_ == 1) {
|
||||
auto task = [&](size_t start, size_t end) {
|
||||
ElementRealDiv<T>(input1, input2 + start, out + start, end - start, 0, 1);
|
||||
};
|
||||
CPUKernelUtils::ParallelFor(task, output_size_, MAX_DIV_SERIAL_SIZE);
|
||||
ParallelLaunchAutoSearch(task, output_size_, this, ¶llel_search_info_);
|
||||
return;
|
||||
}
|
||||
if (op_para.in_elements_num1_ == 1) {
|
||||
auto task = [&](size_t start, size_t end) {
|
||||
ElementRealDiv<T>(input1 + start, input2, out + start, end - start, 1, 0);
|
||||
};
|
||||
CPUKernelUtils::ParallelFor(task, output_size_, MAX_DIV_SERIAL_SIZE);
|
||||
ParallelLaunchAutoSearch(task, output_size_, this, ¶llel_search_info_);
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -339,7 +360,7 @@ void ArithmeticCPUKernel<T>::SquaredDifference(const T *input1, const T *input2,
|
|||
iter.GenNextPos();
|
||||
}
|
||||
};
|
||||
CPUKernelUtils::ParallelFor(task, output_size_);
|
||||
ParallelLaunchAutoSearch(task, output_size_, this, ¶llel_search_info_);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
|
|
|
@ -77,6 +77,8 @@ MS_REG_CPU_KERNEL_T(RealDiv, KernelAttr(), ArithmeticCPUKernel, int64_t);
|
|||
MS_REG_CPU_KERNEL_T(Div, KernelAttr(), ArithmeticCPUKernel, int32_t);
|
||||
MS_REG_CPU_KERNEL_T(Div, KernelAttr(), ArithmeticCPUKernel, float);
|
||||
MS_REG_CPU_KERNEL_T(Div, KernelAttr(), ArithmeticCPUKernel, int64_t);
|
||||
MS_REG_CPU_KERNEL_T(Mul, KernelAttr(), ArithmeticCPUKernel, float);
|
||||
MS_REG_CPU_KERNEL_T(Mul, KernelAttr(), ArithmeticCPUKernel, int32_t);
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
FloorDiv, KernelAttr().AddInputAttr(kNumberTypeInt64).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt64),
|
||||
ArithmeticCPUKernel, int64_t);
|
||||
|
|
|
@ -20,6 +20,7 @@
|
|||
#include <map>
|
||||
#include "backend/kernel_compiler/cpu/arithmetic_self_cpu_kernel.h"
|
||||
#include "runtime/device/cpu/cpu_device_address.h"
|
||||
#include "nnacl/fp32/exp_fp32.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
|
@ -31,7 +32,15 @@ void Square(const T *in, T *out, size_t size) {
|
|||
out[i] = in[i] * in[i];
|
||||
}
|
||||
};
|
||||
CPUKernelUtils::ParallelFor(task, size, MAX_SQUARE_SERIAL_SIZE);
|
||||
ParallelLaunch(task, size, MAX_SQUARE_SERIAL_SIZE);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void Exp(const T *in, T *out, size_t size) {
|
||||
if constexpr (std::is_same_v<T, float>) {
|
||||
auto task = [&in, &out](size_t start, size_t end) { ExpFp32(in + start, out + start, end - start); };
|
||||
ParallelLaunch(task, size, MAX_EXP_SERIAL_SIZE);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
|
@ -57,7 +66,7 @@ void Neg(const T *in, T *out, size_t size) {
|
|||
out[i] = -in[i];
|
||||
}
|
||||
};
|
||||
CPUKernelUtils::ParallelFor(task, size, MAX_NEG_SERIAL_SIZE);
|
||||
ParallelLaunch(task, size, MAX_NEG_SERIAL_SIZE);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
|
@ -262,6 +271,7 @@ void Identity(const T *in, T *out, size_t size) {
|
|||
static const std::map<std::string, OperateType> kArithmeticOpTypeMap = {{prim::kPrimNeg->name(), NEG},
|
||||
{prim::kPrimSquare->name(), SQUARE},
|
||||
{prim::kPrimOnesLike->name(), ONESLIKE},
|
||||
{prim::kPrimExp->name(), EXP},
|
||||
{prim::kPrimZerosLike->name(), ZEROSLIKE},
|
||||
{prim::kPrimLogicalNot->name(), LOGICALNOT},
|
||||
{prim::kPrimSign->name(), SIGN},
|
||||
|
@ -324,17 +334,29 @@ void ArithmeticSelfCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs
|
|||
T *output = reinterpret_cast<T *>(outputs[0]->addr);
|
||||
size_t lens = outputs[0]->size > 0 ? static_cast<size_t>(outputs[0]->size / sizeof(T)) : 1;
|
||||
static const std::map<OperateType, std::function<void(const T *in, T *out, size_t size)>> kArithmeticOpFuncMap = {
|
||||
{SQUARE, Square<T>}, {SIGN, Sign<T>},
|
||||
{NEG, Neg<T>}, {LOGICALNOT, LogicalNot<T>},
|
||||
{ONESLIKE, OnesLike<T>}, {ZEROSLIKE, ZerosLike<T>},
|
||||
{FLOOR, Floor<T>}, {RECIPROCAL, Reciprocal<T>},
|
||||
{GELU, Gelu<T>}, {SIN, Sin<T>},
|
||||
{COS, Cos<T>}, {TAN, Tan<T>},
|
||||
{ASIN, Asin<T>}, {ACOS, ACos<T>},
|
||||
{ATAN, Atan<T>}, {SINH, Sinh<T>},
|
||||
{COSH, Cosh<T>}, {ASINH, Asinh<T>},
|
||||
{ACOSH, Acosh<T>}, {ATANH, Atanh<T>},
|
||||
{RINT, Rint<T>}, {ROUND, Round<T>}};
|
||||
{SQUARE, Square<T>},
|
||||
{SIGN, Sign<T>},
|
||||
{NEG, Neg<T>},
|
||||
{LOGICALNOT, LogicalNot<T>},
|
||||
{ONESLIKE, OnesLike<T>},
|
||||
{ZEROSLIKE, ZerosLike<T>},
|
||||
{FLOOR, Floor<T>},
|
||||
{RECIPROCAL, Reciprocal<T>},
|
||||
{GELU, Gelu<T>},
|
||||
{SIN, Sin<T>},
|
||||
{COS, Cos<T>},
|
||||
{TAN, Tan<T>},
|
||||
{ASIN, Asin<T>},
|
||||
{ACOS, ACos<T>},
|
||||
{ATAN, Atan<T>},
|
||||
{SINH, Sinh<T>},
|
||||
{COSH, Cosh<T>},
|
||||
{ASINH, Asinh<T>},
|
||||
{ACOSH, Acosh<T>},
|
||||
{ATANH, Atanh<T>},
|
||||
{RINT, Rint<T>},
|
||||
{ROUND, Round<T>},
|
||||
{EXP, Exp<T>}};
|
||||
if (kArithmeticOpFuncMap.find(operate_type_) != kArithmeticOpFuncMap.end()) {
|
||||
kArithmeticOpFuncMap.at(operate_type_)(input, output, lens);
|
||||
} else {
|
||||
|
|
|
@ -20,8 +20,9 @@
|
|||
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
|
||||
|
||||
const float MAX_NEG_SERIAL_SIZE = 20000;
|
||||
const float MAX_SQUARE_SERIAL_SIZE = 20000;
|
||||
const float MAX_NEG_SERIAL_SIZE = 5000;
|
||||
const float MAX_SQUARE_SERIAL_SIZE = 5000;
|
||||
const float MAX_EXP_SERIAL_SIZE = 15000;
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
|
@ -58,6 +59,10 @@ class IdentityCPUKernel : public ArithmeticSelfCPUKernel {
|
|||
|
||||
MS_REG_CPU_KERNEL(Square, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Square, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Exp, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Neg, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
ArithmeticSelfCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Neg, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
|
|
|
@ -90,7 +90,7 @@ bool BiasAddCPUKernel::Launch(const std::vector<AddressPtr> &inputs, const std::
|
|||
ElementAdd(src_addr + n_offset, bias_addr, output_addr + n_offset, input_shape_[1]);
|
||||
}
|
||||
};
|
||||
CPUKernelUtils::ParallelForAutoSearch(task, input_shape_[0], ¶llel_search_info_);
|
||||
ParallelLaunchAutoSearch(task, input_shape_[0], this, ¶llel_search_info_);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
|
|
@ -55,7 +55,7 @@ bool BiasAddGradCPUKernel::Launch(const std::vector<AddressPtr> &inputs, const s
|
|||
auto task = [&](size_t start, size_t end) {
|
||||
ReduceSumDim2Axis0(end - start, input_shape_[1], input_shape_[0], input_addr + start, output_addr + start);
|
||||
};
|
||||
CPUKernelUtils::ParallelForAutoSearch(task, input_shape_[1], ¶llel_search_info_);
|
||||
ParallelLaunchAutoSearch(task, input_shape_[1], this, ¶llel_search_info_);
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
|
|
@ -74,7 +74,7 @@ bool ConcatCPUKernel<T>::Launch(const std::vector<kernel::AddressPtr> &inputs, c
|
|||
}
|
||||
}
|
||||
};
|
||||
CPUKernelUtils::ParallelForAutoSearch(task, before_axis, ¶llel_search_info_);
|
||||
ParallelLaunchAutoSearch(task, before_axis, this, ¶llel_search_info_);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
|
|
@ -138,6 +138,77 @@ void CPUKernelUtils::ParallelForAutoSearch(const CTask &task, size_t count, Para
|
|||
}
|
||||
}
|
||||
|
||||
ActorThreadPool *GetActorMgrInnerThreadPool() {
|
||||
auto actor_manager = ActorMgr::GetActorMgrRef();
|
||||
auto thread_pool = actor_manager->GetActorThreadPool();
|
||||
// Init thread_pool if env is windows or ascend, in case that it won't be init in graph_scheduler.
|
||||
if (thread_pool == nullptr) {
|
||||
const size_t kMaxThreadNum = 23;
|
||||
size_t max_thread_num = std::thread::hardware_concurrency() - 1;
|
||||
if (max_thread_num < 1) {
|
||||
max_thread_num = 1;
|
||||
}
|
||||
max_thread_num = max_thread_num < kMaxThreadNum ? max_thread_num : kMaxThreadNum;
|
||||
actor_manager->Initialize(true, 0, max_thread_num);
|
||||
thread_pool = actor_manager->GetActorThreadPool();
|
||||
MS_EXCEPTION_IF_NULL(thread_pool);
|
||||
}
|
||||
return thread_pool;
|
||||
}
|
||||
|
||||
// Use threadpool of mindrt
|
||||
void ParallelLaunch(const CTask &task, size_t count, float block_size, Content content) {
|
||||
auto thread_pool = GetActorMgrInnerThreadPool();
|
||||
size_t kernel_thread_num = thread_pool->GetKernelThreadNum();
|
||||
if (kernel_thread_num == 0) {
|
||||
MS_LOG(EXCEPTION) << "Actor inner pool has been init, but kernel thread is 0!";
|
||||
}
|
||||
|
||||
size_t thread_num = count < block_size * kernel_thread_num ? std::ceil(count / block_size) : kernel_thread_num;
|
||||
size_t once_compute_size = (count + thread_num - 1) / thread_num;
|
||||
size_t task_num = count / once_compute_size;
|
||||
if (count % once_compute_size != 0) {
|
||||
task_num += 1;
|
||||
}
|
||||
auto func = [&](void *, int task_id, float, float) {
|
||||
size_t start = task_id * once_compute_size;
|
||||
size_t end = (start + once_compute_size) > count ? count : (start + once_compute_size);
|
||||
task(start, end);
|
||||
return common::SUCCESS;
|
||||
};
|
||||
thread_pool->ParallelLaunch(func, content, task_num);
|
||||
}
|
||||
|
||||
void ParallelLaunchAutoSearch(const CTask &task, size_t count, Content content,
|
||||
ParallelSearchInfo *parallel_search_info) {
|
||||
const size_t MAX_POW = 6;
|
||||
const size_t AVG_COUNT = 5;
|
||||
size_t current_pow = parallel_search_info->search_count / AVG_COUNT;
|
||||
if (current_pow < MAX_POW) {
|
||||
if (parallel_search_info->search_count % AVG_COUNT == 0) {
|
||||
parallel_search_info->tmp_sum_cost_time = 0;
|
||||
}
|
||||
float block_size = static_cast<float>(count) / std::pow(2.0f, current_pow);
|
||||
double start_time = GetTime();
|
||||
ParallelLaunch(task, count, block_size, content);
|
||||
double cost_time = GetTime() - start_time;
|
||||
parallel_search_info->tmp_sum_cost_time += cost_time;
|
||||
parallel_search_info->search_count++;
|
||||
if (parallel_search_info->search_count % AVG_COUNT == 0) {
|
||||
double avg_time = parallel_search_info->tmp_sum_cost_time / AVG_COUNT;
|
||||
if (parallel_search_info->min_cost_time > avg_time) {
|
||||
parallel_search_info->min_cost_time = avg_time;
|
||||
parallel_search_info->best_block_size = block_size;
|
||||
parallel_search_info->best_pow = current_pow;
|
||||
} else if (current_pow - parallel_search_info->best_pow >= 2) {
|
||||
parallel_search_info->search_count = AVG_COUNT * MAX_POW;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
ParallelLaunch(task, count, parallel_search_info->best_block_size, content);
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<size_t> CPUKernelUtils::FlatShapeByAxis(const std::vector<size_t> &shape, int axis) {
|
||||
if (axis < 0) {
|
||||
axis = axis + SizeToInt(shape.size());
|
||||
|
|
|
@ -25,6 +25,8 @@
|
|||
#include "backend/session/anf_runtime_algorithm.h"
|
||||
#include "backend/kernel_compiler/common_utils.h"
|
||||
#include "ir/anf.h"
|
||||
#include "runtime/framework/graph_scheduler.h"
|
||||
#include "actor/actormgr.h"
|
||||
|
||||
using mindspore::kernel::Address;
|
||||
using mindspore::kernel::AddressPtr;
|
||||
|
@ -62,6 +64,7 @@ const char DELTA[] = "delta";
|
|||
const char SORTED[] = "sorted";
|
||||
const char ADJ_ST[] = "adjoint_st";
|
||||
const char ADJ_dT[] = "adjoint_dt";
|
||||
const char PERIODS[] = "periods";
|
||||
|
||||
enum OperateType {
|
||||
ADD = 0,
|
||||
|
@ -119,6 +122,7 @@ enum OperateType {
|
|||
ATAN2,
|
||||
RINT,
|
||||
ROUND,
|
||||
EXP,
|
||||
IDENTITY,
|
||||
};
|
||||
|
||||
|
@ -152,6 +156,19 @@ class CPUKernel : public kernel::KernelMod {
|
|||
std::vector<size_t> output_size_list_;
|
||||
std::vector<size_t> workspace_size_list_;
|
||||
ParallelSearchInfo parallel_search_info_;
|
||||
|
||||
template <typename T>
|
||||
inline T *GetDeviceAddress(const std::vector<AddressPtr> &addr_list, size_t index) {
|
||||
if (index >= addr_list.size()) {
|
||||
MS_LOG(EXCEPTION) << "Address index(" << index << ") out of range(" << addr_list.size() << ")";
|
||||
}
|
||||
|
||||
if ((addr_list[index] == nullptr) || (addr_list[index]->addr == nullptr) || (addr_list[index]->size == 0)) {
|
||||
MS_LOG(EXCEPTION) << "The device address is empty, address index: " << index;
|
||||
}
|
||||
|
||||
return reinterpret_cast<T *>(addr_list[index]->addr);
|
||||
}
|
||||
};
|
||||
|
||||
class CPUKernelUtils {
|
||||
|
@ -209,6 +226,12 @@ class TransposeIterator {
|
|||
std::vector<size_t> axes_;
|
||||
size_t pos_{0};
|
||||
};
|
||||
|
||||
ActorThreadPool *GetActorMgrInnerThreadPool();
|
||||
void ParallelLaunch(const CTask &task, size_t count, float block_size = 128.0, Content content = nullptr);
|
||||
void ParallelLaunchAutoSearch(const CTask &task, size_t count, Content content,
|
||||
ParallelSearchInfo *parallel_search_info);
|
||||
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
|
|
|
@ -144,8 +144,7 @@ bool CropAndResizeCPUKernel<T>::Launch(const std::vector<kernel::AddressPtr> &in
|
|||
const int bottom_y_index = ceilf(target_y);
|
||||
const int left_x_index = floorf(target_x);
|
||||
const int right_x_index = ceilf(target_x);
|
||||
const float y_lerp = target_y - top_y_index;
|
||||
const float x_lerp = target_x - left_x_index;
|
||||
|
||||
const float top_left = static_cast<float>(
|
||||
input_image[((box_index * input_height_ + top_y_index) * input_width_ + left_x_index) * channel_ +
|
||||
pos_channel]);
|
||||
|
@ -158,9 +157,9 @@ bool CropAndResizeCPUKernel<T>::Launch(const std::vector<kernel::AddressPtr> &in
|
|||
const float bottom_right = static_cast<float>(
|
||||
input_image[((box_index * input_height_ + bottom_y_index) * input_width_ + right_x_index) * channel_ +
|
||||
pos_channel]);
|
||||
const float top = top_left + (top_right - top_left) * x_lerp;
|
||||
const float bottom = bottom_left + (bottom_right - bottom_left) * x_lerp;
|
||||
output[pos] = top + (bottom - top) * y_lerp;
|
||||
const float top = top_left + (top_right - top_left) * (target_x - left_x_index);
|
||||
const float bottom = bottom_left + (bottom_right - bottom_left) * (target_x - left_x_index);
|
||||
output[pos] = top + (bottom - top) * (target_y - top_y_index);
|
||||
} else if (method_ == 3) {
|
||||
int y1h = static_cast<int>(y1 * input_height_);
|
||||
int x1w = static_cast<int>(x1 * input_width_);
|
||||
|
@ -170,36 +169,37 @@ bool CropAndResizeCPUKernel<T>::Launch(const std::vector<kernel::AddressPtr> &in
|
|||
int h = ((y2h - y1h + 1) > 1) ? y2h - y1h + 1 : 1;
|
||||
|
||||
float y_point = (pos_y + 0.5) * (h / static_cast<float>(final_height_)) - 0.5;
|
||||
int top_y_index = floorf(y_point);
|
||||
top_y_index = std::min(std::max(0, top_y_index), h - 1);
|
||||
|
||||
int bottom_y_index = ceilf(y_point);
|
||||
bottom_y_index = std::min(std::max(0, bottom_y_index), h - 1);
|
||||
int top_y_index = std::min(std::max(0, static_cast<int>(floorf(y_point))), h - 1);
|
||||
int bottom_y_index = std::min(std::max(0, static_cast<int>(ceilf(y_point))), h - 1);
|
||||
|
||||
float x_point = (pos_x + 0.5) * (w / static_cast<float>(final_width_)) - 0.5;
|
||||
int left_x_index = floorf(x_point);
|
||||
left_x_index = std::min(std::max(0, left_x_index), w - 1);
|
||||
|
||||
int right_x_index = ceilf(x_point);
|
||||
right_x_index = std::min(std::max(0, right_x_index), w - 1);
|
||||
int left_x_index = std::min(std::max(0, static_cast<int>(floorf(x_point))), w - 1);
|
||||
int right_x_index = std::min(std::max(0, static_cast<int>(ceilf(x_point))), w - 1);
|
||||
|
||||
const float y_lerp = y_point - top_y_index;
|
||||
const float x_lerp = x_point - left_x_index;
|
||||
const int y_top_index = box_index * input_height_ + y1h + top_y_index;
|
||||
const int y_bottom_index = box_index * input_height_ + y1h + bottom_y_index;
|
||||
|
||||
const float top_left =
|
||||
static_cast<float>(input_image[(y_top_index * input_width_ + x1w + left_x_index) * channel_ + pos_channel]);
|
||||
const float top_right =
|
||||
static_cast<float>(input_image[(y_top_index * input_width_ + x1w + right_x_index) * channel_ + pos_channel]);
|
||||
const int y_top_index = std::max(0, y1h + top_y_index);
|
||||
const int y_bottom_index = std::max(0, y1h + bottom_y_index);
|
||||
const int x_left_index = std::max(0, x1w + left_x_index);
|
||||
const int x_right_index = std::max(0, x1w + right_x_index);
|
||||
|
||||
const float top_left = static_cast<float>(
|
||||
input_image[((box_index * input_height_ + y_top_index) * input_width_ + x_left_index) * channel_ +
|
||||
pos_channel]);
|
||||
const float top_right = static_cast<float>(
|
||||
input_image[((box_index * input_height_ + y_top_index) * input_width_ + x_right_index) * channel_ +
|
||||
pos_channel]);
|
||||
const float bottom_left = static_cast<float>(
|
||||
input_image[(y_bottom_index * input_width_ + x1w + left_x_index) * channel_ + pos_channel]);
|
||||
input_image[((box_index * input_height_ + y_bottom_index) * input_width_ + x_left_index) * channel_ +
|
||||
pos_channel]);
|
||||
const float bottom_right = static_cast<float>(
|
||||
input_image[(y_bottom_index * input_width_ + x1w + right_x_index) * channel_ + pos_channel]);
|
||||
input_image[((box_index * input_height_ + y_bottom_index) * input_width_ + x_right_index) * channel_ +
|
||||
pos_channel]);
|
||||
|
||||
output[pos] = top_left * (1 - y_lerp) * (1 - x_lerp) + bottom_right * y_lerp * x_lerp +
|
||||
top_right * (1 - y_lerp) * x_lerp + bottom_left * y_lerp * (1 - x_lerp);
|
||||
|
||||
float ret = top_left * (1 - y_lerp) * (1 - x_lerp) + bottom_right * y_lerp * x_lerp +
|
||||
top_right * (1 - y_lerp) * x_lerp + bottom_left * y_lerp * (1 - x_lerp);
|
||||
output[pos] = ret;
|
||||
} else {
|
||||
// Nearest Neighbour
|
||||
const int closest_x_index = roundf(target_x);
|
||||
|
|
|
@ -35,15 +35,14 @@ class CropAndResizeCPUKernel : public CPUKernel {
|
|||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
private:
|
||||
int method_;
|
||||
float extrapolation_value_;
|
||||
int input_crop_size_;
|
||||
int output_size_;
|
||||
int input_height_;
|
||||
int input_width_;
|
||||
int final_height_;
|
||||
int final_width_;
|
||||
int channel_;
|
||||
int method_{1};
|
||||
float extrapolation_value_{0.0};
|
||||
int output_size_{0};
|
||||
int input_height_{0};
|
||||
int input_width_{0};
|
||||
int final_height_{0};
|
||||
int final_width_{0};
|
||||
int channel_{0};
|
||||
};
|
||||
|
||||
MS_REG_CPU_KERNEL_T(CropAndResize,
|
||||
|
|
|
@ -259,9 +259,9 @@ bool EltWiseGradCPUKernel<T>::Launch(const std::vector<kernel::AddressPtr> &inpu
|
|||
const auto input1 = reinterpret_cast<T *>(inputs[1]->addr);
|
||||
auto output = reinterpret_cast<T *>(outputs[0]->addr);
|
||||
|
||||
CPUKernelUtils::ParallelForAutoSearch(
|
||||
ParallelLaunchAutoSearch(
|
||||
std::bind(elt_map.at(kernel_name_), this, input0, input1, output, std::placeholders::_1, std::placeholders::_2),
|
||||
outputs[0]->size / sizeof(T), ¶llel_search_info_);
|
||||
outputs[0]->size / sizeof(T), this, ¶llel_search_info_);
|
||||
return true;
|
||||
}
|
||||
} // namespace kernel
|
||||
|
|
|
@ -30,7 +30,7 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
// The duration between two downloading requests when return code is ResponseCode_SucNotReady.
|
||||
// The duration between two PullWeights requests when return code is ResponseCode_SucNotReady.
|
||||
constexpr int kRetryDurationOfPullWeights = 200;
|
||||
template <typename T>
|
||||
class FusedPullWeightKernel : public CPUKernel {
|
||||
|
@ -51,19 +51,17 @@ class FusedPullWeightKernel : public CPUKernel {
|
|||
MS_EXCEPTION_IF_NULL(fbb);
|
||||
|
||||
total_iteration_++;
|
||||
uint64_t step_num_per_iteration = fl::worker::FLWorker::GetInstance().worker_step_num_per_iteration();
|
||||
// The worker has to train kWorkerTrainStepNum standalone iterations before it communicates with server.
|
||||
if (total_iteration_ % fl::worker::FLWorker::GetInstance().worker_step_num_per_iteration() !=
|
||||
fl::kTrainBeginStepNum) {
|
||||
MS_LOG(INFO) << "Try to pull weights. Local step number: " << total_iteration_
|
||||
<< ", step number needs to run per iteration: " << step_num_per_iteration;
|
||||
if (step_num_per_iteration != fl::kOneStepPerIteration &&
|
||||
total_iteration_ % step_num_per_iteration != fl::kTrainBeginStepNum) {
|
||||
return true;
|
||||
}
|
||||
|
||||
fl_iteration_++;
|
||||
if (fl_iteration_ > ps::PSContext::instance()->fl_iteration_num()) {
|
||||
MS_LOG(INFO) << ps::PSContext::instance()->fl_iteration_num() << " iterations are completed.";
|
||||
fl_iteration_ = 1;
|
||||
}
|
||||
|
||||
MS_LOG(INFO) << "Start pulling weight for federated learning iteration " << fl_iteration_;
|
||||
MS_LOG(INFO) << "Launching pulling weight for federated learning iteration " << fl_iteration_;
|
||||
if (!BuildPullWeightReq(fbb)) {
|
||||
MS_LOG(EXCEPTION) << "Building request for FusedPullWeight failed.";
|
||||
return false;
|
||||
|
@ -73,11 +71,16 @@ class FusedPullWeightKernel : public CPUKernel {
|
|||
const schema::ResponsePullWeight *pull_weight_rsp = nullptr;
|
||||
int retcode = schema::ResponseCode_SucNotReady;
|
||||
while (retcode == schema::ResponseCode_SucNotReady) {
|
||||
if (!fl::worker::FLWorker::GetInstance().running()) {
|
||||
MS_LOG(WARNING) << "Worker has finished.";
|
||||
return true;
|
||||
}
|
||||
if (!fl::worker::FLWorker::GetInstance().SendToServer(
|
||||
0, fbb->GetBufferPointer(), fbb->GetSize(), ps::core::TcpUserCommand::kPullWeight, &pull_weight_rsp_msg)) {
|
||||
MS_LOG(WARNING) << "Sending request for FusedPullWeight to server 0 failed. This iteration is dropped.";
|
||||
fl::worker::FLWorker::GetInstance().SetIterationRunning();
|
||||
return true;
|
||||
MS_LOG(WARNING) << "Sending request for FusedPullWeight to server 0 failed. Retry later.";
|
||||
retcode = schema::ResponseCode_SucNotReady;
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(kRetryDurationOfPullWeights));
|
||||
continue;
|
||||
}
|
||||
MS_EXCEPTION_IF_NULL(pull_weight_rsp_msg);
|
||||
|
||||
|
@ -88,6 +91,8 @@ class FusedPullWeightKernel : public CPUKernel {
|
|||
fl_iteration_ = pull_weight_rsp->iteration();
|
||||
MS_LOG(DEBUG) << "Server is not ready for downloading yet. Reason: " << pull_weight_rsp->reason()->str()
|
||||
<< ". Retry later.";
|
||||
// Recreate fbb to avoid memory leak of FlatBuffers.
|
||||
fbb = std::make_shared<fl::FBBuilder>();
|
||||
if (!BuildPullWeightReq(fbb)) {
|
||||
MS_LOG(EXCEPTION) << "Building request for FusedDownloadWeightsByKeys failed.";
|
||||
return false;
|
||||
|
@ -116,7 +121,7 @@ class FusedPullWeightKernel : public CPUKernel {
|
|||
return false;
|
||||
}
|
||||
}
|
||||
MS_LOG(INFO) << "Pull weights for " << weight_full_names_ << " succeed. Iteration: " << fl_iteration_;
|
||||
MS_LOG(INFO) << "Pull weights for " << weight_full_names_ << " success. Iteration: " << fl_iteration_;
|
||||
fl::worker::FLWorker::GetInstance().SetIterationRunning();
|
||||
return true;
|
||||
}
|
||||
|
|
|
@ -28,7 +28,7 @@
|
|||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
// The duration between two uploading requests when return code is ResponseCode_SucNotReady.
|
||||
// The duration between two PushWeights requests when return code is ResponseCode_SucNotReady.
|
||||
constexpr int kRetryDurationOfPushWeights = 200;
|
||||
template <typename T>
|
||||
class FusedPushWeightKernel : public CPUKernel {
|
||||
|
@ -49,19 +49,17 @@ class FusedPushWeightKernel : public CPUKernel {
|
|||
MS_EXCEPTION_IF_NULL(fbb);
|
||||
|
||||
total_iteration_++;
|
||||
uint64_t step_num_per_iteration = fl::worker::FLWorker::GetInstance().worker_step_num_per_iteration();
|
||||
// The worker has to train kWorkerTrainStepNum standalone iterations before it communicates with server.
|
||||
if (total_iteration_ % fl::worker::FLWorker::GetInstance().worker_step_num_per_iteration() !=
|
||||
fl::kTrainBeginStepNum) {
|
||||
MS_LOG(INFO) << "Try to push weights. Local step number: " << total_iteration_
|
||||
<< ", step number needs to run per iteration: " << step_num_per_iteration;
|
||||
if (step_num_per_iteration != fl::kOneStepPerIteration &&
|
||||
total_iteration_ % step_num_per_iteration != fl::kTrainEndStepNum) {
|
||||
return true;
|
||||
}
|
||||
|
||||
fl_iteration_++;
|
||||
if (fl_iteration_ > ps::PSContext::instance()->fl_iteration_num()) {
|
||||
MS_LOG(INFO) << ps::PSContext::instance()->fl_iteration_num() << " iterations are completed.";
|
||||
fl_iteration_ = 1;
|
||||
}
|
||||
|
||||
MS_LOG(INFO) << "Start pushing weight for federated learning iteration " << fl_iteration_;
|
||||
MS_LOG(INFO) << "Launching pushing weight for federated learning iteration " << fl_iteration_;
|
||||
if (!BuildPushWeightReq(fbb, inputs)) {
|
||||
MS_LOG(EXCEPTION) << "Building request for FusedPushWeight failed.";
|
||||
return false;
|
||||
|
@ -73,13 +71,17 @@ class FusedPushWeightKernel : public CPUKernel {
|
|||
const schema::ResponsePushWeight *push_weight_rsp = nullptr;
|
||||
int retcode = schema::ResponseCode_SucNotReady;
|
||||
while (retcode == schema::ResponseCode_SucNotReady) {
|
||||
if (!fl::worker::FLWorker::GetInstance().running()) {
|
||||
MS_LOG(WARNING) << "Worker has finished.";
|
||||
return true;
|
||||
}
|
||||
if (!fl::worker::FLWorker::GetInstance().SendToServer(i, fbb->GetBufferPointer(), fbb->GetSize(),
|
||||
ps::core::TcpUserCommand::kPushWeight,
|
||||
&push_weight_rsp_msg)) {
|
||||
MS_LOG(WARNING) << "Sending request for FusedPushWeight to server " << i
|
||||
<< " failed. This iteration is dropped.";
|
||||
fl::worker::FLWorker::GetInstance().SetIterationCompleted();
|
||||
return true;
|
||||
MS_LOG(WARNING) << "Sending request for FusedPushWeight to server " << i << " failed.";
|
||||
retcode = schema::ResponseCode_SucNotReady;
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(kRetryDurationOfPushWeights));
|
||||
continue;
|
||||
}
|
||||
MS_EXCEPTION_IF_NULL(push_weight_rsp_msg);
|
||||
|
||||
|
@ -105,8 +107,7 @@ class FusedPushWeightKernel : public CPUKernel {
|
|||
}
|
||||
}
|
||||
|
||||
MS_LOG(INFO) << "Push weights for " << weight_full_names_ << " succeed. Iteration: " << fl_iteration_;
|
||||
fl::worker::FLWorker::GetInstance().SetIterationCompleted();
|
||||
MS_LOG(INFO) << "Push weights for " << weight_full_names_ << " success. Iteration: " << fl_iteration_;
|
||||
return true;
|
||||
}
|
||||
|
||||
|
|
|
@ -52,6 +52,26 @@ MS_REG_CPU_KERNEL_T(
|
|||
MaskedSelect,
|
||||
KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeBool).AddOutputAttr(kNumberTypeInt32),
|
||||
MaskedSelectCPUKernel, int);
|
||||
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
MaskedSelect,
|
||||
KernelAttr().AddInputAttr(kNumberTypeInt16).AddInputAttr(kNumberTypeBool).AddOutputAttr(kNumberTypeInt16),
|
||||
MaskedSelectCPUKernel, int16_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
MaskedSelect,
|
||||
KernelAttr().AddInputAttr(kNumberTypeInt64).AddInputAttr(kNumberTypeBool).AddOutputAttr(kNumberTypeInt64),
|
||||
MaskedSelectCPUKernel, int64_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
MaskedSelect,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeBool).AddOutputAttr(kNumberTypeFloat16),
|
||||
MaskedSelectCPUKernel, float16);
|
||||
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
MaskedSelect,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeBool).AddOutputAttr(kNumberTypeFloat64),
|
||||
MaskedSelectCPUKernel, double);
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_MASKED_SELECTED_CPU_KERNEL_H_
|
||||
|
|
|
@ -58,6 +58,38 @@ MS_REG_CPU_KERNEL_T(MaskedSelectGrad,
|
|||
.AddInputAttr(kNumberTypeInt32)
|
||||
.AddOutputAttr(kNumberTypeInt32),
|
||||
MaskedSelectGradCPUKernel, int);
|
||||
|
||||
MS_REG_CPU_KERNEL_T(MaskedSelectGrad,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddInputAttr(kNumberTypeBool)
|
||||
.AddInputAttr(kNumberTypeFloat16)
|
||||
.AddOutputAttr(kNumberTypeFloat16),
|
||||
MaskedSelectGradCPUKernel, float16);
|
||||
|
||||
MS_REG_CPU_KERNEL_T(MaskedSelectGrad,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeFloat64)
|
||||
.AddInputAttr(kNumberTypeBool)
|
||||
.AddInputAttr(kNumberTypeFloat64)
|
||||
.AddOutputAttr(kNumberTypeFloat64),
|
||||
MaskedSelectGradCPUKernel, double);
|
||||
|
||||
MS_REG_CPU_KERNEL_T(MaskedSelectGrad,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt16)
|
||||
.AddInputAttr(kNumberTypeBool)
|
||||
.AddInputAttr(kNumberTypeInt16)
|
||||
.AddOutputAttr(kNumberTypeInt16),
|
||||
MaskedSelectGradCPUKernel, int16_t);
|
||||
|
||||
MS_REG_CPU_KERNEL_T(MaskedSelectGrad,
|
||||
KernelAttr()
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddInputAttr(kNumberTypeBool)
|
||||
.AddInputAttr(kNumberTypeInt64)
|
||||
.AddOutputAttr(kNumberTypeInt64),
|
||||
MaskedSelectGradCPUKernel, int64_t);
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_MASKED_SELECTED_GRAD_CPU_KERNEL_H_
|
||||
|
|
|
@ -86,6 +86,8 @@ bool MirrorPadCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs, c
|
|||
LaunchKernel<float16>(inputs, outputs);
|
||||
} else if (dtype_ == kNumberTypeFloat32) {
|
||||
LaunchKernel<float>(inputs, outputs);
|
||||
} else if (dtype_ == kNumberTypeFloat64) {
|
||||
LaunchKernel<double>(inputs, outputs);
|
||||
} else if (dtype_ == kNumberTypeInt32) {
|
||||
LaunchKernel<int>(inputs, outputs);
|
||||
} else {
|
||||
|
|
|
@ -74,6 +74,11 @@ MS_REG_CPU_KERNEL(
|
|||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeFloat32),
|
||||
MirrorPadCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(
|
||||
MirrorPad,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeFloat64),
|
||||
MirrorPadCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(
|
||||
MirrorPad, KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt32),
|
||||
MirrorPadCPUKernel);
|
||||
|
@ -88,6 +93,11 @@ MS_REG_CPU_KERNEL(
|
|||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeFloat32),
|
||||
MirrorPadCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(
|
||||
MirrorPad,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeFloat64),
|
||||
MirrorPadCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(
|
||||
MirrorPad, KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
MirrorPadCPUKernel);
|
||||
|
|
|
@ -110,6 +110,8 @@ bool MirrorPadGradCPUKernel::Launch(const std::vector<kernel::AddressPtr> &input
|
|||
LaunchKernel<float16>(inputs, workspace, outputs);
|
||||
} else if (dtype_ == kNumberTypeFloat32) {
|
||||
LaunchKernel<float>(inputs, workspace, outputs);
|
||||
} else if (dtype_ == kNumberTypeFloat64) {
|
||||
LaunchKernel<double>(inputs, workspace, outputs);
|
||||
} else if (dtype_ == kNumberTypeInt32) {
|
||||
LaunchKernel<int>(inputs, workspace, outputs);
|
||||
} else {
|
||||
|
@ -130,6 +132,8 @@ void MirrorPadGradCPUKernel::InitInputOutputSize(const CNodePtr &kernel_node) {
|
|||
InitWorkspaceSize<float16>();
|
||||
} else if (dtype_ == kNumberTypeFloat32) {
|
||||
InitWorkspaceSize<float>();
|
||||
} else if (dtype_ == kNumberTypeFloat64) {
|
||||
InitWorkspaceSize<double>();
|
||||
} else if (dtype_ == kNumberTypeInt32) {
|
||||
InitWorkspaceSize<int>();
|
||||
}
|
||||
|
|
|
@ -90,6 +90,11 @@ MS_REG_CPU_KERNEL(
|
|||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeFloat32),
|
||||
MirrorPadGradCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(
|
||||
MirrorPadGrad,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeFloat64),
|
||||
MirrorPadGradCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(
|
||||
MirrorPadGrad,
|
||||
KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt32),
|
||||
|
@ -105,6 +110,11 @@ MS_REG_CPU_KERNEL(
|
|||
KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeFloat32),
|
||||
MirrorPadGradCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(
|
||||
MirrorPadGrad,
|
||||
KernelAttr().AddInputAttr(kNumberTypeFloat64).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeFloat64),
|
||||
MirrorPadGradCPUKernel);
|
||||
|
||||
MS_REG_CPU_KERNEL(
|
||||
MirrorPadGrad,
|
||||
KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32),
|
||||
|
|
|
@ -52,8 +52,6 @@ MS_REG_CPU_KERNEL(Sigmoid, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutp
|
|||
EltWiseCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Sqrt, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
EltWiseCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Square, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
EltWiseCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Tanh, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
EltWiseCPUKernel);
|
||||
MS_REG_CPU_KERNEL(Softplus, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
|
|
|
@ -111,22 +111,16 @@ bool MKLCPUKernel::BinaryBroadCast(std::vector<size_t> *src0_shape, std::vector<
|
|||
}
|
||||
|
||||
dnnl::memory::format_tag MKLCPUKernel::GetDefaultFormatTag(const dnnl::memory::dims &dims) const {
|
||||
dnnl::memory::format_tag mem_tag;
|
||||
auto dim_size = dims.size();
|
||||
if (dim_size == 5) {
|
||||
mem_tag = dnnl::memory::format_tag::abcde;
|
||||
} else if (dim_size == 4) {
|
||||
mem_tag = dnnl::memory::format_tag::abcd;
|
||||
} else if (dim_size == 3) {
|
||||
mem_tag = dnnl::memory::format_tag::abc;
|
||||
} else if (dim_size == 2) {
|
||||
mem_tag = dnnl::memory::format_tag::ab;
|
||||
} else if (dim_size == 1) {
|
||||
mem_tag = dnnl::memory::format_tag::a;
|
||||
} else {
|
||||
MS_LOG(EXCEPTION) << "Kernel dims invalid " << dim_size;
|
||||
static const std::vector<dnnl::memory::format_tag> tag_vec = {
|
||||
dnnl::memory::format_tag::a, dnnl::memory::format_tag::ab, dnnl::memory::format_tag::abc,
|
||||
dnnl::memory::format_tag::abcd, dnnl::memory::format_tag::abcde, dnnl::memory::format_tag::abcdef,
|
||||
dnnl::memory::format_tag::abcdefg};
|
||||
|
||||
auto rank = dims.size();
|
||||
if (rank > tag_vec.size()) {
|
||||
MS_LOG(EXCEPTION) << "The kernel does not support construct " << rank << "-D tensor dnnl memory format_tag.";
|
||||
}
|
||||
return mem_tag;
|
||||
return tag_vec[rank - 1];
|
||||
}
|
||||
|
||||
dnnl::memory::desc MKLCPUKernel::GetDefaultMemDesc(const std::vector<size_t> &shape) {
|
||||
|
|
|
@ -36,9 +36,6 @@ class MulCPUKernel : public MKLCPUKernel {
|
|||
private:
|
||||
bool need_swap_{false};
|
||||
};
|
||||
|
||||
MS_REG_CPU_KERNEL(Mul, KernelAttr(), MulCPUKernel);
|
||||
MS_REG_CPU_KERNEL_T(Mul, KernelAttr(), ArithmeticCPUKernel, int32_t);
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
|
|
|
@ -45,7 +45,7 @@ if(MSLITE_STRING_KERNEL)
|
|||
${KERNEL_SRC_INFER_STRING}
|
||||
)
|
||||
endif()
|
||||
if(MSLITE_CONTROL_TENSORLIST)
|
||||
if(MSLITE_CONTROLFLOW_TENSORLIST)
|
||||
file(GLOB KERNEL_SRC_INFER_CONTROL_TENSORLIST
|
||||
${NNACL_DIR}/infer/control/*.c
|
||||
)
|
||||
|
|
|
@ -29,10 +29,28 @@ asm_function MatmulFloatNeon64Opt
|
|||
|
||||
mov x21, #48 // sizeof(float) * 12
|
||||
mul x17, x5, x21 // block stride of lhs/rhs: sizeof(float) * 12 * depth
|
||||
cmp x9, #3 // c4
|
||||
beq C4Stride
|
||||
cbnz x9, NoC8Steps
|
||||
mov x11, x2
|
||||
mov x21, #32
|
||||
mul x16, x6, x21 // row * 8 * sizeof(float)
|
||||
b NoC8Steps
|
||||
C4Stride:
|
||||
mov x18, #48 // 12 * sizeof(float)
|
||||
mov x22, #4
|
||||
mul x8, x8, x22 // stride * sizeof(float), in c4 stride == row
|
||||
mul x8, x8, x22 // col stride
|
||||
// col >= 4 , block stride 192, otherwise 12 * 4 * col
|
||||
cmp x7, #4
|
||||
bge C4StrideCommon
|
||||
mul x18, x18, x7 // block stride
|
||||
b LoopRowStart
|
||||
C4StrideCommon:
|
||||
mov x18, #192 // block stride
|
||||
|
||||
b LoopRowStart
|
||||
|
||||
NoC8Steps:
|
||||
cmp x9, #2
|
||||
bne NoWinoSteps
|
||||
|
@ -46,10 +64,14 @@ NoWinoSteps:
|
|||
mul x8, x8, x21
|
||||
|
||||
LoopRowStart:
|
||||
cmp x9, #3
|
||||
bne RowStart
|
||||
mov x20, x2
|
||||
RowStart:
|
||||
cmp x6, #4
|
||||
ble LoopRow4
|
||||
cmp x6, #8
|
||||
blt LoopRow8
|
||||
ble LoopRow8
|
||||
|
||||
LoopRow:
|
||||
mov x14, x1 // reload rhs ptr
|
||||
|
@ -58,7 +80,12 @@ LoopRow:
|
|||
|
||||
LoopCol:
|
||||
cbz x9, NoReloadDst
|
||||
cmp x9, #3
|
||||
beq C4ReloadDst
|
||||
mov x11, x2
|
||||
b NoReloadDst
|
||||
C4ReloadDst:
|
||||
mov x11, x20
|
||||
NoReloadDst:
|
||||
mov x10, x0 // reload lhs ptr
|
||||
mov x19, x5 // reload depth
|
||||
|
@ -192,7 +219,7 @@ LoopRow:
|
|||
fmin v29.4s, v29.4s, v2.4s
|
||||
fmin v30.4s, v30.4s, v2.4s
|
||||
fmin v31.4s, v31.4s, v2.4s
|
||||
|
||||
|
||||
Relu:
|
||||
dup v3.4s, wzr
|
||||
fmax v8.4s, v8.4s, v3.4s
|
||||
|
@ -324,7 +351,12 @@ LoopRow8:
|
|||
|
||||
LoopCol8:
|
||||
cbz x9, NoReloadDst8
|
||||
cmp x9, #3
|
||||
beq C4ReloadDst8
|
||||
mov x11, x2
|
||||
b NoReloadDst8
|
||||
C4ReloadDst8:
|
||||
mov x11, x20
|
||||
NoReloadDst8:
|
||||
mov x10, x0 // reload lhs ptr
|
||||
mov x19, x5 // reload depth
|
||||
|
@ -426,7 +458,7 @@ LoopRow8:
|
|||
fmin v21.4s, v21.4s, v2.4s
|
||||
fmin v22.4s, v22.4s, v2.4s
|
||||
fmin v23.4s, v23.4s, v2.4s
|
||||
|
||||
|
||||
Relu8:
|
||||
dup v3.4s, wzr
|
||||
fmax v8.4s, v8.4s, v3.4s
|
||||
|
@ -529,7 +561,12 @@ LoopRow4:
|
|||
|
||||
LoopCol4:
|
||||
cbz x9, NoReloadDst4
|
||||
cmp x9, #3
|
||||
beq C4ReloadDst4
|
||||
mov x11, x2
|
||||
b NoReloadDst4
|
||||
C4ReloadDst4:
|
||||
mov x11, x20
|
||||
NoReloadDst4:
|
||||
mov x10, x0 // reload lhs ptr
|
||||
mov x19, x5 // reload depth
|
||||
|
@ -599,7 +636,7 @@ LoopRow4:
|
|||
fmin v13.4s, v13.4s, v2.4s
|
||||
fmin v14.4s, v14.4s, v2.4s
|
||||
fmin v15.4s, v15.4s, v2.4s
|
||||
|
||||
|
||||
Relu4:
|
||||
dup v3.4s, wzr
|
||||
fmax v8.4s, v8.4s, v3.4s
|
||||
|
@ -669,6 +706,8 @@ LoopRow4:
|
|||
Write:
|
||||
cmp x9, #2
|
||||
beq WriteWino
|
||||
cmp x9, #3
|
||||
beq WriteC4
|
||||
cbz x9, WriteC8
|
||||
cmp x13, #1
|
||||
beq Write1
|
||||
|
@ -1102,6 +1141,508 @@ LoopRow4:
|
|||
beq WriteEnd
|
||||
st1 {v30.4s, v31.4s}, [x11], x8
|
||||
add x11, x11, #32
|
||||
b WriteEnd
|
||||
WriteC4:
|
||||
cmp x13, #1
|
||||
beq C4Write1
|
||||
cmp x13, #2
|
||||
beq C4Write2
|
||||
cmp x13, #3
|
||||
beq C4Write3
|
||||
cmp x13, #4
|
||||
beq C4Write4
|
||||
cmp x13, #5
|
||||
beq C4Write5
|
||||
cmp x13, #6
|
||||
beq C4Write6
|
||||
cmp x13, #7
|
||||
beq C4Write7
|
||||
b C4Write8
|
||||
C4Write1:
|
||||
// add x20, x11, x8
|
||||
str s8, [x11], #4
|
||||
cmp x6, #1
|
||||
beq WriteEnd
|
||||
str s10, [x11], #4
|
||||
cmp x6, #2
|
||||
beq WriteEnd
|
||||
str s12, [x11], #4
|
||||
cmp x6, #3
|
||||
beq WriteEnd
|
||||
str s14, [x11], #4
|
||||
cmp x6, #4
|
||||
beq WriteEnd
|
||||
str s16, [x11], #4
|
||||
cmp x6, #5
|
||||
beq WriteEnd
|
||||
str s18, [x11], #4
|
||||
cmp x6, #6
|
||||
beq WriteEnd
|
||||
str s20, [x11], #4
|
||||
cmp x6, #7
|
||||
beq WriteEnd
|
||||
str s22, [x11], #4
|
||||
cmp x6, #8
|
||||
beq WriteEnd
|
||||
str s24, [x11], #4
|
||||
cmp x6, #9
|
||||
beq WriteEnd
|
||||
str s26, [x11], #4
|
||||
cmp x6, #10
|
||||
beq WriteEnd
|
||||
str s28, [x11], #4
|
||||
cmp x6, #11
|
||||
beq WriteEnd
|
||||
str s30, [x11], #4
|
||||
b WriteEnd
|
||||
C4Write2:
|
||||
// add x20, x11, x8
|
||||
st1 {v8.2s}, [x11], #8
|
||||
cmp x6, #1
|
||||
beq WriteEnd
|
||||
st1 {v10.2s}, [x11], #8
|
||||
cmp x6, #2
|
||||
beq WriteEnd
|
||||
st1 {v12.2s}, [x11], #8
|
||||
cmp x6, #3
|
||||
beq WriteEnd
|
||||
st1 {v14.2s}, [x11], #8
|
||||
cmp x6, #4
|
||||
beq WriteEnd
|
||||
st1 {v16.2s}, [x11], #8
|
||||
cmp x6, #5
|
||||
beq WriteEnd
|
||||
st1 {v18.2s}, [x11], #8
|
||||
cmp x6, #6
|
||||
beq WriteEnd
|
||||
st1 {v20.2s}, [x11], #8
|
||||
cmp x6, #7
|
||||
beq WriteEnd
|
||||
st1 {v22.2s}, [x11], #8
|
||||
cmp x6, #8
|
||||
beq WriteEnd
|
||||
st1 {v24.2s}, [x11], #8
|
||||
cmp x6, #9
|
||||
beq WriteEnd
|
||||
st1 {v26.2s}, [x11], #8
|
||||
cmp x6, #10
|
||||
beq WriteEnd
|
||||
st1 {v28.2s}, [x11], #8
|
||||
cmp x6, #11
|
||||
beq WriteEnd
|
||||
st1 {v30.2s}, [x11], #8
|
||||
b WriteEnd
|
||||
C4Write3:
|
||||
// add x20, x11, x8
|
||||
add x19, x11, #8
|
||||
st1 {v8.2s}, [x11]
|
||||
add x11, x11, #12
|
||||
st1 {v8.s}[2], [x19]
|
||||
add x19, x19, #12
|
||||
cmp x6, #1
|
||||
beq WriteEnd
|
||||
st1 {v10.2s}, [x11]
|
||||
add x11, x11, #12
|
||||
st1 {v10.s}[2], [x19]
|
||||
add x19, x19, #12
|
||||
cmp x6, #2
|
||||
beq WriteEnd
|
||||
st1 {v12.2s}, [x11]
|
||||
add x11, x11, #12
|
||||
st1 {v12.s}[2], [x19]
|
||||
add x19, x19, #12
|
||||
cmp x6, #3
|
||||
beq WriteEnd
|
||||
st1 {v14.2s}, [x11]
|
||||
add x11, x11, #12
|
||||
st1 {v14.s}[2], [x19]
|
||||
add x19, x19, #12
|
||||
cmp x6, #4
|
||||
beq WriteEnd
|
||||
st1 {v16.2s}, [x11]
|
||||
add x11, x11, #12
|
||||
st1 {v16.s}[2], [x19]
|
||||
add x19, x19, #12
|
||||
cmp x6, #5
|
||||
beq WriteEnd
|
||||
st1 {v18.2s}, [x11]
|
||||
add x11, x11, #12
|
||||
st1 {v18.s}[2], [x19]
|
||||
add x19, x19, #12
|
||||
cmp x6, #6
|
||||
beq WriteEnd
|
||||
st1 {v20.2s}, [x11]
|
||||
add x11, x11, #12
|
||||
st1 {v20.s}[2], [x19]
|
||||
add x19, x19, #12
|
||||
cmp x6, #7
|
||||
beq WriteEnd
|
||||
st1 {v22.2s}, [x11]
|
||||
add x11, x11, #12
|
||||
st1 {v22.s}[2], [x19]
|
||||
add x19, x19, #12
|
||||
cmp x6, #8
|
||||
beq WriteEnd
|
||||
st1 {v24.2s}, [x11]
|
||||
add x11, x11, #12
|
||||
st1 {v24.s}[2], [x19]
|
||||
add x19, x19, #12
|
||||
cmp x6, #9
|
||||
beq WriteEnd
|
||||
st1 {v26.2s}, [x11]
|
||||
add x11, x11, #12
|
||||
st1 {v26.s}[2], [x19]
|
||||
add x19, x19, #12
|
||||
cmp x6, #10
|
||||
beq WriteEnd
|
||||
st1 {v28.2s}, [x11]
|
||||
add x11, x11, #12
|
||||
st1 {v28.s}[2], [x19]
|
||||
add x19, x19, #12
|
||||
cmp x6, #11
|
||||
beq WriteEnd
|
||||
st1 {v30.2s}, [x11]
|
||||
add x11, x11, #12
|
||||
st1 {v30.s}[2], [x19]
|
||||
add x19, x19, #12
|
||||
b WriteEnd
|
||||
|
||||
C4Write4:
|
||||
add x20, x11, x8
|
||||
st1 {v8.4s}, [x11], #16
|
||||
cmp x6, #1
|
||||
beq WriteEnd
|
||||
st1 {v10.4s}, [x11], #16
|
||||
cmp x6, #2
|
||||
beq WriteEnd
|
||||
st1 {v12.4s}, [x11], #16
|
||||
cmp x6, #3
|
||||
beq WriteEnd
|
||||
st1 {v14.4s}, [x11], #16
|
||||
cmp x6, #4
|
||||
beq WriteEnd
|
||||
st1 {v16.4s}, [x11], #16
|
||||
cmp x6, #5
|
||||
beq WriteEnd
|
||||
st1 {v18.4s}, [x11], #16
|
||||
cmp x6, #6
|
||||
beq WriteEnd
|
||||
st1 {v20.4s}, [x11], #16
|
||||
cmp x6, #7
|
||||
beq WriteEnd
|
||||
st1 {v22.4s}, [x11], #16
|
||||
cmp x6, #8
|
||||
beq WriteEnd
|
||||
st1 {v24.4s}, [x11], #16
|
||||
cmp x6, #9
|
||||
beq WriteEnd
|
||||
st1 {v26.4s}, [x11], #16
|
||||
cmp x6, #10
|
||||
beq WriteEnd
|
||||
st1 {v28.4s}, [x11], #16
|
||||
cmp x6, #11
|
||||
beq WriteEnd
|
||||
st1 {v30.4s}, [x11], #16
|
||||
b WriteEnd
|
||||
C4Write5:
|
||||
add x19, x11, #16
|
||||
st1 {v8.4s}, [x11]
|
||||
add x11, x11, #20
|
||||
str s9, [x19]
|
||||
add x19, x19, #20
|
||||
cmp x6, #1
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v10.4s}, [x11]
|
||||
add x11, x11, #20
|
||||
str s11, [x19]
|
||||
add x19, x19, #20
|
||||
cmp x6, #2
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v12.4s}, [x11]
|
||||
add x11, x11, #20
|
||||
str s13, [x19]
|
||||
add x19, x19, #20
|
||||
cmp x6, #3
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v14.4s}, [x11]
|
||||
add x11, x11, #20
|
||||
str s15, [x19]
|
||||
add x19, x19, #20
|
||||
cmp x6, #4
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v16.4s}, [x11]
|
||||
add x11, x11, #20
|
||||
str s17, [x19]
|
||||
add x19, x19, #20
|
||||
cmp x6, #5
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v18.4s}, [x11]
|
||||
add x11, x11, #20
|
||||
str s19, [x19]
|
||||
add x19, x19, #20
|
||||
cmp x6, #6
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v20.4s}, [x11]
|
||||
add x11, x11, #20
|
||||
str s21, [x19]
|
||||
add x19, x19, #20
|
||||
cmp x6, #7
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v22.4s}, [x11]
|
||||
add x11, x11, #20
|
||||
str s23, [x19]
|
||||
add x19, x19, #20
|
||||
cmp x6, #8
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v24.4s}, [x11]
|
||||
add x11, x11, #20
|
||||
str s25, [x19]
|
||||
add x19, x19, #20
|
||||
cmp x6, #9
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v26.4s}, [x11]
|
||||
add x11, x11, #20
|
||||
str s27, [x19]
|
||||
add x19, x19, #20
|
||||
cmp x6, #10
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v28.4s}, [x11]
|
||||
add x11, x11, #20
|
||||
str s29, [x19]
|
||||
add x19, x19, #20
|
||||
cmp x6, #11
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v30.4s}, [x11]
|
||||
str s31, [x19]
|
||||
b WriteEnd
|
||||
C4Write6:
|
||||
add x19, x11, #16
|
||||
st1 {v8.4s}, [x11]
|
||||
add x11, x11, #24
|
||||
st1 {v9.2s}, [x19]
|
||||
add x19, x19, #24
|
||||
cmp x6, #1
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v10.4s}, [x11]
|
||||
add x11, x11, #24
|
||||
st1 {v11.2s}, [x19]
|
||||
add x19, x19, #24
|
||||
cmp x6, #2
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v12.4s}, [x11]
|
||||
add x11, x11, #24
|
||||
st1 {v13.2s}, [x19]
|
||||
add x19, x19, #24
|
||||
cmp x6, #3
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v14.4s}, [x11]
|
||||
add x11, x11, #24
|
||||
st1 {v15.2s}, [x19]
|
||||
add x19, x19, #24
|
||||
cmp x6, #4
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v16.4s}, [x11]
|
||||
add x11, x11, #24
|
||||
st1 {v17.2s}, [x19]
|
||||
add x19, x19, #24
|
||||
cmp x6, #5
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v18.4s}, [x11]
|
||||
add x11, x11, #24
|
||||
st1 {v19.2s}, [x19]
|
||||
add x19, x19, #24
|
||||
cmp x6, #6
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v20.4s}, [x11]
|
||||
add x11, x11, #24
|
||||
st1 {v21.2s}, [x19]
|
||||
add x19, x19, #24
|
||||
cmp x6, #7
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v22.4s}, [x11]
|
||||
add x11, x11, #24
|
||||
st1 {v23.2s}, [x19]
|
||||
add x19, x19, #24
|
||||
cmp x6, #8
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v24.4s}, [x11]
|
||||
add x11, x11, #24
|
||||
st1 {v25.2s}, [x19]
|
||||
add x19, x19, #24
|
||||
cmp x6, #9
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v26.4s}, [x11]
|
||||
add x11, x11, #24
|
||||
st1 {v27.2s}, [x19]
|
||||
add x19, x19, #24
|
||||
cmp x6, #10
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v28.4s}, [x11]
|
||||
add x11, x11, #24
|
||||
st1 {v29.2s}, [x19]
|
||||
add x19, x19, #24
|
||||
cmp x6, #11
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v30.4s}, [x11]
|
||||
st1 {v31.2s}, [x19]
|
||||
b WriteEnd
|
||||
C4Write7:
|
||||
add x19, x11, #16
|
||||
add x16, x11, #24
|
||||
mov x10, #28
|
||||
st1 {v8.4s}, [x11], x10
|
||||
st1 {v9.2s}, [x19], x10
|
||||
st1 {v9.s}[2], [x16], x10
|
||||
cmp x6, #1
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v10.4s}, [x11], x10
|
||||
st1 {v11.2s}, [x19], x10
|
||||
st1 {v11.s}[2], [x16], x10
|
||||
cmp x6, #2
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v12.4s}, [x11], x10
|
||||
st1 {v13.2s}, [x19], x10
|
||||
st1 {v13.s}[2], [x16], x10
|
||||
cmp x6, #3
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v14.4s}, [x11], x10
|
||||
st1 {v15.2s}, [x19], x10
|
||||
st1 {v15.s}[2], [x16], x10
|
||||
cmp x6, #4
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v16.4s}, [x11], x10
|
||||
st1 {v17.2s}, [x19], x10
|
||||
st1 {v17.s}[2], [x16], x10
|
||||
cmp x6, #5
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v18.4s}, [x11], x10
|
||||
st1 {v19.2s}, [x19], x10
|
||||
st1 {v19.s}[2], [x16], x10
|
||||
cmp x6, #6
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v20.4s}, [x11], x10
|
||||
st1 {v21.2s}, [x19], x10
|
||||
st1 {v21.s}[2], [x16], x10
|
||||
cmp x6, #7
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v22.4s}, [x11], x10
|
||||
st1 {v23.2s}, [x19], x10
|
||||
st1 {v23.s}[2], [x16], x10
|
||||
cmp x6, #8
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v24.4s}, [x11], x10
|
||||
st1 {v25.2s}, [x19], x10
|
||||
st1 {v25.s}[2], [x16], x10
|
||||
cmp x6, #9
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v26.4s}, [x11], x10
|
||||
st1 {v27.2s}, [x19], x10
|
||||
st1 {v27.s}[2], [x16], x10
|
||||
cmp x6, #10
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v28.4s}, [x11], x10
|
||||
st1 {v29.2s}, [x19], x10
|
||||
st1 {v29.s}[2], [x16], x10
|
||||
cmp x6, #11
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v30.4s}, [x11]
|
||||
st1 {v31.2s}, [x19]
|
||||
st1 {v31.s}[2], [x16]
|
||||
b WriteEnd
|
||||
C4Write8:
|
||||
add x19, x11, x8
|
||||
add x20, x19, x8
|
||||
st1 {v8.4s}, [x11], #16
|
||||
st1 {v9.4s}, [x19], #16
|
||||
cmp x6, #1
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v10.4s}, [x11], #16
|
||||
st1 {v11.4s}, [x19], #16
|
||||
cmp x6, #2
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v12.4s}, [x11], #16
|
||||
st1 {v13.4s}, [x19], #16
|
||||
cmp x6, #3
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v14.4s}, [x11], #16
|
||||
st1 {v15.4s}, [x19], #16
|
||||
cmp x6, #4
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v16.4s}, [x11], #16
|
||||
st1 {v17.4s}, [x19], #16
|
||||
cmp x6, #5
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v18.4s}, [x11], #16
|
||||
st1 {v19.4s}, [x19], #16
|
||||
cmp x6, #6
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v20.4s}, [x11], #16
|
||||
st1 {v21.4s}, [x19], #16
|
||||
cmp x6, #7
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v22.4s}, [x11], #16
|
||||
st1 {v23.4s}, [x19], #16
|
||||
cmp x6, #8
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v24.4s}, [x11], #16
|
||||
st1 {v25.4s}, [x19], #16
|
||||
cmp x6, #9
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v26.4s}, [x11], #16
|
||||
st1 {v27.4s}, [x19], #16
|
||||
cmp x6, #10
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v28.4s}, [x11], #16
|
||||
st1 {v29.4s}, [x19], #16
|
||||
cmp x6, #11
|
||||
beq WriteEnd
|
||||
|
||||
st1 {v30.4s}, [x11]
|
||||
st1 {v31.4s}, [x19]
|
||||
b WriteEnd
|
||||
|
||||
WriteEnd:
|
||||
subs x13, x13, #8 // rhs col - 8
|
||||
|
@ -1115,11 +1656,16 @@ LoopRow4:
|
|||
LoopColEnd:
|
||||
add x0, x0, x17
|
||||
cbz x9, C8DstStep
|
||||
cmp x9, #3
|
||||
beq C4DstStep
|
||||
mov x21, #4
|
||||
mul x21, x21, x7
|
||||
sub x11, x11, x21
|
||||
mov x2, x11
|
||||
b NoDstStep
|
||||
C4DstStep:
|
||||
add x2, x2, x18
|
||||
b NoDstStep
|
||||
C8DstStep:
|
||||
add x2, x2, #384
|
||||
mov x11, x2
|
||||
|
|
|
@ -29,10 +29,27 @@ asm_function MatmulFloatNeon64OptRow12
|
|||
|
||||
mov x21, #48 // sizeof(float) * 12
|
||||
mul x17, x5, x21 // block stride of lhs/rhs: sizeof(float) * 12 * depth
|
||||
cmp x9, #3 // c4
|
||||
beq C4Stride
|
||||
cbnz x9, NoC8Steps
|
||||
mov x11, x2
|
||||
mov x21, #32
|
||||
mul x16, x6, x21 // row * 8 * sizeof(float)
|
||||
b NoC8Steps
|
||||
C4Stride:
|
||||
mov x18, #48 // 12 * sizeof(float)
|
||||
mov x22, #4
|
||||
mul x8, x8, x22 // stride * sizeof(float), in c4 stride == row
|
||||
mul x8, x8, x22 // col stride
|
||||
// col >= 4 , block stride 192, otherwise 12 * 4 * col
|
||||
cmp x7, #4
|
||||
bge C4StrideCommon
|
||||
mul x18, x18, x7 // block stride
|
||||
b LoopRowStart
|
||||
C4StrideCommon:
|
||||
mov x18, #192 // block stride
|
||||
b LoopRowStart
|
||||
|
||||
NoC8Steps:
|
||||
cmp x9, #2
|
||||
bne NoWinoSteps
|
||||
|
@ -45,6 +62,10 @@ NoWinoSteps:
|
|||
mov x21, #4
|
||||
mul x8, x8, x21
|
||||
|
||||
LoopRowStart:
|
||||
cmp x9, #3
|
||||
bne LoopRow
|
||||
mov x20, x2
|
||||
LoopRow:
|
||||
mov x14, x1 // reload rhs ptr
|
||||
mov x13, x7 // reload rhs col
|
||||
|
@ -52,7 +73,12 @@ LoopRow:
|
|||
|
||||
LoopCol:
|
||||
cbz x9, NoReloadDst
|
||||
cmp x9, #3
|
||||
beq C4ReloadDst
|
||||
mov x11, x2
|
||||
b NoReloadDst
|
||||
C4ReloadDst:
|
||||
mov x11, x20
|
||||
NoReloadDst:
|
||||
mov x10, x0 // reload lhs ptr
|
||||
mov x19, x5 // reload depth
|
||||
|
@ -186,7 +212,7 @@ LoopRow:
|
|||
fmin v29.4s, v29.4s, v2.4s
|
||||
fmin v30.4s, v30.4s, v2.4s
|
||||
fmin v31.4s, v31.4s, v2.4s
|
||||
|
||||
|
||||
Relu:
|
||||
dup v3.4s, wzr
|
||||
fmax v8.4s, v8.4s, v3.4s
|
||||
|
@ -312,6 +338,8 @@ LoopRow:
|
|||
Write:
|
||||
cmp x9, #2
|
||||
beq WriteWino
|
||||
cmp x9, #3
|
||||
beq WriteC4
|
||||
cbz x9, WriteC8
|
||||
cmp x13, #1
|
||||
beq Write1
|
||||
|
@ -370,7 +398,7 @@ LoopRow:
|
|||
str s26, [x11]
|
||||
cmp x6, #10
|
||||
beq WriteEnd
|
||||
add x11, x11, x8
|
||||
add x11, x11, x8
|
||||
str s28, [x11]
|
||||
cmp x6, #11
|
||||
beq WriteEnd
|
||||
|
@ -745,7 +773,458 @@ LoopRow:
|
|||
beq WriteEnd
|
||||
st1 {v30.4s, v31.4s}, [x11], x8
|
||||
add x11, x11, #32
|
||||
|
||||
b WriteEnd
|
||||
WriteC4:
|
||||
cmp x13, #1
|
||||
beq C4Write1
|
||||
cmp x13, #2
|
||||
beq C4Write2
|
||||
cmp x13, #3
|
||||
beq C4Write3
|
||||
cmp x13, #4
|
||||
beq C4Write4
|
||||
cmp x13, #5
|
||||
beq C4Write5
|
||||
cmp x13, #6
|
||||
beq C4Write6
|
||||
cmp x13, #7
|
||||
beq C4Write7
|
||||
b C4Write8
|
||||
C4Write1:
|
||||
str s8, [x11], #4
|
||||
cmp x6, #1
|
||||
beq WriteEnd
|
||||
str s10, [x11], #4
|
||||
cmp x6, #2
|
||||
beq WriteEnd
|
||||
str s12, [x11], #4
|
||||
cmp x6, #3
|
||||
beq WriteEnd
|
||||
str s14, [x11], #4
|
||||
cmp x6, #4
|
||||
beq WriteEnd
|
||||
str s16, [x11], #4
|
||||
cmp x6, #5
|
||||
beq WriteEnd
|
||||
str s18, [x11], #4
|
||||
cmp x6, #6
|
||||
beq WriteEnd
|
||||
str s20, [x11], #4
|
||||
cmp x6, #7
|
||||
beq WriteEnd
|
||||
str s22, [x11], #4
|
||||
cmp x6, #8
|
||||
beq WriteEnd
|
||||
str s24, [x11], #4
|
||||
cmp x6, #9
|
||||
beq WriteEnd
|
||||
str s26, [x11], #4
|
||||
cmp x6, #10
|
||||
beq WriteEnd
|
||||
str s28, [x11], #4
|
||||
cmp x6, #11
|
||||
beq WriteEnd
|
||||
str s30, [x11], #4
|
||||
b WriteEnd
|
||||
C4Write2:
|
||||
st1 {v8.2s}, [x11], #8
|
||||
cmp x6, #1
|
||||
beq WriteEnd
|
||||
st1 {v10.2s}, [x11], #8
|
||||
cmp x6, #2
|
||||
beq WriteEnd
|
||||
st1 {v12.2s}, [x11], #8
|
||||
cmp x6, #3
|
||||
beq WriteEnd
|
||||
st1 {v14.2s}, [x11], #8
|
||||
cmp x6, #4
|
||||
beq WriteEnd
|
||||
st1 {v16.2s}, [x11], #8
|
||||
cmp x6, #5
|
||||
beq WriteEnd
|
||||
st1 {v18.2s}, [x11], #8
|
||||
cmp x6, #6
|
||||
beq WriteEnd
|
||||
st1 {v20.2s}, [x11], #8
|
||||
cmp x6, #7
|
||||
beq WriteEnd
|
||||
st1 {v22.2s}, [x11], #8
|
||||
cmp x6, #8
|
||||
beq WriteEnd
|
||||
st1 {v24.2s}, [x11], #8
|
||||
cmp x6, #9
|
||||
beq WriteEnd
|
||||
st1 {v26.2s}, [x11], #8
|
||||
cmp x6, #10
|
||||
beq WriteEnd
|
||||
st1 {v28.2s}, [x11], #8
|
||||
cmp x6, #11
|
||||
beq WriteEnd
|
||||
st1 {v30.2s}, [x11], #8
|
||||
b WriteEnd
|
||||
C4Write3:
|
||||
add x19, x11, #8
|
||||
st1 {v8.2s}, [x11]
|
||||
add x11, x11, #12
|
||||
st1 {v8.s}[2], [x19]
|
||||
add x19, x19, #12
|
||||
cmp x6, #1
|
||||
beq WriteEnd
|
||||
st1 {v10.2s}, [x11]
|
||||
add x11, x11, #12
|
||||
st1 {v10.s}[2], [x19]
|
||||
add x19, x19, #12
|
||||
cmp x6, #2
|
||||
beq WriteEnd
|
||||
st1 {v12.2s}, [x11]
|
||||
add x11, x11, #12
|
||||
st1 {v12.s}[2], [x19]
|
||||
add x19, x19, #12
|
||||
cmp x6, #3
|
||||
beq WriteEnd
|
||||
st1 {v14.2s}, [x11]
|
||||
add x11, x11, #12
|
||||
st1 {v14.s}[2], [x19]
|
||||
add x19, x19, #12
|
||||
cmp x6, #4
|
||||
beq WriteEnd
|
||||
st1 {v16.2s}, [x11]
|
||||
add x11, x11, #12
|
||||
st1 {v16.s}[2], [x19]
|
||||
add x19, x19, #12
|
||||
cmp x6, #5
|
||||
beq WriteEnd
|
||||
st1 {v18.2s}, [x11]
|
||||
add x11, x11, #12
|
||||
st1 {v18.s}[2], [x19]
|
||||
add x19, x19, #12
|
||||
cmp x6, #6
|
||||
beq WriteEnd
|
||||
st1 {v20.2s}, [x11]
|
||||
add x11, x11, #12
|
||||
st1 {v20.s}[2], [x19]
|
||||
add x19, x19, #12
|
||||
cmp x6, #7
|
||||
beq WriteEnd
|
||||
st1 {v22.2s}, [x11]
|
||||
add x11, x11, #12
|
||||
st1 {v22.s}[2], [x19]
|
||||
add x19, x19, #12
|
||||
cmp x6, #8
|
||||
beq WriteEnd
|
||||
st1 {v24.2s}, [x11]
|
||||
add x11, x11, #12
|
||||
st1 {v24.s}[2], [x19]
|
||||
add x19, x19, #12
|
||||
cmp x6, #9
|
||||
beq WriteEnd
|
||||
st1 {v26.2s}, [x11]
|
||||
add x11, x11, #12
|
||||
st1 {v26.s}[2], [x19]
|
||||
add x19, x19, #12
|
||||
cmp x6, #10
|
||||
beq WriteEnd
|
||||
st1 {v28.2s}, [x11]
|
||||
add x11, x11, #12
|
||||
st1 {v28.s}[2], [x19]
|
||||
add x19, x19, #12
|
||||
cmp x6, #11
|
||||
beq WriteEnd
|
||||
st1 {v30.2s}, [x11]
|
||||
add x11, x11, #12
|
||||
st1 {v30.s}[2], [x19]
|
||||
add x19, x19, #12
|
||||
b WriteEnd
|
||||
C4Write4:
|
||||
st1 {v8.4s}, [x11], #16
|
||||
cmp x6, #1
|
||||
beq WriteEnd
|
||||
st1 {v10.4s}, [x11], #16
|
||||
cmp x6, #2
|
||||
beq WriteEnd
|
||||
st1 {v12.4s}, [x11], #16
|
||||
cmp x6, #3
|
||||
beq WriteEnd
|
||||
st1 {v14.4s}, [x11], #16
|
||||
cmp x6, #4
|
||||
beq WriteEnd
|
||||
st1 {v16.4s}, [x11], #16
|
||||
cmp x6, #5
|
||||
beq WriteEnd
|
||||
st1 {v18.4s}, [x11], #16
|
||||
cmp x6, #6
|
||||
beq WriteEnd
|
||||
st1 {v20.4s}, [x11], #16
|
||||
cmp x6, #7
|
||||
beq WriteEnd
|
||||
st1 {v22.4s}, [x11], #16
|
||||
cmp x6, #8
|
||||
beq WriteEnd
|
||||
st1 {v24.4s}, [x11], #16
|
||||
cmp x6, #9
|
||||
beq WriteEnd
|
||||
st1 {v26.4s}, [x11], #16
|
||||
cmp x6, #10
|
||||
beq WriteEnd
|
||||
st1 {v28.4s}, [x11], #16
|
||||
cmp x6, #11
|
||||
beq WriteEnd
|
||||
st1 {v30.4s}, [x11], #16
|
||||
b WriteEnd
|
||||
C4Write5:
|
||||
add x19, x11, #16
|
||||
st1 {v8.4s}, [x11]
|
||||
add x11, x11, #20
|
||||
str s9, [x19]
|
||||
add x19, x19, #20
|
||||
cmp x6, #1
|
||||
beq WriteEnd
|
||||
st1 {v10.4s}, [x11]
|
||||
add x11, x11, #20
|
||||
str s11, [x19]
|
||||
add x19, x19, #20
|
||||
cmp x6, #2
|
||||
beq WriteEnd
|
||||
st1 {v12.4s}, [x11]
|
||||
add x11, x11, #20
|
||||
str s13, [x19]
|
||||
add x19, x19, #20
|
||||
cmp x6, #3
|
||||
beq WriteEnd
|
||||
st1 {v14.4s}, [x11]
|
||||
add x11, x11, #20
|
||||
str s15, [x19]
|
||||
add x19, x19, #20
|
||||
cmp x6, #4
|
||||
beq WriteEnd
|
||||
st1 {v16.4s}, [x11]
|
||||
add x11, x11, #20
|
||||
str s17, [x19]
|
||||
add x19, x19, #20
|
||||
cmp x6, #5
|
||||
beq WriteEnd
|
||||
st1 {v18.4s}, [x11]
|
||||
add x11, x11, #20
|
||||
str s19, [x19]
|
||||
add x19, x19, #20
|
||||
cmp x6, #6
|
||||
beq WriteEnd
|
||||
st1 {v20.4s}, [x11]
|
||||
add x11, x11, #20
|
||||
str s21, [x19]
|
||||
add x19, x19, #20
|
||||
cmp x6, #7
|
||||
beq WriteEnd
|
||||
st1 {v22.4s}, [x11]
|
||||
add x11, x11, #20
|
||||
str s23, [x19]
|
||||
add x19, x19, #20
|
||||
cmp x6, #8
|
||||
beq WriteEnd
|
||||
st1 {v24.4s}, [x11]
|
||||
add x11, x11, #20
|
||||
str s25, [x19]
|
||||
add x19, x19, #20
|
||||
cmp x6, #9
|
||||
beq WriteEnd
|
||||
st1 {v26.4s}, [x11]
|
||||
add x11, x11, #20
|
||||
str s27, [x19]
|
||||
add x19, x19, #20
|
||||
cmp x6, #10
|
||||
beq WriteEnd
|
||||
st1 {v28.4s}, [x11]
|
||||
add x11, x11, #20
|
||||
str s29, [x19]
|
||||
add x19, x19, #20
|
||||
cmp x6, #11
|
||||
beq WriteEnd
|
||||
st1 {v30.4s}, [x11]
|
||||
str s31, [x19]
|
||||
b WriteEnd
|
||||
C4Write6:
|
||||
add x19, x11, #16
|
||||
st1 {v8.4s}, [x11]
|
||||
add x11, x11, #24
|
||||
st1 {v9.2s}, [x19]
|
||||
add x19, x19, #24
|
||||
cmp x6, #1
|
||||
beq WriteEnd
|
||||
st1 {v10.4s}, [x11]
|
||||
add x11, x11, #24
|
||||
st1 {v11.2s}, [x19]
|
||||
add x19, x19, #24
|
||||
cmp x6, #2
|
||||
beq WriteEnd
|
||||
st1 {v12.4s}, [x11]
|
||||
add x11, x11, #24
|
||||
st1 {v13.2s}, [x19]
|
||||
add x19, x19, #24
|
||||
cmp x6, #3
|
||||
beq WriteEnd
|
||||
st1 {v14.4s}, [x11]
|
||||
add x11, x11, #24
|
||||
st1 {v15.2s}, [x19]
|
||||
add x19, x19, #24
|
||||
cmp x6, #4
|
||||
beq WriteEnd
|
||||
st1 {v16.4s}, [x11]
|
||||
add x11, x11, #24
|
||||
st1 {v17.2s}, [x19]
|
||||
add x19, x19, #24
|
||||
cmp x6, #5
|
||||
beq WriteEnd
|
||||
st1 {v18.4s}, [x11]
|
||||
add x11, x11, #24
|
||||
st1 {v19.2s}, [x19]
|
||||
add x19, x19, #24
|
||||
cmp x6, #6
|
||||
beq WriteEnd
|
||||
st1 {v20.4s}, [x11]
|
||||
add x11, x11, #24
|
||||
st1 {v21.2s}, [x19]
|
||||
add x19, x19, #24
|
||||
cmp x6, #7
|
||||
beq WriteEnd
|
||||
st1 {v22.4s}, [x11]
|
||||
add x11, x11, #24
|
||||
st1 {v23.2s}, [x19]
|
||||
add x19, x19, #24
|
||||
cmp x6, #8
|
||||
beq WriteEnd
|
||||
st1 {v24.4s}, [x11]
|
||||
add x11, x11, #24
|
||||
st1 {v25.2s}, [x19]
|
||||
add x19, x19, #24
|
||||
cmp x6, #9
|
||||
beq WriteEnd
|
||||
st1 {v26.4s}, [x11]
|
||||
add x11, x11, #24
|
||||
st1 {v27.2s}, [x19]
|
||||
add x19, x19, #24
|
||||
cmp x6, #10
|
||||
beq WriteEnd
|
||||
st1 {v28.4s}, [x11]
|
||||
add x11, x11, #24
|
||||
st1 {v29.2s}, [x19]
|
||||
add x19, x19, #24
|
||||
cmp x6, #11
|
||||
beq WriteEnd
|
||||
st1 {v30.4s}, [x11]
|
||||
st1 {v31.2s}, [x19]
|
||||
b WriteEnd
|
||||
C4Write7:
|
||||
add x19, x11, #16
|
||||
add x16, x11, #24
|
||||
mov x10, #28
|
||||
st1 {v8.4s}, [x11], x10
|
||||
st1 {v9.2s}, [x19], x10
|
||||
st1 {v9.s}[2], [x16], x10
|
||||
cmp x6, #1
|
||||
beq WriteEnd
|
||||
st1 {v10.4s}, [x11], x10
|
||||
st1 {v11.2s}, [x19], x10
|
||||
st1 {v11.s}[2], [x16], x10
|
||||
cmp x6, #2
|
||||
beq WriteEnd
|
||||
st1 {v12.4s}, [x11], x10
|
||||
st1 {v13.2s}, [x19], x10
|
||||
st1 {v13.s}[2], [x16], x10
|
||||
cmp x6, #3
|
||||
beq WriteEnd
|
||||
st1 {v14.4s}, [x11], x10
|
||||
st1 {v15.2s}, [x19], x10
|
||||
st1 {v15.s}[2], [x16], x10
|
||||
cmp x6, #4
|
||||
beq WriteEnd
|
||||
st1 {v16.4s}, [x11], x10
|
||||
st1 {v17.2s}, [x19], x10
|
||||
st1 {v17.s}[2], [x16], x10
|
||||
cmp x6, #5
|
||||
beq WriteEnd
|
||||
st1 {v18.4s}, [x11], x10
|
||||
st1 {v19.2s}, [x19], x10
|
||||
st1 {v19.s}[2], [x16], x10
|
||||
cmp x6, #6
|
||||
beq WriteEnd
|
||||
st1 {v20.4s}, [x11], x10
|
||||
st1 {v21.2s}, [x19], x10
|
||||
st1 {v21.s}[2], [x16], x10
|
||||
cmp x6, #7
|
||||
beq WriteEnd
|
||||
st1 {v22.4s}, [x11], x10
|
||||
st1 {v23.2s}, [x19], x10
|
||||
st1 {v23.s}[2], [x16], x10
|
||||
cmp x6, #8
|
||||
beq WriteEnd
|
||||
st1 {v24.4s}, [x11], x10
|
||||
st1 {v25.2s}, [x19], x10
|
||||
st1 {v25.s}[2], [x16], x10
|
||||
cmp x6, #9
|
||||
beq WriteEnd
|
||||
st1 {v26.4s}, [x11], x10
|
||||
st1 {v27.2s}, [x19], x10
|
||||
st1 {v27.s}[2], [x16], x10
|
||||
cmp x6, #10
|
||||
beq WriteEnd
|
||||
st1 {v28.4s}, [x11], x10
|
||||
st1 {v29.2s}, [x19], x10
|
||||
st1 {v29.s}[2], [x16], x10
|
||||
cmp x6, #11
|
||||
beq WriteEnd
|
||||
st1 {v30.4s}, [x11]
|
||||
st1 {v31.2s}, [x19]
|
||||
st1 {v31.s}[2], [x16]
|
||||
b WriteEnd
|
||||
C4Write8:
|
||||
add x19, x11, x8
|
||||
add x20, x19, x8
|
||||
st1 {v8.4s}, [x11], #16
|
||||
st1 {v9.4s}, [x19], #16
|
||||
cmp x6, #1
|
||||
beq WriteEnd
|
||||
st1 {v10.4s}, [x11], #16
|
||||
st1 {v11.4s}, [x19], #16
|
||||
cmp x6, #2
|
||||
beq WriteEnd
|
||||
st1 {v12.4s}, [x11], #16
|
||||
st1 {v13.4s}, [x19], #16
|
||||
cmp x6, #3
|
||||
beq WriteEnd
|
||||
st1 {v14.4s}, [x11], #16
|
||||
st1 {v15.4s}, [x19], #16
|
||||
cmp x6, #4
|
||||
beq WriteEnd
|
||||
st1 {v16.4s}, [x11], #16
|
||||
st1 {v17.4s}, [x19], #16
|
||||
cmp x6, #5
|
||||
beq WriteEnd
|
||||
st1 {v18.4s}, [x11], #16
|
||||
st1 {v19.4s}, [x19], #16
|
||||
cmp x6, #6
|
||||
beq WriteEnd
|
||||
st1 {v20.4s}, [x11], #16
|
||||
st1 {v21.4s}, [x19], #16
|
||||
cmp x6, #7
|
||||
beq WriteEnd
|
||||
st1 {v22.4s}, [x11], #16
|
||||
st1 {v23.4s}, [x19], #16
|
||||
cmp x6, #8
|
||||
beq WriteEnd
|
||||
st1 {v24.4s}, [x11], #16
|
||||
st1 {v25.4s}, [x19], #16
|
||||
cmp x6, #9
|
||||
beq WriteEnd
|
||||
st1 {v26.4s}, [x11], #16
|
||||
st1 {v27.4s}, [x19], #16
|
||||
cmp x6, #10
|
||||
beq WriteEnd
|
||||
st1 {v28.4s}, [x11], #16
|
||||
st1 {v29.4s}, [x19], #16
|
||||
cmp x6, #11
|
||||
beq WriteEnd
|
||||
st1 {v30.4s}, [x11]
|
||||
st1 {v31.4s}, [x19]
|
||||
WriteEnd:
|
||||
subs x13, x13, #8 // rhs col - 8
|
||||
bgt LoopCol
|
||||
|
@ -753,11 +1232,16 @@ LoopRow:
|
|||
LoopColEnd:
|
||||
add x0, x0, x17
|
||||
cbz x9, C8DstStep
|
||||
cmp x9, #3
|
||||
beq C4DstStep
|
||||
mov x21, #4
|
||||
mul x21, x21, x7
|
||||
sub x11, x11, x21
|
||||
mov x2, x11
|
||||
b NoDstStep
|
||||
C4DstStep:
|
||||
add x2, x2, x18
|
||||
b NoDstStep
|
||||
C8DstStep:
|
||||
add x2, x2, #384
|
||||
mov x11, x2
|
||||
|
|
|
@ -28,11 +28,29 @@ asm_function MatmulFloatNeon64OptRow4
|
|||
ldr x9, [sp, #8]
|
||||
|
||||
mov x21, #48 // sizeof(float) * 12
|
||||
|
||||
mul x17, x5, x21 // block stride of lhs/rhs: sizeof(float) * 12 * depth
|
||||
cmp x9, #3 // c4
|
||||
beq C4Stride
|
||||
cbnz x9, NoC8Steps
|
||||
mov x11, x2
|
||||
mov x21, #32
|
||||
mul x16, x6, x21 // row * 8 * sizeof(float)
|
||||
b NoC8Steps
|
||||
C4Stride:
|
||||
mov x18, #16 // 4 * sizeof(float)
|
||||
mov x22, #4
|
||||
mul x8, x8, x22 // stride * sizeof(float), in c4 stride == row
|
||||
mul x8, x8, x22 // col stride
|
||||
// col >= 4 , block stride 64, otherwise 4 * 4 * col
|
||||
cmp x7, #4
|
||||
bge C4StrideCommon
|
||||
mul x18, x18, x7 // block stride
|
||||
b LoopRowStart
|
||||
C4StrideCommon:
|
||||
mov x18, #64 // block stride
|
||||
b LoopRowStart
|
||||
|
||||
NoC8Steps:
|
||||
cmp x9, #2
|
||||
bne NoWinoSteps
|
||||
|
@ -45,6 +63,10 @@ NoWinoSteps:
|
|||
mov x21, #4
|
||||
mul x8, x8, x21
|
||||
|
||||
LoopRowStart:
|
||||
cmp x9, #3
|
||||
bne LoopRow4
|
||||
mov x20, x2
|
||||
LoopRow4:
|
||||
mov x14, x1 // reload rhs ptr
|
||||
mov x13, x7 // reload rhs col
|
||||
|
@ -52,7 +74,12 @@ LoopRow4:
|
|||
|
||||
LoopCol4:
|
||||
cbz x9, NoReloadDst4
|
||||
cmp x9, #3
|
||||
beq C4ReloadDst4
|
||||
mov x11, x2
|
||||
b NoReloadDst4
|
||||
C4ReloadDst4:
|
||||
mov x11, x20
|
||||
NoReloadDst4:
|
||||
mov x10, x0 // reload lhs ptr
|
||||
mov x19, x5 // reload depth
|
||||
|
@ -194,6 +221,8 @@ LoopRow4:
|
|||
Write:
|
||||
cmp x9, #2
|
||||
beq WriteWino
|
||||
cmp x9, #3
|
||||
beq WriteC4
|
||||
cbz x9, WriteC8
|
||||
cmp x13, #1
|
||||
beq Write1
|
||||
|
@ -369,7 +398,168 @@ LoopRow4:
|
|||
beq WriteEnd
|
||||
st1 {v14.4s, v15.4s}, [x11], x8
|
||||
add x11, x11, #32
|
||||
|
||||
b WriteEnd
|
||||
WriteC4:
|
||||
cmp x13, #1
|
||||
beq C4Write1
|
||||
cmp x13, #2
|
||||
beq C4Write2
|
||||
cmp x13, #3
|
||||
beq C4Write3
|
||||
cmp x13, #4
|
||||
beq C4Write4
|
||||
cmp x13, #5
|
||||
beq C4Write5
|
||||
cmp x13, #6
|
||||
beq C4Write6
|
||||
cmp x13, #7
|
||||
beq C4Write7
|
||||
b C4Write8
|
||||
C4Write1:
|
||||
str s8, [x11], #4
|
||||
cmp x6, #1
|
||||
beq WriteEnd
|
||||
str s10, [x11], #4
|
||||
cmp x6, #2
|
||||
beq WriteEnd
|
||||
str s12, [x11], #4
|
||||
cmp x6, #3
|
||||
beq WriteEnd
|
||||
str s14, [x11], #4
|
||||
b WriteEnd
|
||||
C4Write2:
|
||||
st1 {v8.2s}, [x11], #8
|
||||
cmp x6, #1
|
||||
beq WriteEnd
|
||||
st1 {v10.2s}, [x11], #8
|
||||
cmp x6, #2
|
||||
beq WriteEnd
|
||||
st1 {v12.2s}, [x11], #8
|
||||
cmp x6, #3
|
||||
beq WriteEnd
|
||||
st1 {v14.2s}, [x11], #8
|
||||
b WriteEnd
|
||||
C4Write3:
|
||||
add x19, x11, #8
|
||||
st1 {v8.2s}, [x11]
|
||||
add x11, x11, #12
|
||||
st1 {v8.s}[2], [x19]
|
||||
add x19, x19, #12
|
||||
cmp x6, #1
|
||||
beq WriteEnd
|
||||
st1 {v10.2s}, [x11]
|
||||
add x11, x11, #12
|
||||
st1 {v10.s}[2], [x19]
|
||||
add x19, x19, #12
|
||||
cmp x6, #2
|
||||
beq WriteEnd
|
||||
st1 {v12.2s}, [x11]
|
||||
add x11, x11, #12
|
||||
st1 {v12.s}[2], [x19]
|
||||
add x19, x19, #12
|
||||
cmp x6, #3
|
||||
beq WriteEnd
|
||||
st1 {v14.2s}, [x11]
|
||||
st1 {v14.s}[2], [x19]
|
||||
b WriteEnd
|
||||
C4Write4:
|
||||
st1 {v8.4s}, [x11], #16
|
||||
cmp x6, #1
|
||||
beq WriteEnd
|
||||
st1 {v10.4s}, [x11], #16
|
||||
cmp x6, #2
|
||||
beq WriteEnd
|
||||
st1 {v12.4s}, [x11], #16
|
||||
cmp x6, #3
|
||||
beq WriteEnd
|
||||
st1 {v14.4s}, [x11], #16
|
||||
b WriteEnd
|
||||
C4Write5:
|
||||
add x19, x11, #16
|
||||
st1 {v8.4s}, [x11]
|
||||
add x11, x11, #20
|
||||
str s9, [x19]
|
||||
add x19, x19, #20
|
||||
cmp x6, #1
|
||||
beq WriteEnd
|
||||
st1 {v10.4s}, [x11]
|
||||
add x11, x11, #20
|
||||
str s11, [x19]
|
||||
add x19, x19, #20
|
||||
cmp x6, #2
|
||||
beq WriteEnd
|
||||
st1 {v12.4s}, [x11]
|
||||
add x11, x11, #20
|
||||
str s13, [x19]
|
||||
add x19, x19, #20
|
||||
cmp x6, #3
|
||||
beq WriteEnd
|
||||
st1 {v14.4s}, [x11]
|
||||
str s15, [x19]
|
||||
b WriteEnd
|
||||
C4Write6:
|
||||
add x19, x11, #16
|
||||
st1 {v8.4s}, [x11]
|
||||
add x11, x11, #24
|
||||
st1 {v9.2s}, [x19]
|
||||
add x19, x19, #24
|
||||
cmp x6, #1
|
||||
beq WriteEnd
|
||||
st1 {v10.4s}, [x11]
|
||||
add x11, x11, #24
|
||||
st1 {v11.2s}, [x19]
|
||||
add x19, x19, #24
|
||||
cmp x6, #2
|
||||
beq WriteEnd
|
||||
st1 {v12.4s}, [x11]
|
||||
add x11, x11, #24
|
||||
st1 {v13.2s}, [x19]
|
||||
add x19, x19, #24
|
||||
cmp x6, #3
|
||||
beq WriteEnd
|
||||
st1 {v14.4s}, [x11]
|
||||
st1 {v15.2s}, [x19]
|
||||
b WriteEnd
|
||||
C4Write7:
|
||||
add x19, x11, #16
|
||||
add x16, x11, #24
|
||||
mov x10, #28
|
||||
st1 {v8.4s}, [x11], x10
|
||||
st1 {v9.2s}, [x19], x10
|
||||
st1 {v9.s}[2], [x16], x10
|
||||
cmp x6, #1
|
||||
beq WriteEnd
|
||||
st1 {v10.4s}, [x11], x10
|
||||
st1 {v11.2s}, [x19], x10
|
||||
st1 {v11.s}[2], [x16], x10
|
||||
cmp x6, #2
|
||||
beq WriteEnd
|
||||
st1 {v12.4s}, [x11], x10
|
||||
st1 {v13.2s}, [x19], x10
|
||||
st1 {v13.s}[2], [x16], x10
|
||||
cmp x6, #3
|
||||
beq WriteEnd
|
||||
st1 {v14.4s}, [x11], x10
|
||||
st1 {v15.2s}, [x19], x10
|
||||
st1 {v15.s}[2], [x16], x10
|
||||
b WriteEnd
|
||||
C4Write8:
|
||||
add x19, x11, x8
|
||||
add x20, x19, x8
|
||||
st1 {v8.4s}, [x11], #16
|
||||
st1 {v9.4s}, [x19], #16
|
||||
cmp x6, #1
|
||||
beq WriteEnd
|
||||
st1 {v10.4s}, [x11], #16
|
||||
st1 {v11.4s}, [x19], #16
|
||||
cmp x6, #2
|
||||
beq WriteEnd
|
||||
st1 {v12.4s}, [x11], #16
|
||||
st1 {v13.4s}, [x19], #16
|
||||
cmp x6, #3
|
||||
beq WriteEnd
|
||||
st1 {v14.4s}, [x11], #16
|
||||
st1 {v15.4s}, [x19], #16
|
||||
WriteEnd:
|
||||
subs x13, x13, #8 // rhs col - 8
|
||||
bgt LoopCol4
|
||||
|
@ -378,11 +568,16 @@ LoopRow4:
|
|||
LoopColEnd:
|
||||
add x0, x0, x17
|
||||
cbz x9, C8DstStep
|
||||
cmp x9, #3
|
||||
beq C4DstStep
|
||||
mov x21, #4
|
||||
mul x21, x21, x7
|
||||
sub x11, x11, x21
|
||||
mov x2, x11
|
||||
b NoDstStep
|
||||
C4DstStep:
|
||||
add x2, x2, x18
|
||||
b NoDstStep
|
||||
C8DstStep:
|
||||
add x2, x2, #384
|
||||
mov x11, x2
|
||||
|
|
|
@ -29,10 +29,27 @@ asm_function MatmulFloatNeon64OptRow8
|
|||
|
||||
mov x21, #48 // sizeof(float) * 12
|
||||
mul x17, x5, x21 // block stride of lhs/rhs: sizeof(float) * 12 * depth
|
||||
cmp x9, #3 // c4
|
||||
beq C4Stride
|
||||
cbnz x9, NoC8Steps
|
||||
mov x11, x2
|
||||
mov x21, #32
|
||||
mul x16, x6, x21 // row * 8 * sizeof(float)
|
||||
b NoC8Steps
|
||||
C4Stride:
|
||||
mov x18, #32 // 8 * sizeof(float)
|
||||
mov x22, #4
|
||||
mul x8, x8, x22 // stride * sizeof(float), in c4 stride == row
|
||||
mul x8, x8, x22 // col stride
|
||||
// col >= 4 , block stride 128, otherwise 8 * 4 * col
|
||||
cmp x7, #4
|
||||
bge C4StrideCommon
|
||||
mul x18, x18, x7 // block stride
|
||||
b LoopRowStart
|
||||
C4StrideCommon:
|
||||
mov x18, #128 // block stride
|
||||
b LoopRowStart
|
||||
|
||||
NoC8Steps:
|
||||
cmp x9, #2
|
||||
bne NoWinoSteps
|
||||
|
@ -45,6 +62,10 @@ NoWinoSteps:
|
|||
mov x21, #4
|
||||
mul x8, x8, x21
|
||||
|
||||
LoopRowStart:
|
||||
cmp x9, #3
|
||||
bne LoopRow8
|
||||
mov x20, x2
|
||||
LoopRow8:
|
||||
mov x14, x1 // reload rhs ptr
|
||||
mov x13, x7 // reload rhs col
|
||||
|
@ -52,7 +73,12 @@ LoopRow8:
|
|||
|
||||
LoopCol8:
|
||||
cbz x9, NoReloadDst8
|
||||
cmp x9, #3
|
||||
beq C4ReloadDst8
|
||||
mov x11, x2
|
||||
b NoReloadDst8
|
||||
C4ReloadDst8:
|
||||
mov x11, x20
|
||||
NoReloadDst8:
|
||||
mov x10, x0 // reload lhs ptr
|
||||
mov x19, x5 // reload depth
|
||||
|
@ -254,6 +280,8 @@ LoopRow8:
|
|||
Write:
|
||||
cmp x9, #2
|
||||
beq WriteWino
|
||||
cmp x9, #3
|
||||
beq WriteC4
|
||||
cbz x9, WriteC8
|
||||
cmp x13, #1
|
||||
beq Write1
|
||||
|
@ -557,7 +585,312 @@ LoopRow8:
|
|||
beq WriteEnd
|
||||
st1 {v22.4s, v23.4s}, [x11], x8
|
||||
add x11, x11, #32
|
||||
|
||||
b WriteEnd
|
||||
WriteC4:
|
||||
cmp x13, #1
|
||||
beq C4Write1
|
||||
cmp x13, #2
|
||||
beq C4Write2
|
||||
cmp x13, #3
|
||||
beq C4Write3
|
||||
cmp x13, #4
|
||||
beq C4Write4
|
||||
cmp x13, #5
|
||||
beq C4Write5
|
||||
cmp x13, #6
|
||||
beq C4Write6
|
||||
cmp x13, #7
|
||||
beq C4Write7
|
||||
b C4Write8
|
||||
C4Write1:
|
||||
str s8, [x11], #4
|
||||
cmp x6, #1
|
||||
beq WriteEnd
|
||||
str s10, [x11], #4
|
||||
cmp x6, #2
|
||||
beq WriteEnd
|
||||
str s12, [x11], #4
|
||||
cmp x6, #3
|
||||
beq WriteEnd
|
||||
str s14, [x11], #4
|
||||
cmp x6, #4
|
||||
beq WriteEnd
|
||||
str s16, [x11], #4
|
||||
cmp x6, #5
|
||||
beq WriteEnd
|
||||
str s18, [x11], #4
|
||||
cmp x6, #6
|
||||
beq WriteEnd
|
||||
str s20, [x11], #4
|
||||
cmp x6, #7
|
||||
beq WriteEnd
|
||||
str s22, [x11], #4
|
||||
b WriteEnd
|
||||
C4Write2:
|
||||
st1 {v8.2s}, [x11], #8
|
||||
cmp x6, #1
|
||||
beq WriteEnd
|
||||
st1 {v10.2s}, [x11], #8
|
||||
cmp x6, #2
|
||||
beq WriteEnd
|
||||
st1 {v12.2s}, [x11], #8
|
||||
cmp x6, #3
|
||||
beq WriteEnd
|
||||
st1 {v14.2s}, [x11], #8
|
||||
cmp x6, #4
|
||||
beq WriteEnd
|
||||
st1 {v16.2s}, [x11], #8
|
||||
cmp x6, #5
|
||||
beq WriteEnd
|
||||
st1 {v18.2s}, [x11], #8
|
||||
cmp x6, #6
|
||||
beq WriteEnd
|
||||
st1 {v20.2s}, [x11], #8
|
||||
cmp x6, #7
|
||||
beq WriteEnd
|
||||
st1 {v22.2s}, [x11], #8
|
||||
b WriteEnd
|
||||
C4Write3:
|
||||
add x19, x11, #8
|
||||
st1 {v8.2s}, [x11]
|
||||
add x11, x11, #12
|
||||
st1 {v8.s}[2], [x19]
|
||||
add x19, x19, #12
|
||||
cmp x6, #1
|
||||
beq WriteEnd
|
||||
st1 {v10.2s}, [x11]
|
||||
add x11, x11, #12
|
||||
st1 {v10.s}[2], [x19]
|
||||
add x19, x19, #12
|
||||
cmp x6, #2
|
||||
beq WriteEnd
|
||||
st1 {v12.2s}, [x11]
|
||||
add x11, x11, #12
|
||||
st1 {v12.s}[2], [x19]
|
||||
add x19, x19, #12
|
||||
cmp x6, #3
|
||||
beq WriteEnd
|
||||
st1 {v14.2s}, [x11]
|
||||
add x11, x11, #12
|
||||
st1 {v14.s}[2], [x19]
|
||||
add x19, x19, #12
|
||||
cmp x6, #4
|
||||
beq WriteEnd
|
||||
st1 {v16.2s}, [x11]
|
||||
add x11, x11, #12
|
||||
st1 {v16.s}[2], [x19]
|
||||
add x19, x19, #12
|
||||
cmp x6, #5
|
||||
beq WriteEnd
|
||||
st1 {v18.2s}, [x11]
|
||||
add x11, x11, #12
|
||||
st1 {v18.s}[2], [x19]
|
||||
add x19, x19, #12
|
||||
cmp x6, #6
|
||||
beq WriteEnd
|
||||
st1 {v20.2s}, [x11]
|
||||
add x11, x11, #12
|
||||
st1 {v20.s}[2], [x19]
|
||||
add x19, x19, #12
|
||||
cmp x6, #7
|
||||
beq WriteEnd
|
||||
st1 {v22.2s}, [x11]
|
||||
st1 {v22.s}[2], [x19]
|
||||
b WriteEnd
|
||||
C4Write4:
|
||||
st1 {v8.4s}, [x11], #16
|
||||
cmp x6, #1
|
||||
beq WriteEnd
|
||||
st1 {v10.4s}, [x11], #16
|
||||
cmp x6, #2
|
||||
beq WriteEnd
|
||||
st1 {v12.4s}, [x11], #16
|
||||
cmp x6, #3
|
||||
beq WriteEnd
|
||||
st1 {v14.4s}, [x11], #16
|
||||
cmp x6, #4
|
||||
beq WriteEnd
|
||||
st1 {v16.4s}, [x11], #16
|
||||
cmp x6, #5
|
||||
beq WriteEnd
|
||||
st1 {v18.4s}, [x11], #16
|
||||
cmp x6, #6
|
||||
beq WriteEnd
|
||||
st1 {v20.4s}, [x11], #16
|
||||
cmp x6, #7
|
||||
beq WriteEnd
|
||||
st1 {v22.4s}, [x11], #16
|
||||
b WriteEnd
|
||||
C4Write5:
|
||||
add x19, x11, #16
|
||||
st1 {v8.4s}, [x11]
|
||||
add x11, x11, #20
|
||||
str s9, [x19]
|
||||
add x19, x19, #20
|
||||
cmp x6, #1
|
||||
beq WriteEnd
|
||||
st1 {v10.4s}, [x11]
|
||||
add x11, x11, #20
|
||||
str s11, [x19]
|
||||
add x19, x19, #20
|
||||
cmp x6, #2
|
||||
beq WriteEnd
|
||||
st1 {v12.4s}, [x11]
|
||||
add x11, x11, #20
|
||||
str s13, [x19]
|
||||
add x19, x19, #20
|
||||
cmp x6, #3
|
||||
beq WriteEnd
|
||||
st1 {v14.4s}, [x11]
|
||||
add x11, x11, #20
|
||||
str s15, [x19]
|
||||
add x19, x19, #20
|
||||
cmp x6, #4
|
||||
beq WriteEnd
|
||||
st1 {v16.4s}, [x11]
|
||||
add x11, x11, #20
|
||||
str s17, [x19]
|
||||
add x19, x19, #20
|
||||
cmp x6, #5
|
||||
beq WriteEnd
|
||||
st1 {v18.4s}, [x11]
|
||||
add x11, x11, #20
|
||||
str s19, [x19]
|
||||
add x19, x19, #20
|
||||
cmp x6, #6
|
||||
beq WriteEnd
|
||||
st1 {v20.4s}, [x11]
|
||||
add x11, x11, #20
|
||||
str s21, [x19]
|
||||
add x19, x19, #20
|
||||
cmp x6, #7
|
||||
beq WriteEnd
|
||||
st1 {v22.4s}, [x11]
|
||||
str s23, [x19]
|
||||
b WriteEnd
|
||||
C4Write6:
|
||||
add x19, x11, #16
|
||||
st1 {v8.4s}, [x11]
|
||||
add x11, x11, #24
|
||||
st1 {v9.2s}, [x19]
|
||||
add x19, x19, #24
|
||||
cmp x6, #1
|
||||
beq WriteEnd
|
||||
st1 {v10.4s}, [x11]
|
||||
add x11, x11, #24
|
||||
st1 {v11.2s}, [x19]
|
||||
add x19, x19, #24
|
||||
cmp x6, #2
|
||||
beq WriteEnd
|
||||
st1 {v12.4s}, [x11]
|
||||
add x11, x11, #24
|
||||
st1 {v13.2s}, [x19]
|
||||
add x19, x19, #24
|
||||
cmp x6, #3
|
||||
beq WriteEnd
|
||||
st1 {v14.4s}, [x11]
|
||||
add x11, x11, #24
|
||||
st1 {v15.2s}, [x19]
|
||||
add x19, x19, #24
|
||||
cmp x6, #4
|
||||
beq WriteEnd
|
||||
st1 {v16.4s}, [x11]
|
||||
add x11, x11, #24
|
||||
st1 {v17.2s}, [x19]
|
||||
add x19, x19, #24
|
||||
cmp x6, #5
|
||||
beq WriteEnd
|
||||
st1 {v18.4s}, [x11]
|
||||
add x11, x11, #24
|
||||
st1 {v19.2s}, [x19]
|
||||
add x19, x19, #24
|
||||
cmp x6, #6
|
||||
beq WriteEnd
|
||||
st1 {v20.4s}, [x11]
|
||||
add x11, x11, #24
|
||||
st1 {v21.2s}, [x19]
|
||||
add x19, x19, #24
|
||||
cmp x6, #7
|
||||
beq WriteEnd
|
||||
st1 {v22.4s}, [x11]
|
||||
st1 {v23.2s}, [x19]
|
||||
b WriteEnd
|
||||
C4Write7:
|
||||
add x19, x11, #16
|
||||
add x16, x11, #24
|
||||
mov x10, #28
|
||||
st1 {v8.4s}, [x11], x10
|
||||
st1 {v9.2s}, [x19], x10
|
||||
st1 {v9.s}[2], [x16], x10
|
||||
cmp x6, #1
|
||||
beq WriteEnd
|
||||
st1 {v10.4s}, [x11], x10
|
||||
st1 {v11.2s}, [x19], x10
|
||||
st1 {v11.s}[2], [x16], x10
|
||||
cmp x6, #2
|
||||
beq WriteEnd
|
||||
st1 {v12.4s}, [x11], x10
|
||||
st1 {v13.2s}, [x19], x10
|
||||
st1 {v13.s}[2], [x16], x10
|
||||
cmp x6, #3
|
||||
beq WriteEnd
|
||||
st1 {v14.4s}, [x11], x10
|
||||
st1 {v15.2s}, [x19], x10
|
||||
st1 {v15.s}[2], [x16], x10
|
||||
cmp x6, #4
|
||||
beq WriteEnd
|
||||
st1 {v16.4s}, [x11], x10
|
||||
st1 {v17.2s}, [x19], x10
|
||||
st1 {v17.s}[2], [x16], x10
|
||||
cmp x6, #5
|
||||
beq WriteEnd
|
||||
st1 {v18.4s}, [x11], x10
|
||||
st1 {v19.2s}, [x19], x10
|
||||
st1 {v19.s}[2], [x16], x10
|
||||
cmp x6, #6
|
||||
beq WriteEnd
|
||||
st1 {v20.4s}, [x11], x10
|
||||
st1 {v21.2s}, [x19], x10
|
||||
st1 {v21.s}[2], [x16], x10
|
||||
cmp x6, #7
|
||||
beq WriteEnd
|
||||
st1 {v22.4s}, [x11], x10
|
||||
st1 {v23.2s}, [x19], x10
|
||||
st1 {v23.s}[2], [x16], x10
|
||||
b WriteEnd
|
||||
C4Write8:
|
||||
add x19, x11, x8
|
||||
add x20, x19, x8
|
||||
st1 {v8.4s}, [x11], #16
|
||||
st1 {v9.4s}, [x19], #16
|
||||
cmp x6, #1
|
||||
beq WriteEnd
|
||||
st1 {v10.4s}, [x11], #16
|
||||
st1 {v11.4s}, [x19], #16
|
||||
cmp x6, #2
|
||||
beq WriteEnd
|
||||
st1 {v12.4s}, [x11], #16
|
||||
st1 {v13.4s}, [x19], #16
|
||||
cmp x6, #3
|
||||
beq WriteEnd
|
||||
st1 {v14.4s}, [x11], #16
|
||||
st1 {v15.4s}, [x19], #16
|
||||
cmp x6, #4
|
||||
beq WriteEnd
|
||||
st1 {v16.4s}, [x11], #16
|
||||
st1 {v17.4s}, [x19], #16
|
||||
cmp x6, #5
|
||||
beq WriteEnd
|
||||
st1 {v18.4s}, [x11], #16
|
||||
st1 {v19.4s}, [x19], #16
|
||||
cmp x6, #6
|
||||
beq WriteEnd
|
||||
st1 {v20.4s}, [x11], #16
|
||||
st1 {v21.4s}, [x19], #16
|
||||
cmp x6, #7
|
||||
beq WriteEnd
|
||||
st1 {v22.4s}, [x11], #16
|
||||
st1 {v23.4s}, [x19], #16
|
||||
WriteEnd:
|
||||
subs x13, x13, #8 // rhs col - 8
|
||||
bgt LoopCol8
|
||||
|
@ -565,11 +898,16 @@ LoopRow8:
|
|||
LoopColEnd:
|
||||
add x0, x0, x17
|
||||
cbz x9, C8DstStep
|
||||
cmp x9, #3
|
||||
beq C4DstStep
|
||||
mov x21, #4
|
||||
mul x21, x21, x7
|
||||
sub x11, x11, x21
|
||||
mov x2, x11
|
||||
b NoDstStep
|
||||
C4DstStep:
|
||||
add x2, x2, x18
|
||||
b NoDstStep
|
||||
C8DstStep:
|
||||
add x2, x2, #384
|
||||
mov x11, x2
|
||||
|
|
|
@ -29,12 +29,14 @@ int Gather(const void *input, int outer_size, int inner_size, int limit, const i
|
|||
int8_t *int8_out_m = int8_out + inner_size * m * indices_element_size * data_size;
|
||||
|
||||
for (int i = 0; i < indices_element_size; ++i) {
|
||||
if (indices[i] < 0 || indices[i] >= limit) {
|
||||
printf("[ERROR] [%s:%d] %s] indices[%d]:%d is out of range [%d, %d)\n", __FILE__, __LINE__, __func__, i,
|
||||
indices[i], 0, limit);
|
||||
int index = indices[i];
|
||||
if (index < -limit || indices[i] >= limit) {
|
||||
return NNACL_ERR;
|
||||
}
|
||||
memcpy(int8_out_m + i * inner_size * data_size, int8_in_m + indices[i] * inner_size * data_size,
|
||||
if (indices[i] < 0) {
|
||||
index = limit + indices[i];
|
||||
}
|
||||
memcpy(int8_out_m + i * inner_size * data_size, int8_in_m + index * inner_size * data_size,
|
||||
data_size * inner_size);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -43,7 +43,7 @@ void PadSliceParameterTo8D(SliceParameter *param) {
|
|||
param->param_length_ = DIMENSION_8D;
|
||||
}
|
||||
|
||||
void DoSlice(const void *input, void *output, SliceParameter *param, int thread_id, int data_size) {
|
||||
void DoSlice(const void *input, void *output, const SliceParameter *param, int thread_id, int data_size) {
|
||||
int8_t *int8_in = (int8_t *)input;
|
||||
int8_t *int8_out = (int8_t *)output;
|
||||
|
||||
|
@ -94,14 +94,14 @@ void DoSlice(const void *input, void *output, SliceParameter *param, int thread_
|
|||
}
|
||||
}
|
||||
|
||||
static bool WhetherCopyByAxis(int begin[], int end[], const int shape[], int dim) {
|
||||
static bool WhetherCopyByAxis(const int begin[], const int end[], const int shape[], int dim) {
|
||||
for (int i = dim + 1; i < DIMENSION_8D; ++i) {
|
||||
if (begin[i] != 0 || end[i] != shape[i]) return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void DoSliceNoParallel(const void *input, void *output, SliceParameter *param, int data_size) {
|
||||
void DoSliceNoParallel(const void *input, void *output, const SliceParameter *param, int data_size) {
|
||||
int8_t *int8_in = (int8_t *)input;
|
||||
int8_t *int8_out = (int8_t *)output;
|
||||
|
||||
|
|
|
@ -25,8 +25,8 @@ extern "C" {
|
|||
#endif
|
||||
void PadSliceParameterTo8D(SliceParameter *param);
|
||||
|
||||
void DoSlice(const void *input, void *output, SliceParameter *param, int thread_id, int data_size);
|
||||
void DoSliceNoParallel(const void *input, void *output, SliceParameter *param, int data_size);
|
||||
void DoSlice(const void *input, void *output, const SliceParameter *param, int thread_id, int data_size);
|
||||
void DoSliceNoParallel(const void *input, void *output, const SliceParameter *param, int data_size);
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
|
|
@ -20,12 +20,12 @@
|
|||
#include "nnacl/errorcode.h"
|
||||
|
||||
int DoSplit(void *in_data, void **out_data, const int *input_shape, int offset, int num_unit,
|
||||
SplitParameter *split_param, int data_size) {
|
||||
const SplitParameter *split_param, int data_size) {
|
||||
int8_t *int8_in = (int8_t *)in_data;
|
||||
|
||||
int num_split = split_param->num_split_;
|
||||
int *split_sizes = split_param->split_sizes_;
|
||||
int *strides = split_param->strides_;
|
||||
const int *strides = split_param->strides_;
|
||||
int split_dim = split_param->split_dim_;
|
||||
int in_stride = strides[split_dim];
|
||||
|
||||
|
|
|
@ -24,7 +24,7 @@
|
|||
extern "C" {
|
||||
#endif
|
||||
int DoSplit(void *in_data, void **out_data, const int *input_shape, int offset, int num_unit,
|
||||
SplitParameter *split_param, int data_size);
|
||||
const SplitParameter *split_param, int data_size);
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
|
|
@ -18,7 +18,7 @@
|
|||
#include <string.h>
|
||||
#include "nnacl/errorcode.h"
|
||||
|
||||
int DoSplitWithOverlapParallel(char *in_data, char **out_data, int slice_idx, SplitWithOverlapParameter *param,
|
||||
int DoSplitWithOverlapParallel(char *in_data, char **out_data, int slice_idx, const SplitWithOverlapParameter *param,
|
||||
const int *start_indices, const int *end_indices) {
|
||||
if (in_data == NULL || out_data == NULL) {
|
||||
return NNACL_NULL_PTR;
|
||||
|
|
|
@ -23,7 +23,7 @@
|
|||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
int DoSplitWithOverlapParallel(char *in_data, char **out_data, int slice_idx, SplitWithOverlapParameter *param,
|
||||
int DoSplitWithOverlapParallel(char *in_data, char **out_data, int slice_idx, const SplitWithOverlapParameter *param,
|
||||
const int *start_indices, const int *end_indices);
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
|
|
@ -16,7 +16,7 @@
|
|||
|
||||
#include "nnacl/base/unstack_base.h"
|
||||
|
||||
void Unstack(const void *input, void **output, UnstackParameter *para, int data_size) {
|
||||
void Unstack(const void *input, void **output, const UnstackParameter *para, int data_size) {
|
||||
const int8_t *in_addr = (int8_t *)input;
|
||||
for (int j = 0; j < para->num_; j++) {
|
||||
int8_t *out_addr = (int8_t *)output[j];
|
||||
|
|
|
@ -24,7 +24,7 @@
|
|||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
void Unstack(const void *input, void **output, UnstackParameter *para, int data_size);
|
||||
void Unstack(const void *input, void **output, const UnstackParameter *para, int data_size);
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
|
|
@ -54,6 +54,7 @@ typedef struct ConvParameter {
|
|||
int channel_multiplie_;
|
||||
int output_padding_w_;
|
||||
int output_padding_h_;
|
||||
int out_format_;
|
||||
} ConvParameter;
|
||||
|
||||
typedef struct SlidingWindowParam {
|
||||
|
|
|
@ -69,7 +69,7 @@ int ElementMulFp16(const float16_t *input0, const float16_t *input1, float16_t *
|
|||
}
|
||||
|
||||
int ElementOptMulFp16(const float16_t *input0, const float16_t *input1, float16_t *output, int element_size,
|
||||
ArithmeticParameter *param) {
|
||||
const ArithmeticParameter *param) {
|
||||
#ifdef ENABLE_NEON
|
||||
float16x8_t vin0_opt = vdupq_n_f16(input0[0]);
|
||||
float16x8_t vin1_opt = vdupq_n_f16(input1[0]);
|
||||
|
@ -123,7 +123,7 @@ int ElementMulReluFp16(const float16_t *input0, const float16_t *input1, float16
|
|||
}
|
||||
|
||||
int ElementOptMulReluFp16(const float16_t *input0, const float16_t *input1, float16_t *output, int element_size,
|
||||
ArithmeticParameter *param) {
|
||||
const ArithmeticParameter *param) {
|
||||
#ifdef ENABLE_NEON
|
||||
float16x8_t vin0_opt = vdupq_n_f16(input0[0]);
|
||||
float16x8_t vin1_opt = vdupq_n_f16(input1[0]);
|
||||
|
@ -180,7 +180,7 @@ int ElementMulRelu6Fp16(const float16_t *input0, const float16_t *input1, float1
|
|||
}
|
||||
|
||||
int ElementOptMulRelu6Fp16(const float16_t *input0, const float16_t *input1, float16_t *output, int element_size,
|
||||
ArithmeticParameter *param) {
|
||||
const ArithmeticParameter *param) {
|
||||
#ifdef ENABLE_NEON
|
||||
float16x8_t vin0_opt = vdupq_n_f16(input0[0]);
|
||||
float16x8_t vin1_opt = vdupq_n_f16(input1[0]);
|
||||
|
@ -239,7 +239,7 @@ int ElementAddFp16(const float16_t *input0, const float16_t *input1, float16_t *
|
|||
}
|
||||
|
||||
int ElementOptAddFp16(const float16_t *input0, const float16_t *input1, float16_t *output, int element_size,
|
||||
ArithmeticParameter *param) {
|
||||
const ArithmeticParameter *param) {
|
||||
#ifdef ENABLE_NEON
|
||||
float16x8_t vin0_opt = vdupq_n_f16(input0[0]);
|
||||
float16x8_t vin1_opt = vdupq_n_f16(input1[0]);
|
||||
|
@ -299,7 +299,7 @@ int ElementAddReluFp16(const float16_t *input0, const float16_t *input1, float16
|
|||
}
|
||||
|
||||
int ElementOptAddReluFp16(const float16_t *input0, const float16_t *input1, float16_t *output, int element_size,
|
||||
ArithmeticParameter *param) {
|
||||
const ArithmeticParameter *param) {
|
||||
#ifdef ENABLE_NEON
|
||||
float16x8_t vin0_opt = vdupq_n_f16(input0[0]);
|
||||
float16x8_t vin1_opt = vdupq_n_f16(input1[0]);
|
||||
|
@ -365,7 +365,7 @@ int ElementAddRelu6Fp16(const float16_t *input0, const float16_t *input1, float1
|
|||
}
|
||||
|
||||
int ElementOptAddRelu6Fp16(const float16_t *input0, const float16_t *input1, float16_t *output, int element_size,
|
||||
ArithmeticParameter *param) {
|
||||
const ArithmeticParameter *param) {
|
||||
#ifdef ENABLE_NEON
|
||||
float16x8_t vin0_opt = vdupq_n_f16(input0[0]);
|
||||
float16x8_t vin1_opt = vdupq_n_f16(input1[0]);
|
||||
|
@ -418,7 +418,7 @@ int ElementSubFp16(const float16_t *input0, const float16_t *input1, float16_t *
|
|||
}
|
||||
|
||||
int ElementOptSubFp16(const float16_t *input0, const float16_t *input1, float16_t *output, int element_size,
|
||||
ArithmeticParameter *param) {
|
||||
const ArithmeticParameter *param) {
|
||||
#ifdef ENABLE_NEON
|
||||
float16x8_t vin0_opt = vdupq_n_f16(input0[0]);
|
||||
float16x8_t vin1_opt = vdupq_n_f16(input1[0]);
|
||||
|
@ -470,7 +470,7 @@ int ElementSubReluFp16(const float16_t *input0, const float16_t *input1, float16
|
|||
}
|
||||
|
||||
int ElementOptSubReluFp16(const float16_t *input0, const float16_t *input1, float16_t *output, int element_size,
|
||||
ArithmeticParameter *param) {
|
||||
const ArithmeticParameter *param) {
|
||||
#ifdef ENABLE_NEON
|
||||
float16x8_t vin0_opt = vdupq_n_f16(input0[0]);
|
||||
float16x8_t vin1_opt = vdupq_n_f16(input1[0]);
|
||||
|
@ -527,7 +527,7 @@ int ElementSubRelu6Fp16(const float16_t *input0, const float16_t *input1, float1
|
|||
}
|
||||
|
||||
int ElementOptSubRelu6Fp16(const float16_t *input0, const float16_t *input1, float16_t *output, int element_size,
|
||||
ArithmeticParameter *param) {
|
||||
const ArithmeticParameter *param) {
|
||||
#ifdef ENABLE_NEON
|
||||
float16x8_t vin0_opt = vdupq_n_f16(input0[0]);
|
||||
float16x8_t vin1_opt = vdupq_n_f16(input1[0]);
|
||||
|
@ -581,7 +581,7 @@ int ElementDivFp16(const float16_t *input0, const float16_t *input1, float16_t *
|
|||
}
|
||||
|
||||
int ElementOptDivFp16(const float16_t *input0, const float16_t *input1, float16_t *output, int element_size,
|
||||
ArithmeticParameter *param) {
|
||||
const ArithmeticParameter *param) {
|
||||
#ifdef ENABLE_NEON
|
||||
float16x8_t vin0_opt = vdupq_n_f16(input0[0]);
|
||||
float16x8_t vin1_opt = vdupq_n_f16(input1[0]);
|
||||
|
@ -641,7 +641,7 @@ int ElementDivReluFp16(const float16_t *input0, const float16_t *input1, float16
|
|||
}
|
||||
|
||||
int ElementOptDivReluFp16(const float16_t *input0, const float16_t *input1, float16_t *output, int element_size,
|
||||
ArithmeticParameter *param) {
|
||||
const ArithmeticParameter *param) {
|
||||
#ifdef ENABLE_NEON
|
||||
float16x8_t vin0_opt = vdupq_n_f16(input0[0]);
|
||||
float16x8_t vin1_opt = vdupq_n_f16(input1[0]);
|
||||
|
@ -704,7 +704,7 @@ int ElementDivRelu6Fp16(const float16_t *input0, const float16_t *input1, float1
|
|||
}
|
||||
|
||||
int ElementOptDivRelu6Fp16(const float16_t *input0, const float16_t *input1, float16_t *output, int element_size,
|
||||
ArithmeticParameter *param) {
|
||||
const ArithmeticParameter *param) {
|
||||
#ifdef ENABLE_NEON
|
||||
float16x8_t vin0_opt = vdupq_n_f16(input0[0]);
|
||||
float16x8_t vin1_opt = vdupq_n_f16(input1[0]);
|
||||
|
@ -755,7 +755,7 @@ int ElementFloorModFp16(const float16_t *input0, const float16_t *input1, float1
|
|||
}
|
||||
|
||||
int ElementOptFloorModFp16(const float16_t *input0, const float16_t *input1, float16_t *output, int element_size,
|
||||
ArithmeticParameter *param) {
|
||||
const ArithmeticParameter *param) {
|
||||
if (param->in_elements_num1_ == 1) {
|
||||
for (int i = 0; i < element_size; ++i) {
|
||||
NNACL_ASSERT(input1[0] != 0);
|
||||
|
@ -778,7 +778,7 @@ int ElementFloorDivFp16(const float16_t *input0, const float16_t *input1, float1
|
|||
return NNACL_OK;
|
||||
}
|
||||
int ElementOptFloorDivFp16(const float16_t *input0, const float16_t *input1, float16_t *output, int element_size,
|
||||
ArithmeticParameter *param) {
|
||||
const ArithmeticParameter *param) {
|
||||
if (param->in_elements_num1_ == 1) {
|
||||
for (int i = 0; i < element_size; ++i) {
|
||||
NNACL_ASSERT(input1[0] != 0);
|
||||
|
@ -814,7 +814,7 @@ int ElementLogicalAndFp16(const float16_t *input0, const float16_t *input1, floa
|
|||
}
|
||||
|
||||
int ElementOptLogicalAndFp16(const float16_t *input0, const float16_t *input1, float16_t *output, int element_size,
|
||||
ArithmeticParameter *param) {
|
||||
const ArithmeticParameter *param) {
|
||||
#ifdef ENABLE_NEON
|
||||
float16x8_t vin0_opt = vdupq_n_f16(input0[0]);
|
||||
float16x8_t vin1_opt = vdupq_n_f16(input1[0]);
|
||||
|
@ -875,7 +875,7 @@ int ElementLogicalOrFp16(const float16_t *input0, const float16_t *input1, float
|
|||
}
|
||||
|
||||
int ElementOptLogicalOrFp16(const float16_t *input0, const float16_t *input1, float16_t *output, int element_size,
|
||||
ArithmeticParameter *param) {
|
||||
const ArithmeticParameter *param) {
|
||||
#ifdef ENABLE_NEON
|
||||
float16x8_t vin0_opt = vdupq_n_f16(input0[0]);
|
||||
float16x8_t vin1_opt = vdupq_n_f16(input1[0]);
|
||||
|
@ -922,7 +922,7 @@ int ElementSquaredDifferenceFp16(const float16_t *input0, const float16_t *input
|
|||
}
|
||||
|
||||
int ElementOptSquaredDifferenceFp16(const float16_t *input0, const float16_t *input1, float16_t *output,
|
||||
int element_size, ArithmeticParameter *param) {
|
||||
int element_size, const ArithmeticParameter *param) {
|
||||
ElementOptSubFp16(input0, input1, output, element_size, param);
|
||||
return ElementMulFp16(output, output, output, element_size);
|
||||
}
|
||||
|
@ -944,7 +944,7 @@ int ElementMaximumFp16(const float16_t *input0, const float16_t *input1, float16
|
|||
}
|
||||
|
||||
int ElementOptMaximumFp16(const float16_t *input0, const float16_t *input1, float16_t *output, int element_size,
|
||||
ArithmeticParameter *param) {
|
||||
const ArithmeticParameter *param) {
|
||||
#ifdef ENABLE_NEON
|
||||
float16x8_t vin0_opt = vdupq_n_f16(input0[0]);
|
||||
float16x8_t vin1_opt = vdupq_n_f16(input1[0]);
|
||||
|
@ -993,7 +993,7 @@ int ElementMinimumFp16(const float16_t *input0, const float16_t *input1, float16
|
|||
}
|
||||
|
||||
int ElementOptMinimumFp16(const float16_t *input0, const float16_t *input1, float16_t *output, int element_size,
|
||||
ArithmeticParameter *param) {
|
||||
const ArithmeticParameter *param) {
|
||||
#ifdef ENABLE_NEON
|
||||
float16x8_t vin0_opt = vdupq_n_f16(input0[0]);
|
||||
float16x8_t vin1_opt = vdupq_n_f16(input1[0]);
|
||||
|
@ -1042,7 +1042,7 @@ int ElementNotEqualFp16(const float16_t *input0, const float16_t *input1, uint8_
|
|||
}
|
||||
|
||||
int ElementOptNotEqualFp16(const float16_t *input0, const float16_t *input1, uint8_t *output, int element_size,
|
||||
ArithmeticParameter *param) {
|
||||
const ArithmeticParameter *param) {
|
||||
#ifdef ENABLE_NEON
|
||||
float16x8_t vin0_opt = vdupq_n_f16(input0[0]);
|
||||
float16x8_t vin1_opt = vdupq_n_f16(input1[0]);
|
||||
|
@ -1091,7 +1091,7 @@ int ElementEqualFp16(const float16_t *input0, const float16_t *input1, uint8_t *
|
|||
}
|
||||
|
||||
int ElementOptEqualFp16(const float16_t *input0, const float16_t *input1, uint8_t *output, int element_size,
|
||||
ArithmeticParameter *param) {
|
||||
const ArithmeticParameter *param) {
|
||||
#ifdef ENABLE_NEON
|
||||
float16x8_t vin0_opt = vdupq_n_f16(input0[0]);
|
||||
float16x8_t vin1_opt = vdupq_n_f16(input1[0]);
|
||||
|
@ -1140,7 +1140,7 @@ int ElementLessFp16(const float16_t *input0, const float16_t *input1, uint8_t *o
|
|||
}
|
||||
|
||||
int ElementOptLessFp16(const float16_t *input0, const float16_t *input1, uint8_t *output, int element_size,
|
||||
ArithmeticParameter *param) {
|
||||
const ArithmeticParameter *param) {
|
||||
#ifdef ENABLE_NEON
|
||||
float16x8_t vin0_opt = vdupq_n_f16(input0[0]);
|
||||
float16x8_t vin1_opt = vdupq_n_f16(input1[0]);
|
||||
|
@ -1189,7 +1189,7 @@ int ElementLessEqualFp16(const float16_t *input0, const float16_t *input1, uint8
|
|||
}
|
||||
|
||||
int ElementOptLessEqualFp16(const float16_t *input0, const float16_t *input1, uint8_t *output, int element_size,
|
||||
ArithmeticParameter *param) {
|
||||
const ArithmeticParameter *param) {
|
||||
#ifdef ENABLE_NEON
|
||||
float16x8_t vin0_opt = vdupq_n_f16(input0[0]);
|
||||
float16x8_t vin1_opt = vdupq_n_f16(input1[0]);
|
||||
|
@ -1238,7 +1238,7 @@ int ElementGreaterFp16(const float16_t *input0, const float16_t *input1, uint8_t
|
|||
}
|
||||
|
||||
int ElementOptGreaterFp16(const float16_t *input0, const float16_t *input1, uint8_t *output, int element_size,
|
||||
ArithmeticParameter *param) {
|
||||
const ArithmeticParameter *param) {
|
||||
#ifdef ENABLE_NEON
|
||||
float16x8_t vin0_opt = vdupq_n_f16(input0[0]);
|
||||
float16x8_t vin1_opt = vdupq_n_f16(input1[0]);
|
||||
|
@ -1287,7 +1287,7 @@ int ElementGreaterEqualFp16(const float16_t *input0, const float16_t *input1, ui
|
|||
}
|
||||
|
||||
int ElementOptGreaterEqualFp16(const float16_t *input0, const float16_t *input1, uint8_t *output, int element_size,
|
||||
ArithmeticParameter *param) {
|
||||
const ArithmeticParameter *param) {
|
||||
#ifdef ENABLE_NEON
|
||||
float16x8_t vin0_opt = vdupq_n_f16(input0[0]);
|
||||
float16x8_t vin1_opt = vdupq_n_f16(input1[0]);
|
||||
|
|
|
@ -31,55 +31,55 @@ void TileDimensionsFp16(const float16_t *data0, const float16_t *data1, float16_
|
|||
ArithmeticParameter *param);
|
||||
|
||||
int ElementOptMulFp16(const float16_t *input0, const float16_t *input1, float16_t *output, int element_size,
|
||||
ArithmeticParameter *param);
|
||||
const ArithmeticParameter *param);
|
||||
int ElementOptMulReluFp16(const float16_t *input0, const float16_t *input1, float16_t *output, int element_size,
|
||||
ArithmeticParameter *param);
|
||||
const ArithmeticParameter *param);
|
||||
int ElementOptMulRelu6Fp16(const float16_t *input0, const float16_t *input1, float16_t *output, int element_size,
|
||||
ArithmeticParameter *param);
|
||||
const ArithmeticParameter *param);
|
||||
int ElementOptAddFp16(const float16_t *input0, const float16_t *input1, float16_t *output, int element_size,
|
||||
ArithmeticParameter *param);
|
||||
const ArithmeticParameter *param);
|
||||
int ElementOptAddReluFp16(const float16_t *input0, const float16_t *input1, float16_t *output, int element_size,
|
||||
ArithmeticParameter *param);
|
||||
const ArithmeticParameter *param);
|
||||
int ElementOptAddRelu6Fp16(const float16_t *input0, const float16_t *input1, float16_t *output, int element_size,
|
||||
ArithmeticParameter *param);
|
||||
const ArithmeticParameter *param);
|
||||
int ElementOptSubFp16(const float16_t *input0, const float16_t *input1, float16_t *output, int element_size,
|
||||
ArithmeticParameter *param);
|
||||
const ArithmeticParameter *param);
|
||||
int ElementOptSubReluFp16(const float16_t *input0, const float16_t *input1, float16_t *output, int element_size,
|
||||
ArithmeticParameter *param);
|
||||
const ArithmeticParameter *param);
|
||||
int ElementOptSubRelu6Fp16(const float16_t *input0, const float16_t *input1, float16_t *output, int element_size,
|
||||
ArithmeticParameter *param);
|
||||
const ArithmeticParameter *param);
|
||||
int ElementOptDivFp16(const float16_t *input0, const float16_t *input1, float16_t *output, int element_size,
|
||||
ArithmeticParameter *param);
|
||||
const ArithmeticParameter *param);
|
||||
int ElementOptDivReluFp16(const float16_t *input0, const float16_t *input1, float16_t *output, int element_size,
|
||||
ArithmeticParameter *param);
|
||||
const ArithmeticParameter *param);
|
||||
int ElementOptDivRelu6Fp16(const float16_t *input0, const float16_t *input1, float16_t *output, int element_size,
|
||||
ArithmeticParameter *param);
|
||||
const ArithmeticParameter *param);
|
||||
int ElementOptFloorModFp16(const float16_t *input0, const float16_t *input1, float16_t *output, int element_size,
|
||||
ArithmeticParameter *param);
|
||||
const ArithmeticParameter *param);
|
||||
int ElementOptFloorDivFp16(const float16_t *input0, const float16_t *input1, float16_t *output, int element_size,
|
||||
ArithmeticParameter *param);
|
||||
const ArithmeticParameter *param);
|
||||
int ElementOptLogicalAndFp16(const float16_t *input0, const float16_t *input1, float16_t *output, int element_size,
|
||||
ArithmeticParameter *param);
|
||||
const ArithmeticParameter *param);
|
||||
int ElementOptLogicalOrFp16(const float16_t *input0, const float16_t *input1, float16_t *output, int element_size,
|
||||
ArithmeticParameter *param);
|
||||
const ArithmeticParameter *param);
|
||||
int ElementOptSquaredDifferenceFp16(const float16_t *input0, const float16_t *input1, float16_t *output,
|
||||
int element_size, ArithmeticParameter *param);
|
||||
int element_size, const ArithmeticParameter *param);
|
||||
int ElementOptMaximumFp16(const float16_t *input0, const float16_t *input1, float16_t *output, int element_size,
|
||||
ArithmeticParameter *param);
|
||||
const ArithmeticParameter *param);
|
||||
int ElementOptMinimumFp16(const float16_t *input0, const float16_t *input1, float16_t *output, int element_size,
|
||||
ArithmeticParameter *param);
|
||||
const ArithmeticParameter *param);
|
||||
int ElementOptNotEqualFp16(const float16_t *input0, const float16_t *input1, uint8_t *output, int element_size,
|
||||
ArithmeticParameter *param);
|
||||
const ArithmeticParameter *param);
|
||||
int ElementOptEqualFp16(const float16_t *input0, const float16_t *input1, uint8_t *output, int element_size,
|
||||
ArithmeticParameter *param);
|
||||
const ArithmeticParameter *param);
|
||||
int ElementOptLessFp16(const float16_t *input0, const float16_t *input1, uint8_t *output, int element_size,
|
||||
ArithmeticParameter *param);
|
||||
const ArithmeticParameter *param);
|
||||
int ElementOptLessEqualFp16(const float16_t *input0, const float16_t *input1, uint8_t *output, int element_size,
|
||||
ArithmeticParameter *param);
|
||||
const ArithmeticParameter *param);
|
||||
int ElementOptGreaterFp16(const float16_t *input0, const float16_t *input1, uint8_t *output, int element_size,
|
||||
ArithmeticParameter *param);
|
||||
const ArithmeticParameter *param);
|
||||
int ElementOptGreaterEqualFp16(const float16_t *input0, const float16_t *input1, uint8_t *output, int element_size,
|
||||
ArithmeticParameter *param);
|
||||
const ArithmeticParameter *param);
|
||||
|
||||
int ElementMulFp16(const float16_t *input0, const float16_t *input1, float16_t *output, int element_size);
|
||||
int ElementMulReluFp16(const float16_t *input0, const float16_t *input1, float16_t *output, int element_size);
|
||||
|
|
|
@ -16,21 +16,21 @@
|
|||
#include <math.h>
|
||||
#include "nnacl/fp16/arithmetic_self_fp16.h"
|
||||
|
||||
int ElementAbsFp16(float16_t *input, float16_t *output, int element_size) {
|
||||
int ElementAbsFp16(const float16_t *input, float16_t *output, int element_size) {
|
||||
for (int i = 0; i < element_size; i++) {
|
||||
output[i] = fabsf(input[i]);
|
||||
}
|
||||
return NNACL_OK;
|
||||
}
|
||||
|
||||
int ElementCosFp16(float16_t *input, float16_t *output, int element_size) {
|
||||
int ElementCosFp16(const float16_t *input, float16_t *output, int element_size) {
|
||||
for (int i = 0; i < element_size; i++) {
|
||||
output[i] = cosf(input[i]);
|
||||
}
|
||||
return NNACL_OK;
|
||||
}
|
||||
|
||||
int ElementLogFp16(float16_t *input, float16_t *output, int element_size) {
|
||||
int ElementLogFp16(const float16_t *input, float16_t *output, int element_size) {
|
||||
for (int i = 0; i < element_size; i++) {
|
||||
if (input[i] <= 0) {
|
||||
return NNACL_ERRCODE_LOG_NEGATIVE_OR_ZERO;
|
||||
|
@ -40,14 +40,14 @@ int ElementLogFp16(float16_t *input, float16_t *output, int element_size) {
|
|||
return NNACL_OK;
|
||||
}
|
||||
|
||||
int ElementSquareFp16(float16_t *input, float16_t *output, int element_size) {
|
||||
int ElementSquareFp16(const float16_t *input, float16_t *output, int element_size) {
|
||||
for (int i = 0; i < element_size; i++) {
|
||||
output[i] = input[i] * input[i];
|
||||
}
|
||||
return NNACL_OK;
|
||||
}
|
||||
|
||||
int ElementSqrtFp16(float16_t *input, float16_t *output, int element_size) {
|
||||
int ElementSqrtFp16(const float16_t *input, float16_t *output, int element_size) {
|
||||
for (int i = 0; i < element_size; i++) {
|
||||
if (input[i] < 0) {
|
||||
return NNACL_ERRCODE_SQRT_NEGATIVE;
|
||||
|
@ -57,56 +57,56 @@ int ElementSqrtFp16(float16_t *input, float16_t *output, int element_size) {
|
|||
return NNACL_OK;
|
||||
}
|
||||
|
||||
int ElementRsqrtFp16(float16_t *input, float16_t *output, int element_size) {
|
||||
int ElementRsqrtFp16(const float16_t *input, float16_t *output, int element_size) {
|
||||
for (int i = 0; i < element_size; i++) {
|
||||
output[i] = 1.f / sqrtf(input[i]);
|
||||
}
|
||||
return NNACL_OK;
|
||||
}
|
||||
|
||||
int ElementSinFp16(float16_t *input, float16_t *output, int element_size) {
|
||||
int ElementSinFp16(const float16_t *input, float16_t *output, int element_size) {
|
||||
for (int i = 0; i < element_size; i++) {
|
||||
output[i] = sinf(input[i]);
|
||||
}
|
||||
return NNACL_OK;
|
||||
}
|
||||
|
||||
int ElementLogicalNotFp16(float16_t *input, float16_t *output, int element_size) {
|
||||
int ElementLogicalNotFp16(const float16_t *input, float16_t *output, int element_size) {
|
||||
for (int i = 0; i < element_size; i++) {
|
||||
output[i] = (float)(!((bool)(input[i])));
|
||||
}
|
||||
return NNACL_OK;
|
||||
}
|
||||
|
||||
int ElementRoundFp16(float16_t *input, float16_t *output, int element_size) {
|
||||
int ElementRoundFp16(const float16_t *input, float16_t *output, int element_size) {
|
||||
for (int i = 0; i < element_size; i++) {
|
||||
output[i] = roundf(input[i]);
|
||||
}
|
||||
return NNACL_OK;
|
||||
}
|
||||
|
||||
int ElementFloorFp16(float16_t *input, float16_t *output, int element_size) {
|
||||
int ElementFloorFp16(const float16_t *input, float16_t *output, int element_size) {
|
||||
for (int i = 0; i < element_size; i++) {
|
||||
output[i] = floorf(input[i]);
|
||||
}
|
||||
return NNACL_OK;
|
||||
}
|
||||
|
||||
int ElementCeilFp16(float16_t *input, float16_t *output, int number) {
|
||||
int ElementCeilFp16(const float16_t *input, float16_t *output, int number) {
|
||||
for (int i = 0; i < number; ++i) {
|
||||
output[i] = ceilf(input[i]);
|
||||
}
|
||||
return NNACL_OK;
|
||||
}
|
||||
|
||||
int ElementNegativeFp16(float16_t *input, float16_t *output, int element_size) {
|
||||
int ElementNegativeFp16(const float16_t *input, float16_t *output, int element_size) {
|
||||
for (int i = 0; i < element_size; ++i) {
|
||||
output[i] = -input[i];
|
||||
}
|
||||
return NNACL_OK;
|
||||
}
|
||||
|
||||
int ElementReciprocalFp16(float16_t *input, float16_t *output, int element_size) {
|
||||
int ElementReciprocalFp16(const float16_t *input, float16_t *output, int element_size) {
|
||||
for (int i = 0; i < element_size; ++i) {
|
||||
if (input[i] == 0.0f) {
|
||||
return NNACL_ERR;
|
||||
|
@ -116,7 +116,7 @@ int ElementReciprocalFp16(float16_t *input, float16_t *output, int element_size)
|
|||
return NNACL_OK;
|
||||
}
|
||||
|
||||
int ElementErfFp16(float16_t *input, float16_t *output, int element_size) {
|
||||
int ElementErfFp16(const float16_t *input, float16_t *output, int element_size) {
|
||||
for (int i = 0; i < element_size; i++) {
|
||||
output[i] = erff(input[i]);
|
||||
}
|
||||
|
|
|
@ -23,33 +23,33 @@
|
|||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
int ElementAbsFp16(float16_t *input, float16_t *output, int element_size);
|
||||
int ElementAbsFp16(const float16_t *input, float16_t *output, int element_size);
|
||||
|
||||
int ElementCosFp16(float16_t *input, float16_t *output, int element_size);
|
||||
int ElementCosFp16(const float16_t *input, float16_t *output, int element_size);
|
||||
|
||||
int ElementLogFp16(float16_t *input, float16_t *output, int element_size);
|
||||
int ElementLogFp16(const float16_t *input, float16_t *output, int element_size);
|
||||
|
||||
int ElementSquareFp16(float16_t *input, float16_t *output, int element_size);
|
||||
int ElementSquareFp16(const float16_t *input, float16_t *output, int element_size);
|
||||
|
||||
int ElementSqrtFp16(float16_t *input, float16_t *output, int element_size);
|
||||
int ElementSqrtFp16(const float16_t *input, float16_t *output, int element_size);
|
||||
|
||||
int ElementRsqrtFp16(float16_t *input, float16_t *output, int element_size);
|
||||
int ElementRsqrtFp16(const float16_t *input, float16_t *output, int element_size);
|
||||
|
||||
int ElementSinFp16(float16_t *input, float16_t *output, int element_size);
|
||||
int ElementSinFp16(const float16_t *input, float16_t *output, int element_size);
|
||||
|
||||
int ElementLogicalNotFp16(float16_t *input, float16_t *output, int element_size);
|
||||
int ElementLogicalNotFp16(const float16_t *input, float16_t *output, int element_size);
|
||||
|
||||
int ElementRoundFp16(float16_t *input, float16_t *output, int element_size);
|
||||
int ElementRoundFp16(const float16_t *input, float16_t *output, int element_size);
|
||||
|
||||
int ElementFloorFp16(float16_t *input, float16_t *output, int element_size);
|
||||
int ElementFloorFp16(const float16_t *input, float16_t *output, int element_size);
|
||||
|
||||
int ElementCeilFp16(float16_t *input, float16_t *output, int number);
|
||||
int ElementCeilFp16(const float16_t *input, float16_t *output, int number);
|
||||
|
||||
int ElementNegativeFp16(float16_t *input, float16_t *output, int element_size);
|
||||
int ElementNegativeFp16(const float16_t *input, float16_t *output, int element_size);
|
||||
|
||||
int ElementReciprocalFp16(float16_t *input, float16_t *output, int element_size);
|
||||
int ElementReciprocalFp16(const float16_t *input, float16_t *output, int element_size);
|
||||
|
||||
int ElementErfFp16(float16_t *input, float16_t *output, int element_size);
|
||||
int ElementErfFp16(const float16_t *input, float16_t *output, int element_size);
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
|
|
@ -17,7 +17,7 @@
|
|||
#include "nnacl/fp16/batchnorm_fp16.h"
|
||||
#include <math.h>
|
||||
|
||||
void BatchNormFp16(const float16_t *input, const void *mean, const void *variance, BatchNormParameter *param,
|
||||
void BatchNormFp16(const float16_t *input, const void *mean, const void *variance, const BatchNormParameter *param,
|
||||
int task_id, float16_t *output) {
|
||||
int units_per_thread = UP_DIV(param->unit_, param->op_parameter_.thread_num_);
|
||||
int completed_units = task_id * units_per_thread;
|
||||
|
@ -36,7 +36,7 @@ void BatchNormFp16(const float16_t *input, const void *mean, const void *varianc
|
|||
}
|
||||
|
||||
void FusedBatchNormFp16(const void *input, const void *scale, const void *offset, const void *mean,
|
||||
const void *variance, BatchNormParameter *param, int task_id, void *output) {
|
||||
const void *variance, const BatchNormParameter *param, int task_id, void *output) {
|
||||
int units_per_thread = UP_DIV(param->unit_, param->op_parameter_.thread_num_);
|
||||
int completed_units = task_id * units_per_thread;
|
||||
int cur_unit = MSMIN(units_per_thread, param->unit_ - completed_units);
|
||||
|
|
|
@ -22,10 +22,10 @@
|
|||
extern "C" {
|
||||
#endif
|
||||
|
||||
void BatchNormFp16(const float16_t *input, const void *mean, const void *variance, BatchNormParameter *param,
|
||||
void BatchNormFp16(const float16_t *input, const void *mean, const void *variance, const BatchNormParameter *param,
|
||||
int task_id, float16_t *output);
|
||||
void FusedBatchNormFp16(const void *input, const void *scale, const void *offset, const void *mean,
|
||||
const void *variance, BatchNormParameter *param, int task_id, void *output);
|
||||
const void *variance, const BatchNormParameter *param, int task_id, void *output);
|
||||
void FusedBatchNormFp16MeanVar(const float16_t *input, float16_t *run_mean, float16_t *run_var,
|
||||
const BatchNormParameter *param, float16_t *save_mean, float16_t *save_var);
|
||||
#ifdef __cplusplus
|
||||
|
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue