forked from mindspore-Ecosystem/mindspore
!4712 Fix bugs in random ops
Merge pull request !4712 from peixu_ren/custom_pp_ops
This commit is contained in:
commit
3259dafa7e
|
@ -35,12 +35,12 @@ def set_seed(seed):
|
|||
random seed.
|
||||
|
||||
Args:
|
||||
seed(Int): the graph-level seed value that to be set.
|
||||
seed(Int): the graph-level seed value that to be set. Must be non-negative.
|
||||
|
||||
Examples:
|
||||
>>> C.set_seed(10)
|
||||
"""
|
||||
const_utils.check_int_positive("seed", seed, "set_seed")
|
||||
const_utils.check_non_negative("seed", seed, "set_seed")
|
||||
global _GRAPH_SEED
|
||||
_GRAPH_SEED = seed
|
||||
|
||||
|
@ -56,7 +56,7 @@ def get_seed():
|
|||
Interger. The current graph-level seed.
|
||||
|
||||
Examples:
|
||||
>>> C.get_seed(10)
|
||||
>>> C.get_seed()
|
||||
"""
|
||||
return _GRAPH_SEED
|
||||
|
||||
|
@ -70,7 +70,7 @@ def normal(shape, mean, stddev, seed=0):
|
|||
With float32 data type.
|
||||
stddev (Tensor): The deviation σ distribution parameter. With float32 data type.
|
||||
seed (int): Seed is used as entropy source for Random number engines generating pseudo-random numbers.
|
||||
Default: 0.
|
||||
Must be non-negative. Default: 0.
|
||||
|
||||
Returns:
|
||||
Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of mean and stddev.
|
||||
|
@ -107,7 +107,7 @@ def uniform(shape, a, b, seed=0, dtype=mstype.float32):
|
|||
It defines the maximum possibly generated value. With int32 or float32 data type.
|
||||
If dtype is int32, only one number is allowed.
|
||||
seed (int): Seed is used as entropy source for Random number engines generating pseudo-random numbers.
|
||||
Default: 0.
|
||||
Must be non-negative. Default: 0.
|
||||
|
||||
Returns:
|
||||
Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of a and b.
|
||||
|
@ -151,7 +151,7 @@ def gamma(shape, alpha, beta, seed=0):
|
|||
alpha (Tensor): The alpha α distribution parameter. With float32 data type.
|
||||
beta (Tensor): The beta β distribution parameter. With float32 data type.
|
||||
seed (int): Seed is used as entropy source for Random number engines generating pseudo-random numbers.
|
||||
Default: 0.
|
||||
Must be non-negative. Default: 0.
|
||||
|
||||
Returns:
|
||||
Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of alpha and beta.
|
||||
|
@ -163,10 +163,6 @@ def gamma(shape, alpha, beta, seed=0):
|
|||
>>> beta = Tensor(1.0, mstype.float32)
|
||||
>>> output = C.gamma(shape, alpha, beta, seed=5)
|
||||
"""
|
||||
alpha_dtype = F.dtype(alpha)
|
||||
beta_dtype = F.dtype(beta)
|
||||
const_utils.check_tensors_dtype_same(alpha_dtype, mstype.float32, "gamma")
|
||||
const_utils.check_tensors_dtype_same(beta_dtype, mstype.float32, "gamma")
|
||||
const_utils.check_non_negative("seed", seed, "gamma")
|
||||
seed1 = get_seed()
|
||||
seed2 = seed
|
||||
|
@ -182,7 +178,7 @@ def poisson(shape, mean, seed=0):
|
|||
shape (tuple): The shape of random tensor to be generated.
|
||||
mean (Tensor): The mean μ distribution parameter. With float32 data type.
|
||||
seed (int): Seed is used as entropy source for Random number engines generating pseudo-random numbers.
|
||||
Default: 0.
|
||||
Must be non-negative. Default: 0.
|
||||
|
||||
Returns:
|
||||
Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of mean.
|
||||
|
@ -193,8 +189,6 @@ def poisson(shape, mean, seed=0):
|
|||
>>> mean = Tensor(1.0, mstype.float32)
|
||||
>>> output = C.poisson(shape, mean, seed=5)
|
||||
"""
|
||||
mean_dtype = F.dtype(mean)
|
||||
const_utils.check_tensors_dtype_same(mean_dtype, mstype.float32, "poisson")
|
||||
const_utils.check_non_negative("seed", seed, "poisson")
|
||||
seed1 = get_seed()
|
||||
seed2 = seed
|
||||
|
|
|
@ -27,8 +27,8 @@ class StandardNormal(PrimitiveWithInfer):
|
|||
Generates random numbers according to the standard Normal (or Gaussian) random number distribution.
|
||||
|
||||
Args:
|
||||
seed (int): Random seed. Default: 0.
|
||||
seed2 (int): Random seed2. Default: 0.
|
||||
seed (int): Random seed. Must be non-negative. Default: 0.
|
||||
seed2 (int): Random seed2. Must be non-negative. Default: 0.
|
||||
|
||||
Inputs:
|
||||
- **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed.
|
||||
|
@ -125,8 +125,8 @@ class Gamma(PrimitiveWithInfer):
|
|||
\text{P}(x|α,β) = \frac{\exp(-x/β)}{{β^α}\cdot{\Gamma(α)}}\cdot{x^{α-1}},
|
||||
|
||||
Args:
|
||||
seed (int): Random seed. Default: 0.
|
||||
seed2 (int): Random seed2. Default: 0.
|
||||
seed (int): Random seed. Must be non-negative. Default: 0.
|
||||
seed2 (int): Random seed2. Must be non-negative. Default: 0.
|
||||
|
||||
Inputs:
|
||||
- **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed.
|
||||
|
@ -180,8 +180,8 @@ class Poisson(PrimitiveWithInfer):
|
|||
\text{P}(i|μ) = \frac{\exp(-μ)μ^{i}}{i!},
|
||||
|
||||
Args:
|
||||
seed (int): Random seed. Default: 0.
|
||||
seed2 (int): Random seed2. Default: 0.
|
||||
seed (int): Random seed. Must be non-negative. Default: 0.
|
||||
seed2 (int): Random seed2. Must be non-negative. Default: 0.
|
||||
|
||||
Inputs:
|
||||
- **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed.
|
||||
|
@ -234,8 +234,8 @@ class UniformInt(PrimitiveWithInfer):
|
|||
The number in tensor a should be strictly less than b at any position after broadcasting.
|
||||
|
||||
Args:
|
||||
seed (int): Random seed. Default: 0.
|
||||
seed2 (int): Random seed2. Default: 0.
|
||||
seed (int): Random seed. Must be non-negative. Default: 0.
|
||||
seed2 (int): Random seed2. Must be non-negative. Default: 0.
|
||||
|
||||
Inputs:
|
||||
- **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed.
|
||||
|
@ -287,8 +287,8 @@ class UniformReal(PrimitiveWithInfer):
|
|||
Produces random floating-point values i, uniformly distributed on the interval [0, 1).
|
||||
|
||||
Args:
|
||||
seed (int): Random seed. Default: 0.
|
||||
seed2 (int): Random seed2. Default: 0.
|
||||
seed (int): Random seed. Must be non-negative. Default: 0.
|
||||
seed2 (int): Random seed2. Must be non-negative. Default: 0.
|
||||
|
||||
Inputs:
|
||||
- **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed.
|
||||
|
|
Loading…
Reference in New Issue