forked from mindspore-Ecosystem/mindspore
!11853 Add call for decoupled image and text ops
From: @alexyuyue Reviewed-by: Signed-off-by:
This commit is contained in:
commit
320ea51308
|
@ -1,5 +1,5 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
* Copyright 2020-2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
|
@ -14,10 +14,11 @@
|
|||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "minddata/dataset/include/execute.h"
|
||||
#include "minddata/dataset/core/tensor_row.h"
|
||||
#ifdef ENABLE_ANDROID
|
||||
#include "minddata/dataset/include/de_tensor.h"
|
||||
#endif
|
||||
#include "minddata/dataset/include/execute.h"
|
||||
#include "minddata/dataset/include/tensor.h"
|
||||
#include "minddata/dataset/kernels/tensor_op.h"
|
||||
#ifndef ENABLE_ANDROID
|
||||
|
@ -84,5 +85,25 @@ std::shared_ptr<dataset::Tensor> Execute::operator()(std::shared_ptr<dataset::Te
|
|||
return de_output;
|
||||
}
|
||||
|
||||
Status Execute::operator()(const std::vector<std::shared_ptr<Tensor>> &input_tensor_list,
|
||||
std::vector<std::shared_ptr<Tensor>> *output_tensor_list) {
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(op_ != nullptr, "Input TensorOperation is not valid");
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(!input_tensor_list.empty(), "Input Tensor is not valid");
|
||||
|
||||
TensorRow input, output;
|
||||
std::copy(input_tensor_list.begin(), input_tensor_list.end(), std::back_inserter(input));
|
||||
CHECK_FAIL_RETURN_UNEXPECTED(!input.empty(), "Input Tensor is not valid");
|
||||
|
||||
std::shared_ptr<TensorOp> transform = op_->Build();
|
||||
Status rc = transform->Compute(input, &output);
|
||||
if (rc.IsError()) {
|
||||
// execution failed
|
||||
RETURN_STATUS_UNEXPECTED("Operation execution failed : " + rc.ToString());
|
||||
}
|
||||
|
||||
std::copy(output.begin(), output.end(), std::back_inserter(*output_tensor_list));
|
||||
return Status::OK();
|
||||
}
|
||||
|
||||
} // namespace dataset
|
||||
} // namespace mindspore
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
* Copyright 2020-2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
|
@ -28,14 +28,26 @@ PYBIND_REGISTER(Execute, 0, ([](const py::module *m) {
|
|||
auto execute = std::make_shared<Execute>(toTensorOperation(operation));
|
||||
return execute;
|
||||
}))
|
||||
.def("__call__", [](Execute &self, std::shared_ptr<Tensor> in) {
|
||||
std::shared_ptr<Tensor> out = self(in);
|
||||
if (out == nullptr) {
|
||||
.def("__call__",
|
||||
[](Execute &self, std::shared_ptr<Tensor> in) {
|
||||
std::shared_ptr<Tensor> out = self(in);
|
||||
if (out == nullptr) {
|
||||
THROW_IF_ERROR([]() {
|
||||
RETURN_STATUS_UNEXPECTED(
|
||||
"Failed to execute op in eager mode, please check ERROR log above.");
|
||||
}());
|
||||
}
|
||||
return out;
|
||||
})
|
||||
.def("__call__", [](Execute &self, const std::vector<std::shared_ptr<Tensor>> &input_tensor_list) {
|
||||
std::vector<std::shared_ptr<Tensor>> output_tensor_list;
|
||||
THROW_IF_ERROR(self(input_tensor_list, &output_tensor_list));
|
||||
if (output_tensor_list.empty()) {
|
||||
THROW_IF_ERROR([]() {
|
||||
RETURN_STATUS_UNEXPECTED("Failed to execute op in eager mode, please check ERROR log above.");
|
||||
}());
|
||||
}
|
||||
return out;
|
||||
return output_tensor_list;
|
||||
});
|
||||
}));
|
||||
} // namespace dataset
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/**
|
||||
* Copyright 2020 Huawei Technologies Co., Ltd
|
||||
* Copyright 2020-2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
|
@ -43,16 +43,23 @@ class Execute {
|
|||
|
||||
#ifdef ENABLE_ANDROID
|
||||
/// \brief callable function to execute the TensorOperation in eager mode
|
||||
/// \param[inout] input - the tensor to be transformed
|
||||
/// \param[in] input - the tensor to be transformed
|
||||
/// \return - the output tensor, nullptr if Compute fails
|
||||
std::shared_ptr<tensor::MSTensor> operator()(std::shared_ptr<tensor::MSTensor> input);
|
||||
#endif
|
||||
|
||||
/// \brief callable function to execute the TensorOperation in eager mode
|
||||
/// \param[inout] input - the tensor to be transformed
|
||||
/// \param[in] input - the tensor to be transformed
|
||||
/// \return - the output tensor, nullptr if Compute fails
|
||||
std::shared_ptr<dataset::Tensor> operator()(std::shared_ptr<dataset::Tensor> input);
|
||||
|
||||
/// \brief callable function to execute the TensorOperation in eager mode
|
||||
/// \param[in] input_tensor_list - the tensor to be transformed
|
||||
/// \param[out] out - the result tensor after transform
|
||||
/// \return - Status
|
||||
Status operator()(const std::vector<std::shared_ptr<Tensor>> &input_tensor_list,
|
||||
std::vector<std::shared_ptr<Tensor>> *out);
|
||||
|
||||
private:
|
||||
std::shared_ptr<TensorOperation> op_;
|
||||
};
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
# Copyright 2020-2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -59,112 +59,37 @@ from .validators import check_lookup, check_jieba_add_dict, \
|
|||
check_to_number, check_bert_tokenizer, check_python_tokenizer, check_slidingwindow
|
||||
from ..core.datatypes import mstype_to_detype
|
||||
from ..core.validator_helpers import replace_none
|
||||
from ..transforms.c_transforms import TensorOperation
|
||||
|
||||
class TextTensorOperation:
|
||||
def parse(self):
|
||||
raise NotImplementedError("TextTensorOperation has to implement parse method.")
|
||||
|
||||
class Lookup(TextTensorOperation):
|
||||
class TextTensorOperation(TensorOperation):
|
||||
"""
|
||||
Lookup operator that looks up a word to an id.
|
||||
|
||||
Args:
|
||||
vocab (Vocab): A vocabulary object.
|
||||
unknown_token (str, optional): Word used for lookup if the word being looked up is out-of-vocabulary (OOV).
|
||||
If unknown_token is OOV, a runtime error will be thrown (default=None).
|
||||
data_type (mindspore.dtype, optional): mindspore.dtype that lookup maps string to (default=mstype.int32)
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.dataset.text as text
|
||||
>>>
|
||||
>>> # Load vocabulary from list
|
||||
>>> vocab = text.Vocab.from_list(['深', '圳', '欢', '迎', '您'])
|
||||
>>> # Use Lookup operator to map tokens to ids
|
||||
>>> lookup = text.Lookup(vocab)
|
||||
>>> data1 = data1.map(operations=[lookup])
|
||||
Base class of Text Tensor Ops
|
||||
"""
|
||||
|
||||
@check_lookup
|
||||
def __init__(self, vocab, unknown_token=None, data_type=mstype.int32):
|
||||
self.vocab = vocab
|
||||
self.unknown_token = replace_none(unknown_token, '')
|
||||
self.data_type = data_type
|
||||
def __call__(self, input_tensor):
|
||||
if not isinstance(input_tensor, list):
|
||||
input_list = [input_tensor]
|
||||
else:
|
||||
input_list = input_tensor
|
||||
tensor_list = []
|
||||
for tensor in input_list:
|
||||
if not isinstance(tensor, str):
|
||||
raise TypeError("Input should be string or list of strings, got {}.".format(type(tensor)))
|
||||
tensor_list.append(cde.Tensor(np.asarray(tensor)))
|
||||
callable_op = cde.Execute(self.parse())
|
||||
output_list = callable_op(tensor_list)
|
||||
for i, element in enumerate(output_list):
|
||||
arr = element.as_array()
|
||||
if arr.dtype.char == 'S':
|
||||
output_list[i] = to_str(arr)
|
||||
else:
|
||||
output_list[i] = arr
|
||||
if not isinstance(input_tensor, list) and len(output_list) == 1:
|
||||
output_list = output_list[0]
|
||||
return output_list
|
||||
|
||||
def parse(self):
|
||||
return cde.LookupOperation(self.vocab, self.unknown_token, str(mstype_to_detype(self.data_type)))
|
||||
|
||||
|
||||
class SlidingWindow(TextTensorOperation):
|
||||
"""
|
||||
TensorOp to construct a tensor from data (only 1-D for now), where each element in the dimension axis
|
||||
is a slice of data starting at the corresponding position, with a specified width.
|
||||
|
||||
Args:
|
||||
width (int): The width of the window. It must be an integer and greater than zero.
|
||||
axis (int, optional): The axis along which the sliding window is computed (default=0).
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.dataset.text as text
|
||||
>>>
|
||||
>>> # Data before
|
||||
>>> # | col1 |
|
||||
>>> # +-------------+
|
||||
>>> # | [1,2,3,4,5] |
|
||||
>>> # +-------------+
|
||||
>>> data1 = data1.map(operations=text.SlidingWindow(3, 0))
|
||||
>>> # Data after
|
||||
>>> # | col1 |
|
||||
>>> # +-------------+
|
||||
>>> # | [[1,2,3], |
|
||||
>>> # | [2,3,4], |
|
||||
>>> # | [3,4,5]] |
|
||||
>>> # +--------------+
|
||||
"""
|
||||
|
||||
@check_slidingwindow
|
||||
def __init__(self, width, axis=0):
|
||||
self.width = width
|
||||
self.axis = axis
|
||||
|
||||
def parse(self):
|
||||
return cde.SlidingWindowOperation(self.width, self.axis)
|
||||
|
||||
|
||||
class Ngram(TextTensorOperation):
|
||||
"""
|
||||
TensorOp to generate n-gram from a 1-D string Tensor.
|
||||
|
||||
Refer to https://en.wikipedia.org/wiki/N-gram#Examples for an overview of what n-gram is and how it works.
|
||||
|
||||
Args:
|
||||
n (list[int]): n in n-gram, n >= 1. n is a list of positive integers. For example, if n=[4,3], then the result
|
||||
would be a 4-gram followed by a 3-gram in the same tensor. If the number of words is not enough to make up
|
||||
for a n-gram, an empty string will be returned. For example, 3 grams on ["mindspore","best"] will result in
|
||||
an empty string produced.
|
||||
left_pad (tuple, optional): ("pad_token", pad_width). Padding performed on left side of the sequence. pad_width
|
||||
will be capped at n-1. left_pad=("_",2) would pad left side of the sequence with "__" (default=None).
|
||||
right_pad (tuple, optional): ("pad_token", pad_width). Padding performed on right side of the sequence.
|
||||
pad_width will be capped at n-1. right_pad=("-":2) would pad right side of the sequence with "--"
|
||||
(default=None).
|
||||
separator (str, optional): symbol used to join strings together. For example. if 2-gram is
|
||||
["mindspore", "amazing"] with separator="-", the result would be ["mindspore-amazing"]
|
||||
(default=None, which means whitespace is used).
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.dataset.text as text
|
||||
>>>
|
||||
>>> data1 = data1.map(operations=text.Ngram(3, separator=" "))
|
||||
"""
|
||||
|
||||
@check_ngram
|
||||
def __init__(self, n, left_pad=("", 0), right_pad=("", 0), separator=" "):
|
||||
self.ngrams = n
|
||||
self.left_pad = left_pad
|
||||
self.right_pad = right_pad
|
||||
self.separator = separator
|
||||
|
||||
def parse(self):
|
||||
return cde.NgramOperation(self.ngrams, self.left_pad, self.right_pad, self.separator)
|
||||
raise NotImplementedError("TextTensorOperation has to implement parse() method.")
|
||||
|
||||
|
||||
DE_C_INTER_JIEBA_MODE = {
|
||||
|
@ -174,6 +99,18 @@ DE_C_INTER_JIEBA_MODE = {
|
|||
}
|
||||
|
||||
|
||||
DE_C_INTER_SENTENCEPIECE_LOADTYPE = {
|
||||
SPieceTokenizerLoadType.FILE: cde.SPieceTokenizerLoadType.DE_SPIECE_TOKENIZER_LOAD_KFILE,
|
||||
SPieceTokenizerLoadType.MODEL: cde.SPieceTokenizerLoadType.DE_SPIECE_TOKENIZER_LOAD_KMODEL
|
||||
}
|
||||
|
||||
|
||||
DE_C_INTER_SENTENCEPIECE_OUTTYPE = {
|
||||
SPieceTokenizerOutType.STRING: cde.SPieceTokenizerOutType.DE_SPIECE_TOKENIZER_OUTTYPE_KString,
|
||||
SPieceTokenizerOutType.INT: cde.SPieceTokenizerOutType.DE_SPIECE_TOKENIZER_OUTTYPE_KINT
|
||||
}
|
||||
|
||||
|
||||
class JiebaTokenizer(TextTensorOperation):
|
||||
"""
|
||||
Tokenize Chinese string into words based on dictionary.
|
||||
|
@ -335,6 +272,201 @@ class JiebaTokenizer(TextTensorOperation):
|
|||
" jieba mode file {} is not exist.".format(model_path))
|
||||
|
||||
|
||||
class Lookup(TextTensorOperation):
|
||||
"""
|
||||
Lookup operator that looks up a word to an id.
|
||||
|
||||
Args:
|
||||
vocab (Vocab): A vocabulary object.
|
||||
unknown_token (str, optional): Word used for lookup if the word being looked up is out-of-vocabulary (OOV).
|
||||
If unknown_token is OOV, a runtime error will be thrown (default=None).
|
||||
data_type (mindspore.dtype, optional): mindspore.dtype that lookup maps string to (default=mstype.int32)
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.dataset.text as text
|
||||
>>>
|
||||
>>> # Load vocabulary from list
|
||||
>>> vocab = text.Vocab.from_list(['深', '圳', '欢', '迎', '您'])
|
||||
>>> # Use Lookup operator to map tokens to ids
|
||||
>>> lookup = text.Lookup(vocab)
|
||||
>>> data1 = data1.map(operations=[lookup])
|
||||
"""
|
||||
|
||||
@check_lookup
|
||||
def __init__(self, vocab, unknown_token=None, data_type=mstype.int32):
|
||||
self.vocab = vocab
|
||||
self.unknown_token = replace_none(unknown_token, '')
|
||||
self.data_type = data_type
|
||||
|
||||
def parse(self):
|
||||
return cde.LookupOperation(self.vocab, self.unknown_token, str(mstype_to_detype(self.data_type)))
|
||||
|
||||
|
||||
class Ngram(TextTensorOperation):
|
||||
"""
|
||||
TensorOp to generate n-gram from a 1-D string Tensor.
|
||||
|
||||
Refer to https://en.wikipedia.org/wiki/N-gram#Examples for an overview of what n-gram is and how it works.
|
||||
|
||||
Args:
|
||||
n (list[int]): n in n-gram, n >= 1. n is a list of positive integers. For example, if n=[4,3], then the result
|
||||
would be a 4-gram followed by a 3-gram in the same tensor. If the number of words is not enough to make up
|
||||
for a n-gram, an empty string will be returned. For example, 3 grams on ["mindspore","best"] will result in
|
||||
an empty string produced.
|
||||
left_pad (tuple, optional): ("pad_token", pad_width). Padding performed on left side of the sequence. pad_width
|
||||
will be capped at n-1. left_pad=("_",2) would pad left side of the sequence with "__" (default=None).
|
||||
right_pad (tuple, optional): ("pad_token", pad_width). Padding performed on right side of the sequence.
|
||||
pad_width will be capped at n-1. right_pad=("-":2) would pad right side of the sequence with "--"
|
||||
(default=None).
|
||||
separator (str, optional): symbol used to join strings together. For example. if 2-gram is
|
||||
["mindspore", "amazing"] with separator="-", the result would be ["mindspore-amazing"]
|
||||
(default=None, which means whitespace is used).
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.dataset.text as text
|
||||
>>>
|
||||
>>> data1 = data1.map(operations=text.Ngram(3, separator=" "))
|
||||
"""
|
||||
|
||||
@check_ngram
|
||||
def __init__(self, n, left_pad=("", 0), right_pad=("", 0), separator=" "):
|
||||
self.ngrams = n
|
||||
self.left_pad = left_pad
|
||||
self.right_pad = right_pad
|
||||
self.separator = separator
|
||||
|
||||
def parse(self):
|
||||
return cde.NgramOperation(self.ngrams, self.left_pad, self.right_pad, self.separator)
|
||||
|
||||
|
||||
class SentencePieceTokenizer(TextTensorOperation):
|
||||
"""
|
||||
Tokenize scalar token or 1-D tokens to tokens by sentencepiece.
|
||||
|
||||
Args:
|
||||
mode (Union[str, SentencePieceVocab]): If the input parameter is a file, then it is of type string.
|
||||
If the input parameter is a SentencePieceVocab object, then it is of type SentencePieceVocab.
|
||||
out_type (Union[str, int]): The type of output.
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.dataset.text as text
|
||||
>>>
|
||||
>>> vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.UNIGRAM, {})
|
||||
>>> tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING)
|
||||
>>> data1 = data1.map(operations=tokenizer)
|
||||
"""
|
||||
|
||||
def __init__(self, mode, out_type):
|
||||
self.mode = mode
|
||||
self.out_type = out_type
|
||||
|
||||
def parse(self):
|
||||
return cde.SentencePieceTokenizerOperation(self.mode, DE_C_INTER_SENTENCEPIECE_OUTTYPE[self.out_type])
|
||||
|
||||
|
||||
class SlidingWindow(TextTensorOperation):
|
||||
"""
|
||||
TensorOp to construct a tensor from data (only 1-D for now), where each element in the dimension axis
|
||||
is a slice of data starting at the corresponding position, with a specified width.
|
||||
|
||||
Args:
|
||||
width (int): The width of the window. It must be an integer and greater than zero.
|
||||
axis (int, optional): The axis along which the sliding window is computed (default=0).
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.dataset.text as text
|
||||
>>>
|
||||
>>> # Data before
|
||||
>>> # | col1 |
|
||||
>>> # +-------------+
|
||||
>>> # | [1,2,3,4,5] |
|
||||
>>> # +-------------+
|
||||
>>> data1 = data1.map(operations=text.SlidingWindow(3, 0))
|
||||
>>> # Data after
|
||||
>>> # | col1 |
|
||||
>>> # +-------------+
|
||||
>>> # | [[1,2,3], |
|
||||
>>> # | [2,3,4], |
|
||||
>>> # | [3,4,5]] |
|
||||
>>> # +--------------+
|
||||
"""
|
||||
|
||||
@check_slidingwindow
|
||||
def __init__(self, width, axis=0):
|
||||
self.width = width
|
||||
self.axis = axis
|
||||
|
||||
def parse(self):
|
||||
return cde.SlidingWindowOperation(self.width, self.axis)
|
||||
|
||||
|
||||
class ToNumber(TextTensorOperation):
|
||||
"""
|
||||
Tensor operation to convert every element of a string tensor to a number.
|
||||
|
||||
Strings are casted according to the rules specified in the following links:
|
||||
https://en.cppreference.com/w/cpp/string/basic_string/stof,
|
||||
https://en.cppreference.com/w/cpp/string/basic_string/stoul,
|
||||
except that any strings which represent negative numbers cannot be cast to an
|
||||
unsigned integer type.
|
||||
|
||||
Args:
|
||||
data_type (mindspore.dtype): mindspore.dtype to be casted to. Must be
|
||||
a numeric type.
|
||||
|
||||
Raises:
|
||||
RuntimeError: If strings are invalid to cast, or are out of range after being casted.
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.dataset.text as text
|
||||
>>> import mindspore.common.dtype as mstype
|
||||
>>>
|
||||
>>> to_number_op = text.ToNumber(mstype.int8)
|
||||
>>> data1 = data1.map(operations=to_number_op)
|
||||
"""
|
||||
|
||||
@check_to_number
|
||||
def __init__(self, data_type):
|
||||
data_type = mstype_to_detype(data_type)
|
||||
self.data_type = str(data_type)
|
||||
|
||||
def parse(self):
|
||||
return cde.ToNumberOperation(self.data_type)
|
||||
|
||||
|
||||
class TruncateSequencePair(TextTensorOperation):
|
||||
"""
|
||||
Truncate a pair of rank-1 tensors such that the total length is less than max_length.
|
||||
|
||||
This operation takes two input tensors and returns two output Tensors.
|
||||
|
||||
Args:
|
||||
max_length (int): Maximum length required.
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.dataset.text as text
|
||||
>>>
|
||||
>>> # Data before
|
||||
>>> # | col1 | col2 |
|
||||
>>> # +---------+---------|
|
||||
>>> # | [1,2,3] | [4,5] |
|
||||
>>> # +---------+---------+
|
||||
>>> data1 = data1.map(operations=text.TruncateSequencePair(4))
|
||||
>>> # Data after
|
||||
>>> # | col1 | col2 |
|
||||
>>> # +---------+---------+
|
||||
>>> # | [1,2] | [4,5] |
|
||||
>>> # +---------+---------+
|
||||
"""
|
||||
|
||||
@check_pair_truncate
|
||||
def __init__(self, max_length):
|
||||
self.max_length = max_length
|
||||
|
||||
def parse(self):
|
||||
return cde.TruncateSequencePairOperation(self.max_length)
|
||||
|
||||
|
||||
class UnicodeCharTokenizer(TextTensorOperation):
|
||||
"""
|
||||
Tokenize a scalar tensor of UTF-8 string to Unicode characters.
|
||||
|
@ -405,131 +537,31 @@ class WordpieceTokenizer(cde.WordpieceTokenizerOp):
|
|||
self.unknown_token, self.with_offsets)
|
||||
|
||||
|
||||
DE_C_INTER_SENTENCEPIECE_LOADTYPE = {
|
||||
SPieceTokenizerLoadType.FILE: cde.SPieceTokenizerLoadType.DE_SPIECE_TOKENIZER_LOAD_KFILE,
|
||||
SPieceTokenizerLoadType.MODEL: cde.SPieceTokenizerLoadType.DE_SPIECE_TOKENIZER_LOAD_KMODEL
|
||||
}
|
||||
|
||||
DE_C_INTER_SENTENCEPIECE_OUTTYPE = {
|
||||
SPieceTokenizerOutType.STRING: cde.SPieceTokenizerOutType.DE_SPIECE_TOKENIZER_OUTTYPE_KString,
|
||||
SPieceTokenizerOutType.INT: cde.SPieceTokenizerOutType.DE_SPIECE_TOKENIZER_OUTTYPE_KINT
|
||||
}
|
||||
|
||||
|
||||
class SentencePieceTokenizer(TextTensorOperation):
|
||||
class PythonTokenizer:
|
||||
"""
|
||||
Tokenize scalar token or 1-D tokens to tokens by sentencepiece.
|
||||
Callable class to be used for user-defined string tokenizer.
|
||||
|
||||
Args:
|
||||
mode (Union[str, SentencePieceVocab]): If the input parameter is a file, then it is of type string.
|
||||
If the input parameter is a SentencePieceVocab object, then it is of type SentencePieceVocab.
|
||||
out_type (Union[str, int]): The type of output.
|
||||
tokenizer (Callable): Python function that takes a `str` and returns a list of `str` as tokens.
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.dataset.text as text
|
||||
>>>
|
||||
>>> vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.UNIGRAM, {})
|
||||
>>> tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING)
|
||||
>>> data1 = data1.map(operations=tokenizer)
|
||||
>>> def my_tokenizer(line):
|
||||
>>> return line.split()
|
||||
>>> data1 = data1.map(operations=text.PythonTokenizer(my_tokenizer))
|
||||
"""
|
||||
|
||||
def __init__(self, mode, out_type):
|
||||
self.mode = mode
|
||||
self.out_type = out_type
|
||||
|
||||
def parse(self):
|
||||
return cde.SentencePieceTokenizerOperation(self.mode, DE_C_INTER_SENTENCEPIECE_OUTTYPE[self.out_type])
|
||||
@check_python_tokenizer
|
||||
def __init__(self, tokenizer):
|
||||
self.tokenizer = np.vectorize(lambda x: np.array(tokenizer(x), dtype='U'), signature='()->(n)')
|
||||
|
||||
def __call__(self, in_array):
|
||||
in_array = to_str(in_array)
|
||||
tokens = self.tokenizer(in_array)
|
||||
return tokens
|
||||
|
||||
if platform.system().lower() != 'windows':
|
||||
class WhitespaceTokenizer(TextTensorOperation):
|
||||
"""
|
||||
Tokenize a scalar tensor of UTF-8 string on ICU4C defined whitespaces, such as: ' ', '\\\\t', '\\\\r', '\\\\n'.
|
||||
|
||||
Note:
|
||||
WhitespaceTokenizer is not supported on Windows platform yet.
|
||||
|
||||
Args:
|
||||
with_offsets (bool, optional): If or not output offsets of tokens (default=False).
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.dataset.text as text
|
||||
>>>
|
||||
>>> # If with_offsets=False, default output one column {["text", dtype=str]}
|
||||
>>> tokenizer_op = text.WhitespaceTokenizer()
|
||||
>>> data1 = data1.map(operations=tokenizer_op)
|
||||
>>> # If with_offsets=False, then output three columns {["token", dtype=str],
|
||||
>>> # ["offsets_start", dtype=uint32],
|
||||
>>> # ["offsets_limit", dtype=uint32]}
|
||||
>>> tokenizer_op = text.WhitespaceTokenizer(True)
|
||||
>>> data2 = data2.map(operations=tokenizer_op, input_columns=["text"],
|
||||
>>> output_columns=["token", "offsets_start", "offsets_limit"],
|
||||
>>> column_order=["token", "offsets_start", "offsets_limit"])
|
||||
"""
|
||||
|
||||
@check_with_offsets
|
||||
def __init__(self, with_offsets=False):
|
||||
self.with_offsets = with_offsets
|
||||
|
||||
def parse(self):
|
||||
return cde.WhitespaceTokenizerOperation(self.with_offsets)
|
||||
|
||||
|
||||
class UnicodeScriptTokenizer(TextTensorOperation):
|
||||
"""
|
||||
Tokenize a scalar tensor of UTF-8 string on Unicode script boundaries.
|
||||
|
||||
Note:
|
||||
UnicodeScriptTokenizer is not supported on Windows platform yet.
|
||||
|
||||
Args:
|
||||
keep_whitespace (bool, optional): If or not emit whitespace tokens (default=False).
|
||||
with_offsets (bool, optional): If or not output offsets of tokens (default=False).
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.dataset.text as text
|
||||
>>>
|
||||
>>> # If with_offsets=False, default output one column {["text", dtype=str]}
|
||||
>>> tokenizer_op = text.UnicodeScriptTokenizerOp(keep_whitespace=True, with_offsets=False)
|
||||
>>> data1 = data1.map(operations=tokenizer_op)
|
||||
>>> # If with_offsets=False, then output three columns {["token", dtype=str],
|
||||
>>> # ["offsets_start", dtype=uint32],
|
||||
>>> # ["offsets_limit", dtype=uint32]}
|
||||
>>> tokenizer_op = text.UnicodeScriptTokenizerOp(keep_whitespace=True, with_offsets=True)
|
||||
>>> data2 = data2.map(operations=tokenizer_op, input_columns=["text"],
|
||||
>>> output_columns=["token", "offsets_start", "offsets_limit"],
|
||||
>>> column_order=["token", "offsets_start", "offsets_limit"])
|
||||
"""
|
||||
|
||||
@check_unicode_script_tokenizer
|
||||
def __init__(self, keep_whitespace=False, with_offsets=False):
|
||||
keep_whitespace = replace_none(keep_whitespace, False)
|
||||
with_offsets = replace_none(with_offsets, False)
|
||||
self.keep_whitespace = keep_whitespace
|
||||
self.with_offsets = with_offsets
|
||||
|
||||
def parse(self):
|
||||
return cde.UnicodeScriptTokenizerOperation(self.keep_whitespace, self.with_offsets)
|
||||
|
||||
|
||||
class CaseFold(TextTensorOperation):
|
||||
"""
|
||||
Apply case fold operation on UTF-8 string tensor.
|
||||
|
||||
Note:
|
||||
CaseFold is not supported on Windows platform yet.
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.dataset.text as text
|
||||
>>>
|
||||
>>> case_op = text.CaseFold()
|
||||
>>> data1 = data1.map(operations=case_op)
|
||||
"""
|
||||
|
||||
def parse(self):
|
||||
return cde.CaseFoldOperation()
|
||||
|
||||
|
||||
DE_C_INTER_NORMALIZE_FORM = {
|
||||
NormalizeForm.NONE: cde.NormalizeForm.DE_NORMALIZE_NONE,
|
||||
NormalizeForm.NFC: cde.NormalizeForm.DE_NORMALIZE_NFC,
|
||||
|
@ -539,118 +571,6 @@ if platform.system().lower() != 'windows':
|
|||
}
|
||||
|
||||
|
||||
class NormalizeUTF8(TextTensorOperation):
|
||||
"""
|
||||
Apply normalize operation on UTF-8 string tensor.
|
||||
|
||||
Note:
|
||||
NormalizeUTF8 is not supported on Windows platform yet.
|
||||
|
||||
Args:
|
||||
normalize_form (NormalizeForm, optional): Valid values can be any of [NormalizeForm.NONE,
|
||||
NormalizeForm.NFC, NormalizeForm.NFKC, NormalizeForm.NFD,
|
||||
NormalizeForm.NFKD](default=NormalizeForm.NFKC).
|
||||
See http://unicode.org/reports/tr15/ for details.
|
||||
|
||||
- NormalizeForm.NONE, do nothing for input string tensor.
|
||||
- NormalizeForm.NFC, normalize with Normalization Form C.
|
||||
- NormalizeForm.NFKC, normalize with Normalization Form KC.
|
||||
- NormalizeForm.NFD, normalize with Normalization Form D.
|
||||
- NormalizeForm.NFKD, normalize with Normalization Form KD.
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.dataset.text as text
|
||||
>>>
|
||||
>>> normalize_op = text.NormalizeUTF8(normalize_form=NormalizeForm.NFC)
|
||||
>>> data1 = data1.map(operations=normalize_op)
|
||||
"""
|
||||
|
||||
def __init__(self, normalize_form=NormalizeForm.NFKC):
|
||||
if not isinstance(normalize_form, NormalizeForm):
|
||||
raise TypeError("Wrong input type for normalization_form, should be enum of 'NormalizeForm'.")
|
||||
|
||||
normalize_form = replace_none(normalize_form, NormalizeForm.NFKC)
|
||||
self.normalize_form = DE_C_INTER_NORMALIZE_FORM[normalize_form]
|
||||
|
||||
def parse(self):
|
||||
return cde.NormalizeUTF8Operation(self.normalize_form)
|
||||
|
||||
|
||||
class RegexReplace(TextTensorOperation):
|
||||
"""
|
||||
Replace UTF-8 string tensor with 'replace' according to regular expression 'pattern'.
|
||||
|
||||
See http://userguide.icu-project.org/strings/regexp for support regex pattern.
|
||||
|
||||
Note:
|
||||
RegexReplace is not supported on Windows platform yet.
|
||||
|
||||
Args:
|
||||
pattern (str): the regex expression patterns.
|
||||
replace (str): the string to replace matched element.
|
||||
replace_all (bool, optional): If False, only replace first matched element;
|
||||
if True, replace all matched elements (default=True).
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.dataset.text as text
|
||||
>>>
|
||||
>>> pattern = 'Canada'
|
||||
>>> replace = 'China'
|
||||
>>> replace_op = text.RegexReplace(pattern, replace)
|
||||
>>> data1 = data1.map(operations=replace_op)
|
||||
"""
|
||||
|
||||
def __init__(self, pattern, replace, replace_all=True):
|
||||
self.pattern = pattern
|
||||
self.replace = replace
|
||||
self.replace_all = replace_all
|
||||
|
||||
def parse(self):
|
||||
return cde.RegexReplaceOperation(self.pattern, self.replace, self.replace_all)
|
||||
|
||||
|
||||
class RegexTokenizer(TextTensorOperation):
|
||||
"""
|
||||
Tokenize a scalar tensor of UTF-8 string by regex expression pattern.
|
||||
|
||||
See http://userguide.icu-project.org/strings/regexp for support regex pattern.
|
||||
|
||||
Note:
|
||||
RegexTokenizer is not supported on Windows platform yet.
|
||||
|
||||
Args:
|
||||
delim_pattern (str): The pattern of regex delimiters.
|
||||
The original string will be split by matched elements.
|
||||
keep_delim_pattern (str, optional): The string matched by 'delim_pattern' can be kept as a token
|
||||
if it can be matched by 'keep_delim_pattern'. The default value is an empty str ('')
|
||||
which means that delimiters will not be kept as an output token (default='').
|
||||
with_offsets (bool, optional): If or not output offsets of tokens (default=False).
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.dataset.text as text
|
||||
>>>
|
||||
>>> # If with_offsets=False, default output one column {["text", dtype=str]}
|
||||
>>> tokenizer_op = text.RegexTokenizer(delim_pattern, keep_delim_pattern, with_offsets=False)
|
||||
>>> data1 = data1.map(operations=tokenizer_op)
|
||||
>>> # If with_offsets=False, then output three columns {["token", dtype=str],
|
||||
>>> # ["offsets_start", dtype=uint32],
|
||||
>>> # ["offsets_limit", dtype=uint32]}
|
||||
>>> tokenizer_op = text.RegexTokenizer(delim_pattern, keep_delim_pattern, with_offsets=True)
|
||||
>>> data2 = data2.map(operations=tokenizer_op, input_columns=["text"],
|
||||
>>> output_columns=["token", "offsets_start", "offsets_limit"],
|
||||
>>> column_order=["token", "offsets_start", "offsets_limit"])
|
||||
"""
|
||||
|
||||
@check_regex_tokenizer
|
||||
def __init__(self, delim_pattern, keep_delim_pattern='', with_offsets=False):
|
||||
self.delim_pattern = delim_pattern
|
||||
self.keep_delim_pattern = keep_delim_pattern
|
||||
self.with_offsets = with_offsets
|
||||
|
||||
def parse(self):
|
||||
return cde.RegexTokenizerOperation(self.delim_pattern, self.keep_delim_pattern, self.with_offsets)
|
||||
|
||||
|
||||
class BasicTokenizer(TextTensorOperation):
|
||||
"""
|
||||
Tokenize a scalar tensor of UTF-8 string by specific rules.
|
||||
|
@ -776,93 +696,201 @@ if platform.system().lower() != 'windows':
|
|||
self.normalization_form, self.preserve_unused_token, self.with_offsets)
|
||||
|
||||
|
||||
class TruncateSequencePair(TextTensorOperation):
|
||||
"""
|
||||
Truncate a pair of rank-1 tensors such that the total length is less than max_length.
|
||||
class CaseFold(TextTensorOperation):
|
||||
"""
|
||||
Apply case fold operation on UTF-8 string tensor.
|
||||
|
||||
This operation takes two input tensors and returns two output Tensors.
|
||||
Note:
|
||||
CaseFold is not supported on Windows platform yet.
|
||||
|
||||
Args:
|
||||
max_length (int): Maximum length required.
|
||||
Examples:
|
||||
>>> import mindspore.dataset.text as text
|
||||
>>>
|
||||
>>> case_op = text.CaseFold()
|
||||
>>> data1 = data1.map(operations=case_op)
|
||||
"""
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.dataset.text as text
|
||||
>>>
|
||||
>>> # Data before
|
||||
>>> # | col1 | col2 |
|
||||
>>> # +---------+---------|
|
||||
>>> # | [1,2,3] | [4,5] |
|
||||
>>> # +---------+---------+
|
||||
>>> data1 = data1.map(operations=text.TruncateSequencePair(4))
|
||||
>>> # Data after
|
||||
>>> # | col1 | col2 |
|
||||
>>> # +---------+---------+
|
||||
>>> # | [1,2] | [4,5] |
|
||||
>>> # +---------+---------+
|
||||
"""
|
||||
|
||||
@check_pair_truncate
|
||||
def __init__(self, max_length):
|
||||
self.max_length = max_length
|
||||
|
||||
def parse(self):
|
||||
return cde.TruncateSequencePairOperation(self.max_length)
|
||||
def parse(self):
|
||||
return cde.CaseFoldOperation()
|
||||
|
||||
|
||||
class ToNumber(TextTensorOperation):
|
||||
"""
|
||||
Tensor operation to convert every element of a string tensor to a number.
|
||||
class NormalizeUTF8(TextTensorOperation):
|
||||
"""
|
||||
Apply normalize operation on UTF-8 string tensor.
|
||||
|
||||
Strings are casted according to the rules specified in the following links:
|
||||
https://en.cppreference.com/w/cpp/string/basic_string/stof,
|
||||
https://en.cppreference.com/w/cpp/string/basic_string/stoul,
|
||||
except that any strings which represent negative numbers cannot be cast to an
|
||||
unsigned integer type.
|
||||
Note:
|
||||
NormalizeUTF8 is not supported on Windows platform yet.
|
||||
|
||||
Args:
|
||||
data_type (mindspore.dtype): mindspore.dtype to be casted to. Must be
|
||||
a numeric type.
|
||||
Args:
|
||||
normalize_form (NormalizeForm, optional): Valid values can be any of [NormalizeForm.NONE,
|
||||
NormalizeForm.NFC, NormalizeForm.NFKC, NormalizeForm.NFD,
|
||||
NormalizeForm.NFKD](default=NormalizeForm.NFKC).
|
||||
See http://unicode.org/reports/tr15/ for details.
|
||||
|
||||
Raises:
|
||||
RuntimeError: If strings are invalid to cast, or are out of range after being casted.
|
||||
- NormalizeForm.NONE, do nothing for input string tensor.
|
||||
- NormalizeForm.NFC, normalize with Normalization Form C.
|
||||
- NormalizeForm.NFKC, normalize with Normalization Form KC.
|
||||
- NormalizeForm.NFD, normalize with Normalization Form D.
|
||||
- NormalizeForm.NFKD, normalize with Normalization Form KD.
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.dataset.text as text
|
||||
>>> import mindspore.common.dtype as mstype
|
||||
>>>
|
||||
>>> to_number_op = text.ToNumber(mstype.int8)
|
||||
>>> data1 = data1.map(operations=to_number_op)
|
||||
"""
|
||||
Examples:
|
||||
>>> import mindspore.dataset.text as text
|
||||
>>>
|
||||
>>> normalize_op = text.NormalizeUTF8(normalize_form=NormalizeForm.NFC)
|
||||
>>> data1 = data1.map(operations=normalize_op)
|
||||
"""
|
||||
|
||||
@check_to_number
|
||||
def __init__(self, data_type):
|
||||
data_type = mstype_to_detype(data_type)
|
||||
self.data_type = str(data_type)
|
||||
def __init__(self, normalize_form=NormalizeForm.NFKC):
|
||||
if not isinstance(normalize_form, NormalizeForm):
|
||||
raise TypeError("Wrong input type for normalization_form, should be enum of 'NormalizeForm'.")
|
||||
|
||||
def parse(self):
|
||||
return cde.ToNumberOperation(self.data_type)
|
||||
normalize_form = replace_none(normalize_form, NormalizeForm.NFKC)
|
||||
self.normalize_form = DE_C_INTER_NORMALIZE_FORM[normalize_form]
|
||||
|
||||
def parse(self):
|
||||
return cde.NormalizeUTF8Operation(self.normalize_form)
|
||||
|
||||
|
||||
class PythonTokenizer:
|
||||
"""
|
||||
Callable class to be used for user-defined string tokenizer.
|
||||
class RegexReplace(TextTensorOperation):
|
||||
"""
|
||||
Replace UTF-8 string tensor with 'replace' according to regular expression 'pattern'.
|
||||
|
||||
Args:
|
||||
tokenizer (Callable): Python function that takes a `str` and returns a list of `str` as tokens.
|
||||
See http://userguide.icu-project.org/strings/regexp for support regex pattern.
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.dataset.text as text
|
||||
>>>
|
||||
>>> def my_tokenizer(line):
|
||||
>>> return line.split()
|
||||
>>> data1 = data1.map(operations=text.PythonTokenizer(my_tokenizer))
|
||||
"""
|
||||
Note:
|
||||
RegexReplace is not supported on Windows platform yet.
|
||||
|
||||
@check_python_tokenizer
|
||||
def __init__(self, tokenizer):
|
||||
self.tokenizer = np.vectorize(lambda x: np.array(tokenizer(x), dtype='U'), signature='()->(n)')
|
||||
Args:
|
||||
pattern (str): the regex expression patterns.
|
||||
replace (str): the string to replace matched element.
|
||||
replace_all (bool, optional): If False, only replace first matched element;
|
||||
if True, replace all matched elements (default=True).
|
||||
|
||||
def __call__(self, in_array):
|
||||
in_array = to_str(in_array)
|
||||
tokens = self.tokenizer(in_array)
|
||||
return tokens
|
||||
Examples:
|
||||
>>> import mindspore.dataset.text as text
|
||||
>>>
|
||||
>>> pattern = 'Canada'
|
||||
>>> replace = 'China'
|
||||
>>> replace_op = text.RegexReplace(pattern, replace)
|
||||
>>> data1 = data1.map(operations=replace_op)
|
||||
"""
|
||||
|
||||
def __init__(self, pattern, replace, replace_all=True):
|
||||
self.pattern = pattern
|
||||
self.replace = replace
|
||||
self.replace_all = replace_all
|
||||
|
||||
def parse(self):
|
||||
return cde.RegexReplaceOperation(self.pattern, self.replace, self.replace_all)
|
||||
|
||||
|
||||
class RegexTokenizer(TextTensorOperation):
|
||||
"""
|
||||
Tokenize a scalar tensor of UTF-8 string by regex expression pattern.
|
||||
|
||||
See http://userguide.icu-project.org/strings/regexp for support regex pattern.
|
||||
|
||||
Note:
|
||||
RegexTokenizer is not supported on Windows platform yet.
|
||||
|
||||
Args:
|
||||
delim_pattern (str): The pattern of regex delimiters.
|
||||
The original string will be split by matched elements.
|
||||
keep_delim_pattern (str, optional): The string matched by 'delim_pattern' can be kept as a token
|
||||
if it can be matched by 'keep_delim_pattern'. The default value is an empty str ('')
|
||||
which means that delimiters will not be kept as an output token (default='').
|
||||
with_offsets (bool, optional): If or not output offsets of tokens (default=False).
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.dataset.text as text
|
||||
>>>
|
||||
>>> # If with_offsets=False, default output one column {["text", dtype=str]}
|
||||
>>> tokenizer_op = text.RegexTokenizer(delim_pattern, keep_delim_pattern, with_offsets=False)
|
||||
>>> data1 = data1.map(operations=tokenizer_op)
|
||||
>>> # If with_offsets=False, then output three columns {["token", dtype=str],
|
||||
>>> # ["offsets_start", dtype=uint32],
|
||||
>>> # ["offsets_limit", dtype=uint32]}
|
||||
>>> tokenizer_op = text.RegexTokenizer(delim_pattern, keep_delim_pattern, with_offsets=True)
|
||||
>>> data2 = data2.map(operations=tokenizer_op, input_columns=["text"],
|
||||
>>> output_columns=["token", "offsets_start", "offsets_limit"],
|
||||
>>> column_order=["token", "offsets_start", "offsets_limit"])
|
||||
"""
|
||||
|
||||
@check_regex_tokenizer
|
||||
def __init__(self, delim_pattern, keep_delim_pattern='', with_offsets=False):
|
||||
self.delim_pattern = delim_pattern
|
||||
self.keep_delim_pattern = keep_delim_pattern
|
||||
self.with_offsets = with_offsets
|
||||
|
||||
def parse(self):
|
||||
return cde.RegexTokenizerOperation(self.delim_pattern, self.keep_delim_pattern, self.with_offsets)
|
||||
|
||||
|
||||
class UnicodeScriptTokenizer(TextTensorOperation):
|
||||
"""
|
||||
Tokenize a scalar tensor of UTF-8 string on Unicode script boundaries.
|
||||
|
||||
Note:
|
||||
UnicodeScriptTokenizer is not supported on Windows platform yet.
|
||||
|
||||
Args:
|
||||
keep_whitespace (bool, optional): If or not emit whitespace tokens (default=False).
|
||||
with_offsets (bool, optional): If or not output offsets of tokens (default=False).
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.dataset.text as text
|
||||
>>>
|
||||
>>> # If with_offsets=False, default output one column {["text", dtype=str]}
|
||||
>>> tokenizer_op = text.UnicodeScriptTokenizerOp(keep_whitespace=True, with_offsets=False)
|
||||
>>> data1 = data1.map(operations=tokenizer_op)
|
||||
>>> # If with_offsets=False, then output three columns {["token", dtype=str],
|
||||
>>> # ["offsets_start", dtype=uint32],
|
||||
>>> # ["offsets_limit", dtype=uint32]}
|
||||
>>> tokenizer_op = text.UnicodeScriptTokenizerOp(keep_whitespace=True, with_offsets=True)
|
||||
>>> data2 = data2.map(operations=tokenizer_op, input_columns=["text"],
|
||||
>>> output_columns=["token", "offsets_start", "offsets_limit"],
|
||||
>>> column_order=["token", "offsets_start", "offsets_limit"])
|
||||
"""
|
||||
|
||||
@check_unicode_script_tokenizer
|
||||
def __init__(self, keep_whitespace=False, with_offsets=False):
|
||||
keep_whitespace = replace_none(keep_whitespace, False)
|
||||
with_offsets = replace_none(with_offsets, False)
|
||||
self.keep_whitespace = keep_whitespace
|
||||
self.with_offsets = with_offsets
|
||||
|
||||
def parse(self):
|
||||
return cde.UnicodeScriptTokenizerOperation(self.keep_whitespace, self.with_offsets)
|
||||
|
||||
|
||||
class WhitespaceTokenizer(TextTensorOperation):
|
||||
"""
|
||||
Tokenize a scalar tensor of UTF-8 string on ICU4C defined whitespaces, such as: ' ', '\\\\t', '\\\\r', '\\\\n'.
|
||||
|
||||
Note:
|
||||
WhitespaceTokenizer is not supported on Windows platform yet.
|
||||
|
||||
Args:
|
||||
with_offsets (bool, optional): If or not output offsets of tokens (default=False).
|
||||
|
||||
Examples:
|
||||
>>> import mindspore.dataset.text as text
|
||||
>>>
|
||||
>>> # If with_offsets=False, default output one column {["text", dtype=str]}
|
||||
>>> tokenizer_op = text.WhitespaceTokenizer()
|
||||
>>> data1 = data1.map(operations=tokenizer_op)
|
||||
>>> # If with_offsets=False, then output three columns {["token", dtype=str],
|
||||
>>> # ["offsets_start", dtype=uint32],
|
||||
>>> # ["offsets_limit", dtype=uint32]}
|
||||
>>> tokenizer_op = text.WhitespaceTokenizer(True)
|
||||
>>> data2 = data2.map(operations=tokenizer_op, input_columns=["text"],
|
||||
>>> output_columns=["token", "offsets_start", "offsets_limit"],
|
||||
>>> column_order=["token", "offsets_start", "offsets_limit"])
|
||||
"""
|
||||
|
||||
@check_with_offsets
|
||||
def __init__(self, with_offsets=False):
|
||||
self.with_offsets = with_offsets
|
||||
|
||||
def parse(self):
|
||||
return cde.WhitespaceTokenizerOperation(self.with_offsets)
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2019 Huawei Technologies Co., Ltd
|
||||
# Copyright 2019-2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -26,6 +26,14 @@ from .validators import check_num_classes, check_de_type, check_fill_value, chec
|
|||
from ..core.datatypes import mstype_to_detype
|
||||
|
||||
|
||||
class TensorOperation:
|
||||
def __call__(self):
|
||||
raise NotImplementedError("TensorOperation has to implement __call__() method.")
|
||||
|
||||
def parse(self):
|
||||
raise NotImplementedError("TensorOperation has to implement parse() method.")
|
||||
|
||||
|
||||
class OneHot(cde.OneHotOp):
|
||||
"""
|
||||
Tensor operation to apply one hot encoding.
|
||||
|
@ -304,7 +312,7 @@ class Unique(cde.UniqueOp):
|
|||
Also return an index tensor that contains the index of each element of the
|
||||
input tensor in the Unique output tensor.
|
||||
|
||||
Finally, return a count tensor that constains the count of each element of
|
||||
Finally, return a count tensor that contains the count of each element of
|
||||
the output tensor in the input tensor.
|
||||
|
||||
Note:
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2019 Huawei Technologies Co., Ltd
|
||||
# Copyright 2019-2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -237,8 +237,8 @@ def check_compose_list(method):
|
|||
type_check(transforms, (list,), transforms)
|
||||
if not transforms:
|
||||
raise ValueError("transforms list is empty.")
|
||||
for i, transfrom in enumerate(transforms):
|
||||
if not callable(transfrom):
|
||||
for i, transform in enumerate(transforms):
|
||||
if not callable(transform):
|
||||
raise ValueError("transforms[{}] is not callable.".format(i))
|
||||
return method(self, *args, **kwargs)
|
||||
|
||||
|
@ -269,9 +269,10 @@ def check_random_apply(method):
|
|||
[transforms, prob], _ = parse_user_args(method, *args, **kwargs)
|
||||
type_check(transforms, (list,), "transforms")
|
||||
|
||||
for i, transfrom in enumerate(transforms):
|
||||
if not callable(transfrom):
|
||||
raise ValueError("transforms[{}] is not callable.".format(i))
|
||||
for i, transform in enumerate(transforms):
|
||||
if str(transform).find("c_transform") >= 0:
|
||||
raise ValueError("transforms[{}] is not a py transforms. Should not use a c transform in py transform" \
|
||||
.format(i))
|
||||
|
||||
if prob is not None:
|
||||
type_check(prob, (float, int,), "prob")
|
||||
|
@ -290,9 +291,10 @@ def check_transforms_list(method):
|
|||
[transforms], _ = parse_user_args(method, *args, **kwargs)
|
||||
|
||||
type_check(transforms, (list,), "transforms")
|
||||
for i, transfrom in enumerate(transforms):
|
||||
if not callable(transfrom):
|
||||
raise ValueError("transforms[{}] is not callable.".format(i))
|
||||
for i, transform in enumerate(transforms):
|
||||
if str(transform).find("c_transform") >= 0:
|
||||
raise ValueError("transforms[{}] is not a py transforms. Should not use a c transform in py transform" \
|
||||
.format(i))
|
||||
return method(self, *args, **kwargs)
|
||||
|
||||
return new_method
|
||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
# Copyright 2020-2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -29,6 +29,20 @@ DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
|
|||
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
|
||||
|
||||
|
||||
def test_HWC2CHW_callable():
|
||||
"""
|
||||
Test HWC2CHW is callable
|
||||
"""
|
||||
logger.info("Test HWC2CHW callable")
|
||||
img = np.fromfile("../data/dataset/apple.jpg", dtype=np.uint8)
|
||||
logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
|
||||
|
||||
img = c_vision.Decode()(img)
|
||||
img = c_vision.HWC2CHW()(img)
|
||||
logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
|
||||
assert img.shape == (3, 2268, 4032)
|
||||
|
||||
|
||||
def test_HWC2CHW(plot=False):
|
||||
"""
|
||||
Test HWC2CHW
|
||||
|
@ -122,6 +136,7 @@ def test_HWC2CHW_comp(plot=False):
|
|||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_HWC2CHW_callable()
|
||||
test_HWC2CHW(True)
|
||||
test_HWC2CHW_md5()
|
||||
test_HWC2CHW_comp(True)
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
# Copyright 2020-2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -219,7 +219,7 @@ def test_c_py_compose_vision_module(plot=False, run_golden=True):
|
|||
|
||||
def test_py_transforms_with_c_vision():
|
||||
"""
|
||||
These examples will fail, as py_transforms.Random(Apply/Choice/Order) expect callable functions
|
||||
These examples will fail, as c_transform should not be used in py_transforms.Random(Apply/Choice/Order)
|
||||
"""
|
||||
|
||||
ds.config.set_seed(0)
|
||||
|
@ -236,15 +236,15 @@ def test_py_transforms_with_c_vision():
|
|||
|
||||
with pytest.raises(ValueError) as error_info:
|
||||
test_config(py_transforms.RandomApply([c_vision.RandomResizedCrop(200)]))
|
||||
assert "transforms[0] is not callable." in str(error_info.value)
|
||||
assert "transforms[0] is not a py transforms." in str(error_info.value)
|
||||
|
||||
with pytest.raises(ValueError) as error_info:
|
||||
test_config(py_transforms.RandomChoice([c_vision.RandomResizedCrop(200)]))
|
||||
assert "transforms[0] is not callable." in str(error_info.value)
|
||||
assert "transforms[0] is not a py transforms." in str(error_info.value)
|
||||
|
||||
with pytest.raises(ValueError) as error_info:
|
||||
test_config(py_transforms.RandomOrder([np.array, c_vision.RandomResizedCrop(200)]))
|
||||
assert "transforms[1] is not callable." in str(error_info.value)
|
||||
assert "transforms[1] is not a py transforms." in str(error_info.value)
|
||||
|
||||
with pytest.raises(RuntimeError) as error_info:
|
||||
test_config([py_transforms.OneHotOp(20, 0.1)])
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
# Copyright 2020-2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -29,6 +29,21 @@ DATA_DIR = "../data/dataset/testImageNetData/train/"
|
|||
GENERATE_GOLDEN = False
|
||||
|
||||
|
||||
def test_invert_callable():
|
||||
"""
|
||||
Test Invert is callable
|
||||
"""
|
||||
logger.info("Test Invert callable")
|
||||
img = np.fromfile("../data/dataset/apple.jpg", dtype=np.uint8)
|
||||
logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
|
||||
|
||||
img = C.Decode()(img)
|
||||
img = C.Invert()(img)
|
||||
logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
|
||||
|
||||
assert img.shape == (2268, 4032, 3)
|
||||
|
||||
|
||||
def test_invert_py(plot=False):
|
||||
"""
|
||||
Test Invert python op
|
||||
|
@ -247,6 +262,7 @@ def test_invert_md5_c():
|
|||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_invert_callable()
|
||||
test_invert_py(plot=False)
|
||||
test_invert_c(plot=False)
|
||||
test_invert_py_c(plot=False)
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2019 Huawei Technologies Co., Ltd
|
||||
# Copyright 2019-2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -34,6 +34,22 @@ SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
|
|||
GENERATE_GOLDEN = False
|
||||
|
||||
|
||||
def test_random_crop_and_resize_callable():
|
||||
"""
|
||||
Test RandomCropAndResize op is callable
|
||||
"""
|
||||
logger.info("test_random_crop_and_resize_callable")
|
||||
img = np.fromfile("../data/dataset/apple.jpg", dtype=np.uint8)
|
||||
logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
|
||||
|
||||
decode_op = c_vision.Decode()
|
||||
img = decode_op(img)
|
||||
|
||||
random_crop_and_resize_op = c_vision.RandomResizedCrop((256, 512), (2, 2), (1, 3))
|
||||
img = random_crop_and_resize_op(img)
|
||||
assert np.shape(img) == (256, 512, 3)
|
||||
|
||||
|
||||
def test_random_crop_and_resize_op_c(plot=False):
|
||||
"""
|
||||
Test RandomCropAndResize op in c transforms
|
||||
|
@ -389,6 +405,7 @@ def test_random_crop_and_resize_06():
|
|||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_random_crop_and_resize_callable()
|
||||
test_random_crop_and_resize_op_c(True)
|
||||
test_random_crop_and_resize_op_py(True)
|
||||
test_random_crop_and_resize_op_py_ANTIALIAS()
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
# Copyright 2020-2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -16,6 +16,7 @@ import numpy as np
|
|||
import mindspore.dataset as ds
|
||||
from mindspore.dataset.text import JiebaTokenizer
|
||||
from mindspore.dataset.text import JiebaMode, to_str
|
||||
from mindspore import log as logger
|
||||
|
||||
DATA_FILE = "../data/dataset/testJiebaDataset/3.txt"
|
||||
DATA_ALL_FILE = "../data/dataset/testJiebaDataset/*"
|
||||
|
@ -24,6 +25,23 @@ HMM_FILE = "../data/dataset/jiebadict/hmm_model.utf8"
|
|||
MP_FILE = "../data/dataset/jiebadict/jieba.dict.utf8"
|
||||
|
||||
|
||||
def test_jieba_callable():
|
||||
"""
|
||||
Test jieba tokenizer op is callable
|
||||
"""
|
||||
logger.info("test_jieba_callable")
|
||||
jieba_op1 = JiebaTokenizer(HMM_FILE, MP_FILE, mode=JiebaMode.MP)
|
||||
jieba_op2 = JiebaTokenizer(HMM_FILE, MP_FILE, mode=JiebaMode.HMM)
|
||||
|
||||
text1 = "今天天气太好了我们一起去外面玩吧"
|
||||
text2 = "男默女泪市长江大桥"
|
||||
assert np.array_equal(jieba_op1(text1), ['今天天气', '太好了', '我们', '一起', '去', '外面', '玩吧'])
|
||||
assert np.array_equal(jieba_op2(text1), ['今天', '天气', '太', '好', '了', '我们', '一起', '去', '外面', '玩', '吧'])
|
||||
|
||||
jieba_op1.add_word("男默女泪")
|
||||
assert np.array_equal(jieba_op1(text2), ['男默女泪', '市', '长江大桥'])
|
||||
|
||||
|
||||
def test_jieba_1():
|
||||
"""Test jieba tokenizer with MP mode"""
|
||||
data = ds.TextFileDataset(DATA_FILE)
|
||||
|
@ -457,6 +475,7 @@ def test_jieba_6():
|
|||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_jieba_callable()
|
||||
test_jieba_1()
|
||||
test_jieba_1_1()
|
||||
test_jieba_1_2()
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
# Copyright 2020-2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -28,6 +28,24 @@ from util import visualize_list, diff_mse
|
|||
DATA_DIR = "../data/dataset/testImageNetData/train/"
|
||||
|
||||
|
||||
def test_uniform_augment_callable(num_ops=2):
|
||||
"""
|
||||
Test UniformAugment is callable
|
||||
"""
|
||||
logger.info("test_uniform_augment_callable")
|
||||
img = np.fromfile("../data/dataset/apple.jpg", dtype=np.uint8)
|
||||
logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
|
||||
|
||||
decode_op = C.Decode()
|
||||
img = decode_op(img)
|
||||
|
||||
transforms_ua = [C.RandomCrop(size=[400, 400], padding=[32, 32, 32, 32]),
|
||||
C.RandomCrop(size=[400, 400], padding=[32, 32, 32, 32])]
|
||||
uni_aug = C.UniformAugment(transforms=transforms_ua, num_ops=num_ops)
|
||||
img = uni_aug([img, img])
|
||||
assert ((np.shape(img) == (2, 2268, 4032, 3)) or (np.shape(img) == (1, 400, 400, 3)))
|
||||
|
||||
|
||||
def test_uniform_augment(plot=False, num_ops=2):
|
||||
"""
|
||||
Test UniformAugment
|
||||
|
@ -262,6 +280,7 @@ def test_cpp_uniform_augment_random_crop_badinput(num_ops=1):
|
|||
|
||||
|
||||
if __name__ == "__main__":
|
||||
test_uniform_augment_callable(num_ops=2)
|
||||
test_uniform_augment(num_ops=1, plot=True)
|
||||
test_cpp_uniform_augment(num_ops=1, plot=True)
|
||||
test_cpp_uniform_augment_exception_pyops(num_ops=1)
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
# Copyright 2020-2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
|
@ -18,6 +18,7 @@ import numpy as np
|
|||
import mindspore.dataset as ds
|
||||
import mindspore.dataset.text as text
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore import log as logger
|
||||
|
||||
# this file contains "home is behind the world head" each word is 1 line
|
||||
DATA_FILE = "../data/dataset/testVocab/words.txt"
|
||||
|
@ -25,6 +26,16 @@ VOCAB_FILE = "../data/dataset/testVocab/vocab_list.txt"
|
|||
SIMPLE_VOCAB_FILE = "../data/dataset/testVocab/simple_vocab_list.txt"
|
||||
|
||||
|
||||
def test_lookup_callable():
|
||||
"""
|
||||
Test lookup is callable
|
||||
"""
|
||||
logger.info("test_lookup_callable")
|
||||
vocab = text.Vocab.from_list(['深', '圳', '欢', '迎', '您'])
|
||||
lookup = text.Lookup(vocab)
|
||||
word = "迎"
|
||||
assert lookup(word) == 3
|
||||
|
||||
def test_from_list_tutorial():
|
||||
vocab = text.Vocab.from_list("home IS behind the world ahead !".split(" "), ["<pad>", "<unk>"], True)
|
||||
lookup = text.Lookup(vocab, "<unk>")
|
||||
|
@ -171,6 +182,7 @@ def test_lookup_cast_type():
|
|||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test_lookup_callable()
|
||||
test_from_dict_exception()
|
||||
test_from_list_tutorial()
|
||||
test_from_file_tutorial()
|
||||
|
|
Loading…
Reference in New Issue