diff --git a/mindspore/ops/composite/random_ops.py b/mindspore/ops/composite/random_ops.py index 00da9303bb3..2d0dccf9928 100644 --- a/mindspore/ops/composite/random_ops.py +++ b/mindspore/ops/composite/random_ops.py @@ -35,12 +35,12 @@ def set_seed(seed): random seed. Args: - seed(Int): the graph-level seed value that to be set. + seed(Int): the graph-level seed value that to be set. Must be non-negative. Examples: >>> C.set_seed(10) """ - const_utils.check_int_positive("seed", seed, "set_seed") + const_utils.check_non_negative("seed", seed, "set_seed") global _GRAPH_SEED _GRAPH_SEED = seed @@ -56,7 +56,7 @@ def get_seed(): Interger. The current graph-level seed. Examples: - >>> C.get_seed(10) + >>> C.get_seed() """ return _GRAPH_SEED @@ -70,7 +70,7 @@ def normal(shape, mean, stddev, seed=0): With float32 data type. stddev (Tensor): The deviation σ distribution parameter. With float32 data type. seed (int): Seed is used as entropy source for Random number engines generating pseudo-random numbers. - Default: 0. + Must be non-negative. Default: 0. Returns: Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of mean and stddev. @@ -107,7 +107,7 @@ def uniform(shape, a, b, seed=0, dtype=mstype.float32): It defines the maximum possibly generated value. With int32 or float32 data type. If dtype is int32, only one number is allowed. seed (int): Seed is used as entropy source for Random number engines generating pseudo-random numbers. - Default: 0. + Must be non-negative. Default: 0. Returns: Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of a and b. @@ -151,7 +151,7 @@ def gamma(shape, alpha, beta, seed=0): alpha (Tensor): The alpha α distribution parameter. With float32 data type. beta (Tensor): The beta β distribution parameter. With float32 data type. seed (int): Seed is used as entropy source for Random number engines generating pseudo-random numbers. - Default: 0. + Must be non-negative. Default: 0. Returns: Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of alpha and beta. @@ -163,10 +163,6 @@ def gamma(shape, alpha, beta, seed=0): >>> beta = Tensor(1.0, mstype.float32) >>> output = C.gamma(shape, alpha, beta, seed=5) """ - alpha_dtype = F.dtype(alpha) - beta_dtype = F.dtype(beta) - const_utils.check_tensors_dtype_same(alpha_dtype, mstype.float32, "gamma") - const_utils.check_tensors_dtype_same(beta_dtype, mstype.float32, "gamma") const_utils.check_non_negative("seed", seed, "gamma") seed1 = get_seed() seed2 = seed @@ -182,7 +178,7 @@ def poisson(shape, mean, seed=0): shape (tuple): The shape of random tensor to be generated. mean (Tensor): The mean μ distribution parameter. With float32 data type. seed (int): Seed is used as entropy source for Random number engines generating pseudo-random numbers. - Default: 0. + Must be non-negative. Default: 0. Returns: Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of mean. @@ -193,8 +189,6 @@ def poisson(shape, mean, seed=0): >>> mean = Tensor(1.0, mstype.float32) >>> output = C.poisson(shape, mean, seed=5) """ - mean_dtype = F.dtype(mean) - const_utils.check_tensors_dtype_same(mean_dtype, mstype.float32, "poisson") const_utils.check_non_negative("seed", seed, "poisson") seed1 = get_seed() seed2 = seed diff --git a/mindspore/ops/operations/random_ops.py b/mindspore/ops/operations/random_ops.py index 61d659f00f3..25cb20474bd 100644 --- a/mindspore/ops/operations/random_ops.py +++ b/mindspore/ops/operations/random_ops.py @@ -27,8 +27,8 @@ class StandardNormal(PrimitiveWithInfer): Generates random numbers according to the standard Normal (or Gaussian) random number distribution. Args: - seed (int): Random seed. Default: 0. - seed2 (int): Random seed2. Default: 0. + seed (int): Random seed. Must be non-negative. Default: 0. + seed2 (int): Random seed2. Must be non-negative. Default: 0. Inputs: - **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed. @@ -125,8 +125,8 @@ class Gamma(PrimitiveWithInfer): \text{P}(x|α,β) = \frac{\exp(-x/β)}{{β^α}\cdot{\Gamma(α)}}\cdot{x^{α-1}}, Args: - seed (int): Random seed. Default: 0. - seed2 (int): Random seed2. Default: 0. + seed (int): Random seed. Must be non-negative. Default: 0. + seed2 (int): Random seed2. Must be non-negative. Default: 0. Inputs: - **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed. @@ -180,8 +180,8 @@ class Poisson(PrimitiveWithInfer): \text{P}(i|μ) = \frac{\exp(-μ)μ^{i}}{i!}, Args: - seed (int): Random seed. Default: 0. - seed2 (int): Random seed2. Default: 0. + seed (int): Random seed. Must be non-negative. Default: 0. + seed2 (int): Random seed2. Must be non-negative. Default: 0. Inputs: - **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed. @@ -234,8 +234,8 @@ class UniformInt(PrimitiveWithInfer): The number in tensor a should be strictly less than b at any position after broadcasting. Args: - seed (int): Random seed. Default: 0. - seed2 (int): Random seed2. Default: 0. + seed (int): Random seed. Must be non-negative. Default: 0. + seed2 (int): Random seed2. Must be non-negative. Default: 0. Inputs: - **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed. @@ -287,8 +287,8 @@ class UniformReal(PrimitiveWithInfer): Produces random floating-point values i, uniformly distributed on the interval [0, 1). Args: - seed (int): Random seed. Default: 0. - seed2 (int): Random seed2. Default: 0. + seed (int): Random seed. Must be non-negative. Default: 0. + seed2 (int): Random seed2. Must be non-negative. Default: 0. Inputs: - **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed.