change code to import APIs from mindspore.dataset rather than mindspore.dataset.engine

This commit is contained in:
Xiao Tianci 2020-12-24 16:33:29 +08:00
parent 3ba3ffedd4
commit 31fed1a2f6
57 changed files with 1135 additions and 1081 deletions

View File

@ -14,7 +14,7 @@
# ============================================================================
"""generate dataloader and data processing entry"""
import mindspore.dataset.engine as de
import mindspore.dataset as ds
from src.utils import DistributedSampler
@ -32,7 +32,7 @@ def GetDataLoader(per_batch_size,
"""
centerface_gen = CenterfaceDataset(config=config, split=split)
sampler = DistributedSampler(centerface_gen, rank, group_size, shuffle=(split == 'train')) # user defined sampling strategy
de_dataset = de.GeneratorDataset(centerface_gen, ["image", "anns"], sampler=sampler, num_parallel_workers=16)
de_dataset = ds.GeneratorDataset(centerface_gen, ["image", "anns"], sampler=sampler, num_parallel_workers=16)
if group_size > 1:
num_parallel_workers = 24

View File

@ -17,7 +17,7 @@ Data operations, will be used in train.py and eval.py
"""
import os
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.dataset.vision.c_transforms as C
from src.dataset_utils import lucky, noise_blur, noise_speckle, noise_gamma, noise_gaussian, noise_salt_pepper, \
shift_color, enhance_brightness, enhance_sharpness, enhance_contrast, enhance_color, gaussian_blur, \
@ -26,6 +26,7 @@ from src.dataset_utils import lucky, noise_blur, noise_speckle, noise_gamma, noi
import cv2
import numpy as np
cv2.setNumThreads(0)
image_height = None
@ -179,23 +180,24 @@ def create_dataset_train(mindrecord_file_pos, config):
rank_id = int(os.getenv("RANK_ID", '0'))
decode = C.Decode()
ds = de.MindDataset(mindrecord_file_pos, columns_list=["image", "label"], num_parallel_workers=4,
num_shards=rank_size, shard_id=rank_id, shuffle=True)
ds = ds.map(operations=decode, input_columns=["image"], num_parallel_workers=8)
data_set = ds.MindDataset(mindrecord_file_pos, columns_list=["image", "label"], num_parallel_workers=4,
num_shards=rank_size, shard_id=rank_id, shuffle=True)
data_set = data_set.map(operations=decode, input_columns=["image"], num_parallel_workers=8)
augmentor = Augmentor(config.augment_severity, config.augment_prob)
operation = augmentor.process
ds = ds.map(operations=operation, input_columns=["image"],
num_parallel_workers=1, python_multiprocessing=True)
data_set = data_set.map(operations=operation, input_columns=["image"],
num_parallel_workers=1, python_multiprocessing=True)
##randomly augment half of samples to be negative samples
ds = ds.map(operations=[random_neg_with_rotate, unify_img_label, transform_image], input_columns=["image", "label"],
num_parallel_workers=8, python_multiprocessing=True)
##for training double the dataset to accoun for positive and negative
ds = ds.repeat(2)
data_set = data_set.map(operations=[random_neg_with_rotate, unify_img_label, transform_image],
input_columns=["image", "label"],
num_parallel_workers=8, python_multiprocessing=True)
##for training double the data_set to accoun for positive and negative
data_set = data_set.repeat(2)
# apply batch operations
ds = ds.batch(config.batch_size, drop_remainder=True)
return ds
data_set = data_set.batch(config.batch_size, drop_remainder=True)
return data_set
def resize_image(img, label):
@ -230,17 +232,18 @@ def create_dataset_eval(mindrecord_file_pos, config):
rank_id = int(os.getenv("RANK_ID", '0'))
decode = C.Decode()
ds = de.MindDataset(mindrecord_file_pos, columns_list=["image", "label"], num_parallel_workers=1,
num_shards=rank_size, shard_id=rank_id, shuffle=False)
ds = ds.map(operations=decode, input_columns=["image"], num_parallel_workers=8)
data_set = ds.MindDataset(mindrecord_file_pos, columns_list=["image", "label"], num_parallel_workers=1,
num_shards=rank_size, shard_id=rank_id, shuffle=False)
data_set = data_set.map(operations=decode, input_columns=["image"], num_parallel_workers=8)
global image_height
global image_width
image_height = config.im_size_h
image_width = config.im_size_w
ds = ds.map(operations=resize_image, input_columns=["image", "label"], num_parallel_workers=config.work_nums,
python_multiprocessing=False)
data_set = data_set.map(operations=resize_image, input_columns=["image", "label"],
num_parallel_workers=config.work_nums,
python_multiprocessing=False)
# apply batch operations
ds = ds.batch(1, drop_remainder=True)
data_set = data_set.batch(1, drop_remainder=True)
return ds
return data_set

View File

@ -16,7 +16,7 @@
import os
import numpy as np
import mindspore.common.dtype as mstype
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.vision.c_transforms as vc
from PIL import Image, ImageFile
@ -105,7 +105,7 @@ def create_dataset(name, dataset_path, batch_size=1, num_shards=1, shard_id=0, i
dataset = IIIT5KDataset(dataset_path, "annotation.txt", config)
else:
raise ValueError(f"unsupported dataset name: {name}")
ds = de.GeneratorDataset(dataset, ["image", "label"], shuffle=True, num_shards=num_shards, shard_id=shard_id)
data_set = ds.GeneratorDataset(dataset, ["image", "label"], shuffle=True, num_shards=num_shards, shard_id=shard_id)
image_trans = [
vc.Resize((config.image_height, config.image_width)),
vc.Normalize([127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5]),
@ -114,8 +114,8 @@ def create_dataset(name, dataset_path, batch_size=1, num_shards=1, shard_id=0, i
label_trans = [
C.TypeCast(mstype.int32)
]
ds = ds.map(operations=image_trans, input_columns=["image"], num_parallel_workers=8)
ds = ds.map(operations=label_trans, input_columns=["label"], num_parallel_workers=8)
data_set = data_set.map(operations=image_trans, input_columns=["image"], num_parallel_workers=8)
data_set = data_set.map(operations=label_trans, input_columns=["label"], num_parallel_workers=8)
ds = ds.batch(batch_size, drop_remainder=True)
return ds
data_set = data_set.batch(batch_size, drop_remainder=True)
return data_set

View File

@ -16,7 +16,7 @@
Data operations, will be used in train.py and eval.py
"""
import mindspore.common.dtype as mstype
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C2
import mindspore.dataset.vision.c_transforms as C
from src.config import config_gpu as cfg
@ -37,33 +37,33 @@ def create_dataset(dataset_path, do_train, rank, group_size, repeat_num=1):
dataset
"""
if group_size == 1:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=cfg.work_nums, shuffle=True)
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=cfg.work_nums, shuffle=True)
else:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=cfg.work_nums, shuffle=True,
num_shards=group_size, shard_id=rank)
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=cfg.work_nums, shuffle=True,
num_shards=group_size, shard_id=rank)
# define map operations
if do_train:
trans = [
C.RandomCropDecodeResize(299, scale=(0.08, 1.0), ratio=(0.75, 1.333)),
C.RandomHorizontalFlip(prob=0.5),
C.RandomColorAdjust(brightness=0.4, contrast=0.4, saturation=0.4)
]
]
else:
trans = [
C.Decode(),
C.Resize(299),
C.CenterCrop(299)
]
]
trans += [
C.Rescale(1.0 / 255.0, 0.0),
C.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
C.HWC2CHW()
]
type_cast_op = C2.TypeCast(mstype.int32)
ds = ds.map(operations=trans, input_columns="image", num_parallel_workers=cfg.work_nums)
ds = ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=cfg.work_nums)
data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=cfg.work_nums)
data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=cfg.work_nums)
# apply batch operations
ds = ds.batch(cfg.batch_size, drop_remainder=True)
data_set = data_set.batch(cfg.batch_size, drop_remainder=True)
# apply dataset repeat operation
ds = ds.repeat(repeat_num)
return ds
data_set = data_set.repeat(repeat_num)
return data_set

View File

@ -17,7 +17,7 @@ create train or eval dataset.
"""
import os
import mindspore.common.dtype as mstype
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.dataset.vision.c_transforms as C
import mindspore.dataset.transforms.c_transforms as C2
from mindspore.communication.management import init, get_rank, get_group_size
@ -44,10 +44,10 @@ def create_dataset1(dataset_path, do_train, repeat_num=1, batch_size=32, target=
device_num = get_group_size()
if device_num == 1:
ds = de.Cifar10Dataset(dataset_path, num_parallel_workers=8, shuffle=True)
data_set = ds.Cifar10Dataset(dataset_path, num_parallel_workers=8, shuffle=True)
else:
ds = de.Cifar10Dataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=device_num, shard_id=rank_id)
data_set = ds.Cifar10Dataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=device_num, shard_id=rank_id)
# define map operations
trans = []
@ -66,15 +66,15 @@ def create_dataset1(dataset_path, do_train, repeat_num=1, batch_size=32, target=
type_cast_op = C2.TypeCast(mstype.int32)
ds = ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=8)
ds = ds.map(operations=trans, input_columns="image", num_parallel_workers=8)
data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=8)
data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=8)
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
data_set = data_set.batch(batch_size, drop_remainder=True)
# apply dataset repeat operation
ds = ds.repeat(repeat_num)
data_set = data_set.repeat(repeat_num)
return ds
return data_set
def create_dataset2(dataset_path, do_train, repeat_num=1, batch_size=32, target="Ascend"):
@ -99,10 +99,10 @@ def create_dataset2(dataset_path, do_train, repeat_num=1, batch_size=32, target=
device_num = get_group_size()
if device_num == 1:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True)
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True)
else:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=device_num, shard_id=rank_id)
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=device_num, shard_id=rank_id)
image_size = 224
mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
@ -127,16 +127,16 @@ def create_dataset2(dataset_path, do_train, repeat_num=1, batch_size=32, target=
type_cast_op = C2.TypeCast(mstype.int32)
ds = ds.map(operations=trans, input_columns="image", num_parallel_workers=8)
ds = ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=8)
data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=8)
data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=8)
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
data_set = data_set.batch(batch_size, drop_remainder=True)
# apply dataset repeat operation
ds = ds.repeat(repeat_num)
data_set = data_set.repeat(repeat_num)
return ds
return data_set
def _get_rank_info():

View File

@ -21,7 +21,7 @@ import numpy as np
from mindspore import Tensor
from mindspore.train.model import Model
import mindspore.common.dtype as mstype
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.dataset.vision.c_transforms as C
import mindspore.dataset.transforms.c_transforms as C2
@ -43,22 +43,22 @@ def create_dataset(dataset_path, do_train, config, repeat_num=1):
rank_size = int(os.getenv("RANK_SIZE", '1'))
rank_id = int(os.getenv("RANK_ID", '0'))
if rank_size == 1:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True)
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True)
else:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=rank_size, shard_id=rank_id)
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=rank_size, shard_id=rank_id)
elif config.platform == "GPU":
if do_train:
if config.run_distribute:
from mindspore.communication.management import get_rank, get_group_size
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=get_group_size(), shard_id=get_rank())
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=get_group_size(), shard_id=get_rank())
else:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True)
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True)
else:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True)
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True)
elif config.platform == "CPU":
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True)
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True)
resize_height = config.image_height
resize_width = config.image_width
@ -83,19 +83,19 @@ def create_dataset(dataset_path, do_train, config, repeat_num=1):
type_cast_op = C2.TypeCast(mstype.int32)
ds = ds.map(operations=trans, input_columns="image", num_parallel_workers=8)
ds = ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=8)
data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=8)
data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=8)
# apply shuffle operations
ds = ds.shuffle(buffer_size=buffer_size)
data_set = data_set.shuffle(buffer_size=buffer_size)
# apply batch operations
ds = ds.batch(config.batch_size, drop_remainder=True)
data_set = data_set.batch(config.batch_size, drop_remainder=True)
# apply dataset repeat operation
ds = ds.repeat(repeat_num)
data_set = data_set.repeat(repeat_num)
return ds
return data_set
def extract_features(net, dataset_path, config):
@ -121,5 +121,5 @@ def extract_features(net, dataset_path, config):
features = model.predict(Tensor(image))
np.save(features_path, features.asnumpy())
np.save(label_path, label)
print(f"Complete the batch {i+1}/{step_size}")
print(f"Complete the batch {i + 1}/{step_size}")
return step_size

View File

@ -18,7 +18,7 @@ create train or eval dataset.
import os
from functools import partial
import mindspore.common.dtype as mstype
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.dataset.vision.c_transforms as C
import mindspore.dataset.transforms.c_transforms as C2
import mindspore.dataset.transforms.py_transforms as P2
@ -43,24 +43,24 @@ def create_dataset(dataset_path, do_train, config, device_target, repeat_num=1,
rank_id = int(os.getenv("RANK_ID"))
columns_list = ['image', 'label']
if config.data_load_mode == "mindrecord":
load_func = partial(de.MindDataset, dataset_path, columns_list)
load_func = partial(ds.MindDataset, dataset_path, columns_list)
else:
load_func = partial(de.ImageFolderDataset, dataset_path)
load_func = partial(ds.ImageFolderDataset, dataset_path)
if do_train:
if rank_size == 1:
ds = load_func(num_parallel_workers=8, shuffle=True)
data_set = load_func(num_parallel_workers=8, shuffle=True)
else:
ds = load_func(num_parallel_workers=8, shuffle=True,
num_shards=rank_size, shard_id=rank_id)
data_set = load_func(num_parallel_workers=8, shuffle=True,
num_shards=rank_size, shard_id=rank_id)
else:
ds = load_func(num_parallel_workers=8, shuffle=False)
data_set = load_func(num_parallel_workers=8, shuffle=False)
elif device_target == "GPU":
if do_train:
from mindspore.communication.management import get_rank, get_group_size
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=get_group_size(), shard_id=get_rank())
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=get_group_size(), shard_id=get_rank())
else:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True)
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True)
else:
raise ValueError("Unsupported device_target.")
@ -69,7 +69,7 @@ def create_dataset(dataset_path, do_train, config, device_target, repeat_num=1,
if do_train:
buffer_size = 20480
# apply shuffle operations
ds = ds.shuffle(buffer_size=buffer_size)
data_set = data_set.shuffle(buffer_size=buffer_size)
# define map operations
decode_op = C.Decode()
@ -89,16 +89,16 @@ def create_dataset(dataset_path, do_train, config, device_target, repeat_num=1,
type_cast_op = C2.TypeCast(mstype.int32)
ds = ds.map(operations=trans, input_columns="image", num_parallel_workers=16)
ds = ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=8)
data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=16)
data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=8)
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
data_set = data_set.batch(batch_size, drop_remainder=True)
# apply dataset repeat operation
ds = ds.repeat(repeat_num)
data_set = data_set.repeat(repeat_num)
return ds
return data_set
def create_dataset_py(dataset_path, do_train, config, device_target, repeat_num=1, batch_size=32):
@ -119,12 +119,12 @@ def create_dataset_py(dataset_path, do_train, config, device_target, repeat_num=
rank_id = int(os.getenv("RANK_ID"))
if do_train:
if rank_size == 1:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True)
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True)
else:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=rank_size, shard_id=rank_id)
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=rank_size, shard_id=rank_id)
else:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=False)
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=False)
else:
raise ValueError("Unsupported device target.")
@ -133,7 +133,7 @@ def create_dataset_py(dataset_path, do_train, config, device_target, repeat_num=
if do_train:
buffer_size = 20480
# apply shuffle operations
ds = ds.shuffle(buffer_size=buffer_size)
data_set = data_set.shuffle(buffer_size=buffer_size)
# define map operations
decode_op = P.Decode()
@ -152,12 +152,13 @@ def create_dataset_py(dataset_path, do_train, config, device_target, repeat_num=
compose = P2.Compose(trans)
ds = ds.map(operations=compose, input_columns="image", num_parallel_workers=8, python_multiprocessing=True)
data_set = data_set.map(operations=compose, input_columns="image", num_parallel_workers=8,
python_multiprocessing=True)
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
data_set = data_set.batch(batch_size, drop_remainder=True)
# apply dataset repeat operation
ds = ds.repeat(repeat_num)
data_set = data_set.repeat(repeat_num)
return ds
return data_set

View File

@ -16,7 +16,7 @@
create train or eval dataset.
"""
import mindspore.common.dtype as mstype
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.dataset.vision.c_transforms as C
import mindspore.dataset.transforms.c_transforms as C2
@ -38,12 +38,12 @@ def create_dataset(dataset_path, do_train, config, device_target, repeat_num=1,
if do_train:
if run_distribute:
from mindspore.communication.management import get_rank, get_group_size
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=get_group_size(), shard_id=get_rank())
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=get_group_size(), shard_id=get_rank())
else:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True)
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True)
else:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True)
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True)
else:
raise ValueError("Unsupported device_target.")
@ -70,16 +70,16 @@ def create_dataset(dataset_path, do_train, config, device_target, repeat_num=1,
type_cast_op = C2.TypeCast(mstype.int32)
ds = ds.map(operations=trans, input_columns="image", num_parallel_workers=8)
ds = ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=8)
data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=8)
data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=8)
# apply shuffle operations
ds = ds.shuffle(buffer_size=buffer_size)
data_set = data_set.shuffle(buffer_size=buffer_size)
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
data_set = data_set.batch(batch_size, drop_remainder=True)
# apply dataset repeat operation
ds = ds.repeat(repeat_num)
data_set = data_set.repeat(repeat_num)
return ds
return data_set

View File

@ -16,7 +16,7 @@
Data operations, will be used in train.py and eval.py
"""
import mindspore.common.dtype as mstype
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C2
import mindspore.dataset.vision.c_transforms as C
@ -37,10 +37,10 @@ def create_dataset(dataset_path, config, do_train, repeat_num=1):
rank = config.rank
group_size = config.group_size
if group_size == 1:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=config.work_nums, shuffle=True)
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=config.work_nums, shuffle=True)
else:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=config.work_nums, shuffle=True,
num_shards=group_size, shard_id=rank)
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=config.work_nums, shuffle=True,
num_shards=group_size, shard_id=rank)
# define map operations
if do_train:
trans = [
@ -60,10 +60,10 @@ def create_dataset(dataset_path, config, do_train, repeat_num=1):
C.HWC2CHW()
]
type_cast_op = C2.TypeCast(mstype.int32)
ds = ds.map(operations=trans, input_columns="image", num_parallel_workers=config.work_nums)
ds = ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=config.work_nums)
data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=config.work_nums)
data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=config.work_nums)
# apply batch operations
ds = ds.batch(config.batch_size, drop_remainder=True)
data_set = data_set.batch(config.batch_size, drop_remainder=True)
# apply dataset repeat operation
ds = ds.repeat(repeat_num)
return ds
data_set = data_set.repeat(repeat_num)
return data_set

View File

@ -25,21 +25,24 @@ import pyclipper
from PIL import Image
from src.config import config
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.dataset.vision.py_transforms as py_transforms
__all__ = ['train_dataset_creator', 'test_dataset_creator']
def get_img(img_path):
img = cv2.imread(img_path)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
return img
def get_imgs_names(root_dir):
img_paths = [i for i in os.listdir(root_dir)
if os.path.splitext(i)[-1].lower() in ['.jpg', '.jpeg', '.png']]
return img_paths
def get_bboxes(img, gt_path):
h, w = img.shape[0:2]
with open(gt_path, 'r', encoding='utf-8-sig') as f:
@ -58,6 +61,7 @@ def get_bboxes(img, gt_path):
tags.append(tag)
return np.array(bboxes), tags
def random_scale(img, min_size):
h, w = img.shape[0:2]
if max(h, w) > 1280:
@ -74,12 +78,14 @@ def random_scale(img, min_size):
img = cv2.resize(img, dsize=None, fx=scale2, fy=scale2)
return img
def random_horizontal_flip(imgs):
if random.random() < 0.5:
for i, _ in enumerate(imgs):
imgs[i] = np.flip(imgs[i], axis=1).copy()
return imgs
def random_rotate(imgs):
max_angle = 10
angle = random.random() * 2 * max_angle - max_angle
@ -91,6 +97,7 @@ def random_rotate(imgs):
imgs[i] = img_rotation
return imgs
def random_crop(imgs, img_size):
h, w = imgs[0].shape[0:2]
th, tw = img_size
@ -118,21 +125,25 @@ def random_crop(imgs, img_size):
imgs[idx] = imgs[idx][i:i + th, j:j + tw]
return imgs
def scale(img, long_size=2240):
h, w = img.shape[0:2]
scale_long = long_size * 1.0 / max(h, w)
img = cv2.resize(img, dsize=None, fx=scale_long, fy=scale_long)
return img
def dist(a, b):
return np.sqrt(np.sum((a - b) ** 2))
def perimeter(bbox):
peri = 0.0
for i in range(bbox.shape[0]):
peri += dist(bbox[i], bbox[(i + 1) % bbox.shape[0]])
return peri
def shrink(bboxes, rate, max_shr=20):
rate = rate * rate
shrinked_bboxes = []
@ -158,6 +169,7 @@ def shrink(bboxes, rate, max_shr=20):
return np.array(shrinked_bboxes)
class TrainDataset:
def __init__(self):
self.is_transform = True
@ -260,6 +272,7 @@ class TrainDataset:
def __len__(self):
return len(self.all_img_paths)
def IC15_TEST_Generator():
ic15_test_data_dir = config.TEST_ROOT_DIR + 'ch4_test_images/'
img_size = config.INFER_LONG_SIZE
@ -298,6 +311,7 @@ def IC15_TEST_Generator():
yield img, img_resized, img_name
class DistributedSampler():
def __init__(self, dataset, rank, group_size, shuffle=True, seed=0):
self.dataset = dataset
@ -324,18 +338,20 @@ class DistributedSampler():
def __len__(self):
return self.num_samplers
def train_dataset_creator(rank, group_size, shuffle=True):
cv2.setNumThreads(0)
dataset = TrainDataset()
sampler = DistributedSampler(dataset, rank, group_size, shuffle)
ds = de.GeneratorDataset(dataset, ['img', 'gt_text', 'gt_kernels', 'training_mask'], num_parallel_workers=8,
sampler=sampler)
ds = ds.repeat(1)
ds = ds.batch(config.TRAIN_BATCH_SIZE, drop_remainder=config.TRAIN_DROP_REMAINDER)
return ds
data_set = ds.GeneratorDataset(dataset, ['img', 'gt_text', 'gt_kernels', 'training_mask'], num_parallel_workers=8,
sampler=sampler)
data_set = data_set.repeat(1)
data_set = data_set.batch(config.TRAIN_BATCH_SIZE, drop_remainder=config.TRAIN_DROP_REMAINDER)
return data_set
def test_dataset_creator():
ds = de.GeneratorDataset(IC15_TEST_Generator, ['img', 'img_resized', 'img_name'])
ds = ds.shuffle(config.TEST_BUFFER_SIZE)
ds = ds.batch(1, drop_remainder=config.TEST_DROP_REMAINDER)
return ds
data_set = ds.GeneratorDataset(IC15_TEST_Generator, ['img', 'img_resized', 'img_name'])
data_set = data_set.shuffle(config.TEST_BUFFER_SIZE)
data_set = data_set.batch(1, drop_remainder=config.TEST_DROP_REMAINDER)
return data_set

View File

@ -29,7 +29,7 @@ from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.common import set_seed
import mindspore.nn as nn
import mindspore.common.initializer as weight_init
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.dataset.vision.c_transforms as C
from src.resnet_gpu_benchmark import resnet50 as resnet
from src.CrossEntropySmooth import CrossEntropySmooth
@ -45,19 +45,22 @@ parser.add_argument('--dataset_path', type=str, default=None, help='Imagenet dat
parser.add_argument('--ckpt_path', type=str, default="./", help='The path to save ckpt if save_ckpt is True;\
Or the ckpt model file when eval is True')
parser.add_argument('--mode', type=str, default="GRAPH", choices=["GRAPH", "PYNATIVE"], help='Execute mode')
parser.add_argument('--dtype', type=str, choices=["fp32", "fp16", "FP16", "FP32"], default="fp16",\
help='Compute data type fp32 or fp16: default fp16')
parser.add_argument('--dtype', type=str, choices=["fp32", "fp16", "FP16", "FP32"], default="fp16", \
help='Compute data type fp32 or fp16: default fp16')
args_opt = parser.parse_args()
set_seed(1)
class MyTimeMonitor(Callback):
def __init__(self, batch_size, sink_size):
super(MyTimeMonitor, self).__init__()
self.batch_size = batch_size
self.size = sink_size
def step_begin(self, run_context):
self.step_time = time.time()
def step_end(self, run_context):
cb_params = run_context.original_args()
loss = cb_params.net_outputs
@ -75,17 +78,18 @@ class MyTimeMonitor(Callback):
raise ValueError("epoch: {} step: {}. Invalid loss, terminating training.".format(
cb_params.cur_epoch_num, cur_step_in_epoch))
step_mseconds = (time.time() - self.step_time) * 1000
fps = self.batch_size / step_mseconds *1000 * self.size
fps = self.batch_size / step_mseconds * 1000 * self.size
print("epoch: %s step: %s, loss is %s" % (cb_params.cur_epoch_num, cur_step_in_epoch, loss),
"Epoch time: {:5.3f} ms, fps: {:d} img/sec.".format(step_mseconds, int(fps)), flush=True)
def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target="GPU", dtype="fp16",
device_num=1):
if device_num == 1:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=4, shuffle=True)
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=4, shuffle=True)
else:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=4, shuffle=True,
num_shards=device_num, shard_id=get_rank())
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=4, shuffle=True,
num_shards=device_num, shard_id=get_rank())
image_size = 224
mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
std = [0.229 * 255, 0.224 * 255, 0.225 * 255]
@ -113,14 +117,15 @@ def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target="
]
if dtype == "fp32":
trans.append(C.HWC2CHW())
ds = ds.map(operations=trans, input_columns="image", num_parallel_workers=8)
data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=8)
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
data_set = data_set.batch(batch_size, drop_remainder=True)
# apply dataset repeat operation
if repeat_num > 1:
ds = ds.repeat(repeat_num)
data_set = data_set.repeat(repeat_num)
return data_set
return ds
def get_liner_lr(lr_init, lr_end, lr_max, warmup_epochs, total_epochs, steps_per_epoch):
lr_each_step = []
@ -136,6 +141,7 @@ def get_liner_lr(lr_init, lr_end, lr_max, warmup_epochs, total_epochs, steps_per
lr_each_step = np.array(lr_each_step).astype(np.float32)
return lr_each_step
def train():
# set args
dev = "GPU"
@ -221,6 +227,7 @@ def train():
else:
model.train(epoch_size, dataset, callbacks=cb)
def eval_():
# set args
dev = "GPU"
@ -251,6 +258,7 @@ def eval_():
res = model.eval(dataset)
print("result:", res, "ckpt=", ckpt_dir)
if __name__ == '__main__':
if not args_opt.eval:
train()

View File

@ -17,7 +17,7 @@ create train or eval dataset.
"""
import os
import mindspore.common.dtype as mstype
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.dataset.vision.c_transforms as C
import mindspore.dataset.transforms.c_transforms as C2
from mindspore.communication.management import init, get_rank, get_group_size
@ -47,10 +47,10 @@ def create_dataset1(dataset_path, do_train, repeat_num=1, batch_size=32, target=
else:
device_num = 1
if device_num == 1:
ds = de.Cifar10Dataset(dataset_path, num_parallel_workers=8, shuffle=True)
data_set = ds.Cifar10Dataset(dataset_path, num_parallel_workers=8, shuffle=True)
else:
ds = de.Cifar10Dataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=device_num, shard_id=rank_id)
data_set = ds.Cifar10Dataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=device_num, shard_id=rank_id)
# define map operations
trans = []
@ -69,15 +69,15 @@ def create_dataset1(dataset_path, do_train, repeat_num=1, batch_size=32, target=
type_cast_op = C2.TypeCast(mstype.int32)
ds = ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=8)
ds = ds.map(operations=trans, input_columns="image", num_parallel_workers=8)
data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=8)
data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=8)
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
data_set = data_set.batch(batch_size, drop_remainder=True)
# apply dataset repeat operation
ds = ds.repeat(repeat_num)
data_set = data_set.repeat(repeat_num)
return ds
return data_set
def create_dataset2(dataset_path, do_train, repeat_num=1, batch_size=32, target="Ascend", distribute=False):
@ -106,10 +106,10 @@ def create_dataset2(dataset_path, do_train, repeat_num=1, batch_size=32, target=
device_num = 1
if device_num == 1:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True)
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True)
else:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=device_num, shard_id=rank_id)
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=device_num, shard_id=rank_id)
image_size = 224
mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
@ -134,16 +134,16 @@ def create_dataset2(dataset_path, do_train, repeat_num=1, batch_size=32, target=
type_cast_op = C2.TypeCast(mstype.int32)
ds = ds.map(operations=trans, input_columns="image", num_parallel_workers=8)
ds = ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=8)
data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=8)
data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=8)
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
data_set = data_set.batch(batch_size, drop_remainder=True)
# apply dataset repeat operation
ds = ds.repeat(repeat_num)
data_set = data_set.repeat(repeat_num)
return ds
return data_set
def create_dataset3(dataset_path, do_train, repeat_num=1, batch_size=32, target="Ascend", distribute=False):
@ -171,10 +171,10 @@ def create_dataset3(dataset_path, do_train, repeat_num=1, batch_size=32, target=
device_num = 1
rank_id = 1
if device_num == 1:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True)
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True)
else:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=device_num, shard_id=rank_id)
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=device_num, shard_id=rank_id)
image_size = 224
mean = [0.475 * 255, 0.451 * 255, 0.392 * 255]
std = [0.275 * 255, 0.267 * 255, 0.278 * 255]
@ -198,15 +198,15 @@ def create_dataset3(dataset_path, do_train, repeat_num=1, batch_size=32, target=
type_cast_op = C2.TypeCast(mstype.int32)
ds = ds.map(operations=trans, input_columns="image", num_parallel_workers=8)
ds = ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=8)
data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=8)
data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=8)
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
data_set = data_set.batch(batch_size, drop_remainder=True)
# apply dataset repeat operation
ds = ds.repeat(repeat_num)
data_set = data_set.repeat(repeat_num)
return ds
return data_set
def create_dataset4(dataset_path, do_train, repeat_num=1, batch_size=32, target="Ascend", distribute=False):
@ -234,10 +234,10 @@ def create_dataset4(dataset_path, do_train, repeat_num=1, batch_size=32, target=
else:
device_num = 1
if device_num == 1:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=12, shuffle=True)
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=12, shuffle=True)
else:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=12, shuffle=True,
num_shards=device_num, shard_id=rank_id)
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=12, shuffle=True,
num_shards=device_num, shard_id=rank_id)
image_size = 224
mean = [123.68, 116.78, 103.94]
std = [1.0, 1.0, 1.0]
@ -260,16 +260,16 @@ def create_dataset4(dataset_path, do_train, repeat_num=1, batch_size=32, target=
]
type_cast_op = C2.TypeCast(mstype.int32)
ds = ds.map(operations=trans, input_columns="image", num_parallel_workers=12)
ds = ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=12)
data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=12)
data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=12)
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
data_set = data_set.batch(batch_size, drop_remainder=True)
# apply dataset repeat operation
ds = ds.repeat(repeat_num)
data_set = data_set.repeat(repeat_num)
return ds
return data_set
def _get_rank_info():

View File

@ -18,7 +18,7 @@ create train or eval dataset.
import os
from functools import partial
import mindspore.common.dtype as mstype
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C2
import mindspore.dataset.vision.c_transforms as C
import mindspore.dataset.transforms.py_transforms as P2
@ -53,14 +53,14 @@ def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target="
columns_list = ['image', 'label']
if config.data_load_mode == "mindrecord":
load_func = partial(de.MindDataset, dataset_path, columns_list)
load_func = partial(ds.MindDataset, dataset_path, columns_list)
else:
load_func = partial(de.ImageFolderDataset, dataset_path)
load_func = partial(ds.ImageFolderDataset, dataset_path)
if device_num == 1:
ds = load_func(num_parallel_workers=8, shuffle=True)
data_set = load_func(num_parallel_workers=8, shuffle=True)
else:
ds = load_func(num_parallel_workers=8, shuffle=True,
num_shards=device_num, shard_id=rank_id)
data_set = load_func(num_parallel_workers=8, shuffle=True,
num_shards=device_num, shard_id=rank_id)
image_size = 224
mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
@ -85,16 +85,16 @@ def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target="
type_cast_op = C2.TypeCast(mstype.int32)
ds = ds.map(operations=trans, input_columns="image", num_parallel_workers=8)
ds = ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=8)
data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=8)
data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=8)
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
data_set = data_set.batch(batch_size, drop_remainder=True)
# apply dataset repeat operation
ds = ds.repeat(repeat_num)
data_set = data_set.repeat(repeat_num)
return ds
return data_set
def create_dataset_py(dataset_path, do_train, repeat_num=1, batch_size=32, target="Ascend"):
@ -121,12 +121,12 @@ def create_dataset_py(dataset_path, do_train, repeat_num=1, batch_size=32, targe
if do_train:
if device_num == 1:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True)
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True)
else:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=device_num, shard_id=rank_id)
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=device_num, shard_id=rank_id)
else:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=False)
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=False)
image_size = 224
@ -147,12 +147,13 @@ def create_dataset_py(dataset_path, do_train, repeat_num=1, batch_size=32, targe
trans = [decode_op, resize_op, center_crop, to_tensor, normalize_op]
compose = P2.Compose(trans)
ds = ds.map(operations=compose, input_columns="image", num_parallel_workers=8, python_multiprocessing=True)
data_set = data_set.map(operations=compose, input_columns="image", num_parallel_workers=8,
python_multiprocessing=True)
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
data_set = data_set.batch(batch_size, drop_remainder=True)
# apply dataset repeat operation
ds = ds.repeat(repeat_num)
data_set = data_set.repeat(repeat_num)
return ds
return data_set

View File

@ -17,7 +17,7 @@ create train or eval dataset.
"""
import os
import mindspore.common.dtype as mstype
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.dataset.vision.c_transforms as C
import mindspore.dataset.transforms.c_transforms as C2
from mindspore.communication.management import init, get_rank, get_group_size
@ -47,10 +47,10 @@ def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target="
num_parallels = 4
if device_num == 1:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=num_parallels, shuffle=True)
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=num_parallels, shuffle=True)
else:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=num_parallels, shuffle=True,
num_shards=device_num, shard_id=rank_id)
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=num_parallels, shuffle=True,
num_shards=device_num, shard_id=rank_id)
image_size = 224
mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
@ -75,16 +75,16 @@ def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target="
type_cast_op = C2.TypeCast(mstype.int32)
ds = ds.map(operations=trans, input_columns="image", num_parallel_workers=num_parallels)
ds = ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallels)
data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=num_parallels)
data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallels)
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
data_set = data_set.batch(batch_size, drop_remainder=True)
# apply dataset repeat operation
ds = ds.repeat(repeat_num)
data_set = data_set.repeat(repeat_num)
return ds
return data_set
def _get_rank_info():

View File

@ -15,7 +15,7 @@
"""Data operations, will be used in train.py and eval.py"""
from src.config import config
import mindspore.common.dtype as mstype
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C2
import mindspore.dataset.vision.c_transforms as C
@ -36,10 +36,10 @@ def create_dataset(dataset_path, do_train, device_num=1, rank=0):
"""
if device_num == 1:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True)
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True)
else:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=device_num, shard_id=rank)
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=device_num, shard_id=rank)
# define map operations
if do_train:
trans = [
@ -59,8 +59,8 @@ def create_dataset(dataset_path, do_train, device_num=1, rank=0):
]
type_cast_op = C2.TypeCast(mstype.int32)
ds = ds.map(input_columns="image", operations=trans, num_parallel_workers=8)
ds = ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=8)
data_set = data_set.map(input_columns="image", operations=trans, num_parallel_workers=8)
data_set = data_set.map(input_columns="label", operations=type_cast_op, num_parallel_workers=8)
# apply batch operations
ds = ds.batch(config.batch_size, drop_remainder=True)
return ds
data_set = data_set.batch(config.batch_size, drop_remainder=True)
return data_set

View File

@ -19,7 +19,7 @@ import numpy as np
from src.config import config_gpu as cfg
import mindspore.common.dtype as mstype
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C2
import mindspore.dataset.vision.c_transforms as C
@ -46,10 +46,10 @@ def create_dataset(dataset_path, do_train, rank, group_size, repeat_num=1):
dataset
"""
if group_size == 1:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=cfg.work_nums, shuffle=True)
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=cfg.work_nums, shuffle=True)
else:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=cfg.work_nums, shuffle=True,
num_shards=group_size, shard_id=rank)
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=cfg.work_nums, shuffle=True,
num_shards=group_size, shard_id=rank)
# define map operations
if do_train:
trans = [
@ -71,9 +71,9 @@ def create_dataset(dataset_path, do_train, rank, group_size, repeat_num=1):
]
type_cast_op = C2.TypeCast(mstype.int32)
ds = ds.map(operations=trans, input_columns="image", num_parallel_workers=cfg.work_nums)
ds = ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=cfg.work_nums)
data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=cfg.work_nums)
data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=cfg.work_nums)
# apply batch operations
ds = ds.batch(cfg.batch_size, drop_remainder=True)
data_set = data_set.batch(cfg.batch_size, drop_remainder=True)
return ds
return data_set

View File

@ -17,7 +17,7 @@ create train or eval dataset.
"""
import os
import mindspore.common.dtype as mstype
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.dataset.vision.c_transforms as C
import mindspore.dataset.transforms.c_transforms as C2
from mindspore.communication.management import init, get_rank, get_group_size
@ -48,15 +48,15 @@ def create_dataset_cifar(dataset_path,
device_num = get_group_size()
if device_num == 1:
ds = de.Cifar10Dataset(dataset_path,
num_parallel_workers=8,
shuffle=True)
data_set = ds.Cifar10Dataset(dataset_path,
num_parallel_workers=8,
shuffle=True)
else:
ds = de.Cifar10Dataset(dataset_path,
num_parallel_workers=8,
shuffle=True,
num_shards=device_num,
shard_id=rank_id)
data_set = ds.Cifar10Dataset(dataset_path,
num_parallel_workers=8,
shuffle=True,
num_shards=device_num,
shard_id=rank_id)
# define map operations
if do_train:
@ -80,20 +80,20 @@ def create_dataset_cifar(dataset_path,
type_cast_op = C2.TypeCast(mstype.int32)
ds = ds.map(operations=type_cast_op,
input_columns="label",
num_parallel_workers=8)
ds = ds.map(operations=trans,
input_columns="image",
num_parallel_workers=8)
data_set = data_set.map(operations=type_cast_op,
input_columns="label",
num_parallel_workers=8)
data_set = data_set.map(operations=trans,
input_columns="image",
num_parallel_workers=8)
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
data_set = data_set.batch(batch_size, drop_remainder=True)
# apply dataset repeat operation
ds = ds.repeat(repeat_num)
data_set = data_set.repeat(repeat_num)
return ds
return data_set
def create_dataset_imagenet(dataset_path,
@ -122,15 +122,15 @@ def create_dataset_imagenet(dataset_path,
device_num = get_group_size()
if device_num == 1:
ds = de.ImageFolderDataset(dataset_path,
num_parallel_workers=8,
shuffle=True)
data_set = ds.ImageFolderDataset(dataset_path,
num_parallel_workers=8,
shuffle=True)
else:
ds = de.ImageFolderDataset(dataset_path,
num_parallel_workers=8,
shuffle=True,
num_shards=device_num,
shard_id=rank_id)
data_set = ds.ImageFolderDataset(dataset_path,
num_parallel_workers=8,
shuffle=True,
num_shards=device_num,
shard_id=rank_id)
image_size = 227
mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
@ -159,20 +159,20 @@ def create_dataset_imagenet(dataset_path,
type_cast_op = C2.TypeCast(mstype.int32)
ds = ds.map(operations=type_cast_op,
input_columns="label",
num_parallel_workers=8)
ds = ds.map(operations=trans,
input_columns="image",
num_parallel_workers=8)
data_set = data_set.map(operations=type_cast_op,
input_columns="label",
num_parallel_workers=8)
data_set = data_set.map(operations=trans,
input_columns="image",
num_parallel_workers=8)
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
data_set = data_set.batch(batch_size, drop_remainder=True)
# apply dataset repeat operation
ds = ds.repeat(repeat_num)
data_set = data_set.repeat(repeat_num)
return ds
return data_set
def _get_rank_info():

View File

@ -17,7 +17,7 @@ import os
import math as m
import numpy as np
import mindspore.common.dtype as mstype
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as c
import mindspore.dataset.vision.c_transforms as vc
from PIL import Image
@ -86,7 +86,7 @@ def create_dataset(dataset_path, batch_size=1, num_shards=1, shard_id=0, device_
"""
dataset = _CaptchaDataset(dataset_path, cf.max_captcha_digits, device_target)
ds = de.GeneratorDataset(dataset, ["image", "label"], shuffle=True, num_shards=num_shards, shard_id=shard_id)
data_set = ds.GeneratorDataset(dataset, ["image", "label"], shuffle=True, num_shards=num_shards, shard_id=shard_id)
image_trans = [
vc.Rescale(1.0 / 255.0, 0.0),
vc.Normalize([0.9010, 0.9049, 0.9025], std=[0.1521, 0.1347, 0.1458]),
@ -96,12 +96,12 @@ def create_dataset(dataset_path, batch_size=1, num_shards=1, shard_id=0, device_
label_trans = [
c.TypeCast(mstype.int32)
]
ds = ds.map(operations=image_trans, input_columns=["image"], num_parallel_workers=8)
data_set = data_set.map(operations=image_trans, input_columns=["image"], num_parallel_workers=8)
if device_target == 'Ascend':
ds = ds.map(operations=transpose_hwc2whc, input_columns=["image"], num_parallel_workers=8)
data_set = data_set.map(operations=transpose_hwc2whc, input_columns=["image"], num_parallel_workers=8)
else:
ds = ds.map(operations=transpose_hwc2chw, input_columns=["image"], num_parallel_workers=8)
ds = ds.map(operations=label_trans, input_columns=["label"], num_parallel_workers=8)
data_set = data_set.map(operations=transpose_hwc2chw, input_columns=["image"], num_parallel_workers=8)
data_set = data_set.map(operations=label_trans, input_columns=["label"], num_parallel_workers=8)
ds = ds.batch(batch_size, drop_remainder=True)
return ds
data_set = data_set.batch(batch_size, drop_remainder=True)
return data_set

View File

@ -16,10 +16,11 @@
Data operations, will be used in train.py and eval.py
"""
import mindspore.common.dtype as mstype
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C2
import mindspore.dataset.vision.c_transforms as C
def create_dataset(dataset_path, do_train, batch_size=16, device_num=1, rank=0):
"""
create a train or eval dataset
@ -35,10 +36,10 @@ def create_dataset(dataset_path, do_train, batch_size=16, device_num=1, rank=0):
dataset
"""
if device_num == 1:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True)
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True)
else:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=device_num, shard_id=rank)
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=device_num, shard_id=rank)
# define map operations
if do_train:
trans = [
@ -59,8 +60,8 @@ def create_dataset(dataset_path, do_train, batch_size=16, device_num=1, rank=0):
]
type_cast_op = C2.TypeCast(mstype.int32)
ds = ds.map(input_columns="image", operations=trans, num_parallel_workers=8)
ds = ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=8)
data_set = data_set.map(input_columns="image", operations=trans, num_parallel_workers=8)
data_set = data_set.map(input_columns="label", operations=type_cast_op, num_parallel_workers=8)
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
return ds
data_set = data_set.batch(batch_size, drop_remainder=True)
return data_set

View File

@ -17,7 +17,7 @@ Data operations, will be used in run_pretrain.py
"""
import os
import mindspore.common.dtype as mstype
import mindspore.dataset.engine.datasets as de
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C
from mindspore import log as logger
from .config import cfg
@ -31,65 +31,67 @@ def create_bert_dataset(device_num=1, rank=0, do_shuffle="true", data_dir=None,
for file_name in files:
if "tfrecord" in file_name:
data_files.append(os.path.join(data_dir, file_name))
ds = de.TFRecordDataset(data_files, schema_dir if schema_dir != "" else None,
columns_list=["input_ids", "input_mask", "segment_ids", "next_sentence_labels",
"masked_lm_positions", "masked_lm_ids", "masked_lm_weights"],
shuffle=de.Shuffle.FILES if do_shuffle == "true" else False,
num_shards=device_num, shard_id=rank, shard_equal_rows=True)
ori_dataset_size = ds.get_dataset_size()
data_set = ds.TFRecordDataset(data_files, schema_dir if schema_dir != "" else None,
columns_list=["input_ids", "input_mask", "segment_ids", "next_sentence_labels",
"masked_lm_positions", "masked_lm_ids", "masked_lm_weights"],
shuffle=ds.Shuffle.FILES if do_shuffle == "true" else False,
num_shards=device_num, shard_id=rank, shard_equal_rows=True)
ori_dataset_size = data_set.get_dataset_size()
print('origin dataset size: ', ori_dataset_size)
type_cast_op = C.TypeCast(mstype.int32)
ds = ds.map(operations=type_cast_op, input_columns="masked_lm_ids")
ds = ds.map(operations=type_cast_op, input_columns="masked_lm_positions")
ds = ds.map(operations=type_cast_op, input_columns="next_sentence_labels")
ds = ds.map(operations=type_cast_op, input_columns="segment_ids")
ds = ds.map(operations=type_cast_op, input_columns="input_mask")
ds = ds.map(operations=type_cast_op, input_columns="input_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="masked_lm_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="masked_lm_positions")
data_set = data_set.map(operations=type_cast_op, input_columns="next_sentence_labels")
data_set = data_set.map(operations=type_cast_op, input_columns="segment_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="input_mask")
data_set = data_set.map(operations=type_cast_op, input_columns="input_ids")
# apply batch operations
ds = ds.batch(cfg.batch_size, drop_remainder=True)
logger.info("data size: {}".format(ds.get_dataset_size()))
logger.info("repeat count: {}".format(ds.get_repeat_count()))
return ds
data_set = data_set.batch(cfg.batch_size, drop_remainder=True)
logger.info("data size: {}".format(data_set.get_dataset_size()))
logger.info("repeat count: {}".format(data_set.get_repeat_count()))
return data_set
def create_ner_dataset(batch_size=1, repeat_count=1, assessment_method="accuracy",
data_file_path=None, schema_file_path=None, do_shuffle=True):
"""create finetune or evaluation dataset"""
type_cast_op = C.TypeCast(mstype.int32)
ds = de.TFRecordDataset([data_file_path], schema_file_path if schema_file_path != "" else None,
columns_list=["input_ids", "input_mask", "segment_ids", "label_ids"], shuffle=do_shuffle)
data_set = ds.TFRecordDataset([data_file_path], schema_file_path if schema_file_path != "" else None,
columns_list=["input_ids", "input_mask", "segment_ids", "label_ids"],
shuffle=do_shuffle)
if assessment_method == "Spearman_correlation":
type_cast_op_float = C.TypeCast(mstype.float32)
ds = ds.map(operations=type_cast_op_float, input_columns="label_ids")
data_set = data_set.map(operations=type_cast_op_float, input_columns="label_ids")
else:
ds = ds.map(operations=type_cast_op, input_columns="label_ids")
ds = ds.map(operations=type_cast_op, input_columns="segment_ids")
ds = ds.map(operations=type_cast_op, input_columns="input_mask")
ds = ds.map(operations=type_cast_op, input_columns="input_ids")
ds = ds.repeat(repeat_count)
data_set = data_set.map(operations=type_cast_op, input_columns="label_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="segment_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="input_mask")
data_set = data_set.map(operations=type_cast_op, input_columns="input_ids")
data_set = data_set.repeat(repeat_count)
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
return ds
data_set = data_set.batch(batch_size, drop_remainder=True)
return data_set
def create_classification_dataset(batch_size=1, repeat_count=1, assessment_method="accuracy",
data_file_path=None, schema_file_path=None, do_shuffle=True):
"""create finetune or evaluation dataset"""
type_cast_op = C.TypeCast(mstype.int32)
ds = de.TFRecordDataset([data_file_path], schema_file_path if schema_file_path != "" else None,
columns_list=["input_ids", "input_mask", "segment_ids", "label_ids"], shuffle=do_shuffle)
data_set = ds.TFRecordDataset([data_file_path], schema_file_path if schema_file_path != "" else None,
columns_list=["input_ids", "input_mask", "segment_ids", "label_ids"],
shuffle=do_shuffle)
if assessment_method == "Spearman_correlation":
type_cast_op_float = C.TypeCast(mstype.float32)
ds = ds.map(operations=type_cast_op_float, input_columns="label_ids")
data_set = data_set.map(operations=type_cast_op_float, input_columns="label_ids")
else:
ds = ds.map(operations=type_cast_op, input_columns="label_ids")
ds = ds.map(operations=type_cast_op, input_columns="segment_ids")
ds = ds.map(operations=type_cast_op, input_columns="input_mask")
ds = ds.map(operations=type_cast_op, input_columns="input_ids")
ds = ds.repeat(repeat_count)
data_set = data_set.map(operations=type_cast_op, input_columns="label_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="segment_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="input_mask")
data_set = data_set.map(operations=type_cast_op, input_columns="input_ids")
data_set = data_set.repeat(repeat_count)
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
return ds
data_set = data_set.batch(batch_size, drop_remainder=True)
return data_set
def generator_squad(data_features):
@ -102,20 +104,20 @@ def create_squad_dataset(batch_size=1, repeat_count=1, data_file_path=None, sche
"""create finetune or evaluation dataset"""
type_cast_op = C.TypeCast(mstype.int32)
if is_training:
ds = de.TFRecordDataset([data_file_path], schema_file_path if schema_file_path != "" else None,
columns_list=["input_ids", "input_mask", "segment_ids", "start_positions",
"end_positions", "unique_ids", "is_impossible"],
shuffle=do_shuffle)
ds = ds.map(operations=type_cast_op, input_columns="start_positions")
ds = ds.map(operations=type_cast_op, input_columns="end_positions")
data_set = ds.TFRecordDataset([data_file_path], schema_file_path if schema_file_path != "" else None,
columns_list=["input_ids", "input_mask", "segment_ids", "start_positions",
"end_positions", "unique_ids", "is_impossible"],
shuffle=do_shuffle)
data_set = data_set.map(operations=type_cast_op, input_columns="start_positions")
data_set = data_set.map(operations=type_cast_op, input_columns="end_positions")
else:
ds = de.GeneratorDataset(generator_squad(data_file_path), shuffle=do_shuffle,
column_names=["input_ids", "input_mask", "segment_ids", "unique_ids"])
ds = ds.map(operations=type_cast_op, input_columns="segment_ids")
ds = ds.map(operations=type_cast_op, input_columns="input_mask")
ds = ds.map(operations=type_cast_op, input_columns="input_ids")
ds = ds.map(operations=type_cast_op, input_columns="unique_ids")
ds = ds.repeat(repeat_count)
data_set = ds.GeneratorDataset(generator_squad(data_file_path), shuffle=do_shuffle,
column_names=["input_ids", "input_mask", "segment_ids", "unique_ids"])
data_set = data_set.map(operations=type_cast_op, input_columns="segment_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="input_mask")
data_set = data_set.map(operations=type_cast_op, input_columns="input_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="unique_ids")
data_set = data_set.repeat(repeat_count)
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
return ds
data_set = data_set.batch(batch_size, drop_remainder=True)
return data_set

View File

@ -17,7 +17,7 @@ Data operations, will be used in run_pretrain.py
"""
import os
import mindspore.common.dtype as mstype
import mindspore.dataset.engine.datasets as de
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C
from mindspore import log as logger
from .bert_net_config import bert_net_cfg
@ -32,96 +32,96 @@ def create_bert_dataset(device_num=1, rank=0, do_shuffle="true", data_dir=None,
if "tfrecord" in file_name:
data_files.append(os.path.join(data_dir, file_name))
data_files = sorted(data_files)
ds = de.TFRecordDataset(data_files, schema_dir if schema_dir != "" else None,
columns_list=["input_ids", "input_mask", "segment_ids", "next_sentence_labels",
"masked_lm_positions", "masked_lm_ids", "masked_lm_weights"],
shuffle=de.Shuffle.FILES if do_shuffle == "true" else False,
num_shards=device_num, shard_id=rank, shard_equal_rows=False)
ori_dataset_size = ds.get_dataset_size()
data_set = ds.TFRecordDataset(data_files, schema_dir if schema_dir != "" else None,
columns_list=["input_ids", "input_mask", "segment_ids", "next_sentence_labels",
"masked_lm_positions", "masked_lm_ids", "masked_lm_weights"],
shuffle=ds.Shuffle.FILES if do_shuffle == "true" else False,
num_shards=device_num, shard_id=rank, shard_equal_rows=False)
ori_dataset_size = data_set.get_dataset_size()
print('origin dataset size: ', ori_dataset_size)
type_cast_op = C.TypeCast(mstype.int32)
ds = ds.map(operations=type_cast_op, input_columns="masked_lm_ids")
ds = ds.map(operations=type_cast_op, input_columns="masked_lm_positions")
ds = ds.map(operations=type_cast_op, input_columns="next_sentence_labels")
ds = ds.map(operations=type_cast_op, input_columns="segment_ids")
ds = ds.map(operations=type_cast_op, input_columns="input_mask")
ds = ds.map(operations=type_cast_op, input_columns="input_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="masked_lm_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="masked_lm_positions")
data_set = data_set.map(operations=type_cast_op, input_columns="next_sentence_labels")
data_set = data_set.map(operations=type_cast_op, input_columns="segment_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="input_mask")
data_set = data_set.map(operations=type_cast_op, input_columns="input_ids")
# apply batch operations
ds = ds.batch(bert_net_cfg.batch_size, drop_remainder=True)
logger.info("data size: {}".format(ds.get_dataset_size()))
logger.info("repeat count: {}".format(ds.get_repeat_count()))
return ds
data_set = data_set.batch(bert_net_cfg.batch_size, drop_remainder=True)
logger.info("data size: {}".format(data_set.get_dataset_size()))
logger.info("repeat count: {}".format(data_set.get_repeat_count()))
return data_set
def create_ner_dataset(batch_size=1, repeat_count=1, assessment_method="accuracy",
data_file_path=None, schema_file_path=None):
"""create finetune or evaluation dataset"""
type_cast_op = C.TypeCast(mstype.int32)
ds = de.TFRecordDataset([data_file_path], schema_file_path if schema_file_path != "" else None,
columns_list=["input_ids", "input_mask", "segment_ids", "label_ids"])
data_set = ds.TFRecordDataset([data_file_path], schema_file_path if schema_file_path != "" else None,
columns_list=["input_ids", "input_mask", "segment_ids", "label_ids"])
if assessment_method == "Spearman_correlation":
type_cast_op_float = C.TypeCast(mstype.float32)
ds = ds.map(operations=type_cast_op_float, input_columns="label_ids")
data_set = data_set.map(operations=type_cast_op_float, input_columns="label_ids")
else:
ds = ds.map(operations=type_cast_op, input_columns="label_ids")
ds = ds.map(operations=type_cast_op, input_columns="segment_ids")
ds = ds.map(operations=type_cast_op, input_columns="input_mask")
ds = ds.map(operations=type_cast_op, input_columns="input_ids")
ds = ds.repeat(repeat_count)
data_set = data_set.map(operations=type_cast_op, input_columns="label_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="segment_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="input_mask")
data_set = data_set.map(operations=type_cast_op, input_columns="input_ids")
data_set = data_set.repeat(repeat_count)
# apply shuffle operation
buffer_size = 960
ds = ds.shuffle(buffer_size=buffer_size)
data_set = data_set.shuffle(buffer_size=buffer_size)
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
return ds
data_set = data_set.batch(batch_size, drop_remainder=True)
return data_set
def create_classification_dataset(batch_size=1, repeat_count=1, assessment_method="accuracy",
data_file_path=None, schema_file_path=None):
"""create finetune or evaluation dataset"""
type_cast_op = C.TypeCast(mstype.int32)
ds = de.TFRecordDataset([data_file_path], schema_file_path if schema_file_path != "" else None,
columns_list=["input_ids", "input_mask", "segment_ids", "label_ids"])
data_set = ds.TFRecordDataset([data_file_path], schema_file_path if schema_file_path != "" else None,
columns_list=["input_ids", "input_mask", "segment_ids", "label_ids"])
if assessment_method == "Spearman_correlation":
type_cast_op_float = C.TypeCast(mstype.float32)
ds = ds.map(operations=type_cast_op_float, input_columns="label_ids")
data_set = data_set.map(operations=type_cast_op_float, input_columns="label_ids")
else:
ds = ds.map(operations=type_cast_op, input_columns="label_ids")
ds = ds.map(operations=type_cast_op, input_columns="segment_ids")
ds = ds.map(operations=type_cast_op, input_columns="input_mask")
ds = ds.map(operations=type_cast_op, input_columns="input_ids")
ds = ds.repeat(repeat_count)
data_set = data_set.map(operations=type_cast_op, input_columns="label_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="segment_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="input_mask")
data_set = data_set.map(operations=type_cast_op, input_columns="input_ids")
data_set = data_set.repeat(repeat_count)
# apply shuffle operation
buffer_size = 960
ds = ds.shuffle(buffer_size=buffer_size)
data_set = data_set.shuffle(buffer_size=buffer_size)
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
return ds
data_set = data_set.batch(batch_size, drop_remainder=True)
return data_set
def create_squad_dataset(batch_size=1, repeat_count=1, data_file_path=None, schema_file_path=None, is_training=True):
"""create finetune or evaluation dataset"""
type_cast_op = C.TypeCast(mstype.int32)
if is_training:
ds = de.TFRecordDataset([data_file_path], schema_file_path if schema_file_path != "" else None,
columns_list=["input_ids", "input_mask", "segment_ids",
"start_positions", "end_positions",
"unique_ids", "is_impossible"])
ds = ds.map(operations=type_cast_op, input_columns="start_positions")
ds = ds.map(operations=type_cast_op, input_columns="end_positions")
data_set = ds.TFRecordDataset([data_file_path], schema_file_path if schema_file_path != "" else None,
columns_list=["input_ids", "input_mask", "segment_ids",
"start_positions", "end_positions",
"unique_ids", "is_impossible"])
data_set = data_set.map(operations=type_cast_op, input_columns="start_positions")
data_set = data_set.map(operations=type_cast_op, input_columns="end_positions")
else:
ds = de.TFRecordDataset([data_file_path], schema_file_path if schema_file_path != "" else None,
columns_list=["input_ids", "input_mask", "segment_ids", "unique_ids"])
ds = ds.map(operations=type_cast_op, input_columns="input_ids")
ds = ds.map(operations=type_cast_op, input_columns="input_mask")
ds = ds.map(operations=type_cast_op, input_columns="segment_ids")
ds = ds.map(operations=type_cast_op, input_columns="segment_ids")
ds = ds.map(operations=type_cast_op, input_columns="input_mask")
ds = ds.map(operations=type_cast_op, input_columns="input_ids")
ds = ds.repeat(repeat_count)
data_set = ds.TFRecordDataset([data_file_path], schema_file_path if schema_file_path != "" else None,
columns_list=["input_ids", "input_mask", "segment_ids", "unique_ids"])
data_set = data_set.map(operations=type_cast_op, input_columns="input_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="input_mask")
data_set = data_set.map(operations=type_cast_op, input_columns="segment_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="segment_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="input_mask")
data_set = data_set.map(operations=type_cast_op, input_columns="input_ids")
data_set = data_set.repeat(repeat_count)
# apply shuffle operation
buffer_size = 960
ds = ds.shuffle(buffer_size=buffer_size)
data_set = data_set.shuffle(buffer_size=buffer_size)
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
return ds
data_set = data_set.batch(batch_size, drop_remainder=True)
return data_set

View File

@ -22,7 +22,7 @@ import mindspore.ops.operations as P
from mindspore.common.tensor import Tensor
from mindspore.train.model import Model
from mindspore.train.serialization import load_checkpoint, load_param_into_net
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as deC
from mindspore import context
from src.fasttext_model import FastText
@ -73,15 +73,15 @@ class FastTextInferCell(nn.Cell):
def load_infer_dataset(batch_size, datafile):
"""data loader for infer"""
ds = de.MindDataset(datafile, columns_list=['src_tokens', 'src_tokens_length', 'label_idx'])
data_set = ds.MindDataset(datafile, columns_list=['src_tokens', 'src_tokens_length', 'label_idx'])
type_cast_op = deC.TypeCast(mstype.int32)
ds = ds.map(operations=type_cast_op, input_columns="src_tokens")
ds = ds.map(operations=type_cast_op, input_columns="src_tokens_length")
ds = ds.map(operations=type_cast_op, input_columns="label_idx")
ds = ds.batch(batch_size=batch_size, drop_remainder=True)
data_set = data_set.map(operations=type_cast_op, input_columns="src_tokens")
data_set = data_set.map(operations=type_cast_op, input_columns="src_tokens_length")
data_set = data_set.map(operations=type_cast_op, input_columns="label_idx")
data_set = data_set.batch(batch_size=batch_size, drop_remainder=True)
return ds
return data_set
def run_fasttext_infer():
"""run infer with FastText"""

View File

@ -25,8 +25,10 @@ import spacy
from sklearn.feature_extraction import FeatureHasher
from mindspore.mindrecord import FileWriter
class FastTextDataPreProcess():
"""FastText data preprocess"""
def __init__(self, train_path,
test_file,
max_length,
@ -194,7 +196,6 @@ class FastTextDataPreProcess():
if self.text_less in sent_describe and self.text_greater in sent_describe:
sent_describe = self.str_html.sub('', sent_describe)
doc = spacy_nlp(sent_describe)
bows_token = [token.text for token in doc]
@ -222,7 +223,7 @@ class FastTextDataPreProcess():
def _get_bucket_length(self, x, bts):
x_len = len(x)
for index in range(1, len(bts)):
if bts[index-1] < x_len <= bts[index]:
if bts[index - 1] < x_len <= bts[index]:
return bts[index]
return bts[0]
@ -310,7 +311,6 @@ if __name__ == '__main__':
print("Writing test data to MindRecord file.....")
for k in args.test_bucket:
write_to_mindrecord(test_data_example[k], './test_dataset_bs_' + str(k) + '.mindrecord', 1)
print("All done.....")

View File

@ -14,9 +14,10 @@
# ============================================================================
"""FastText data loader"""
import mindspore.common.dtype as mstype
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as deC
def load_dataset(dataset_path,
batch_size,
epoch_count=1,
@ -25,38 +26,40 @@ def load_dataset(dataset_path,
bucket=None,
shuffle=True):
"""dataset loader"""
def batch_per_bucket(bucket_length, input_file):
input_file = input_file +'/train_dataset_bs_' + str(bucket_length) + '.mindrecord'
input_file = input_file + '/train_dataset_bs_' + str(bucket_length) + '.mindrecord'
if not input_file:
raise FileNotFoundError("input file parameter must not be empty.")
ds = de.MindDataset(input_file,
columns_list=['src_tokens', 'src_tokens_length', 'label_idx'],
shuffle=shuffle,
num_shards=rank_size,
shard_id=rank_id,
num_parallel_workers=8)
ori_dataset_size = ds.get_dataset_size()
data_set = ds.MindDataset(input_file,
columns_list=['src_tokens', 'src_tokens_length', 'label_idx'],
shuffle=shuffle,
num_shards=rank_size,
shard_id=rank_id,
num_parallel_workers=8)
ori_dataset_size = data_set.get_dataset_size()
print(f"Dataset size: {ori_dataset_size}")
repeat_count = epoch_count
type_cast_op = deC.TypeCast(mstype.int32)
ds = ds.map(operations=type_cast_op, input_columns="src_tokens")
ds = ds.map(operations=type_cast_op, input_columns="src_tokens_length")
ds = ds.map(operations=type_cast_op, input_columns="label_idx")
data_set = data_set.map(operations=type_cast_op, input_columns="src_tokens")
data_set = data_set.map(operations=type_cast_op, input_columns="src_tokens_length")
data_set = data_set.map(operations=type_cast_op, input_columns="label_idx")
data_set = data_set.rename(input_columns=['src_tokens', 'src_tokens_length', 'label_idx'],
output_columns=['src_token_text', 'src_tokens_text_length', 'label_idx_tag'])
data_set = data_set.batch(batch_size, drop_remainder=False)
data_set = data_set.repeat(repeat_count)
return data_set
ds = ds.rename(input_columns=['src_tokens', 'src_tokens_length', 'label_idx'],
output_columns=['src_token_text', 'src_tokens_text_length', 'label_idx_tag'])
ds = ds.batch(batch_size, drop_remainder=False)
ds = ds.repeat(repeat_count)
return ds
for i, _ in enumerate(bucket):
bucket_len = bucket[i]
ds_per = batch_per_bucket(bucket_len, dataset_path)
if i == 0:
ds = ds_per
data_set = ds_per
else:
ds = ds + ds_per
ds = ds.shuffle(ds.get_dataset_size())
ds.channel_name = 'fasttext'
data_set = data_set + ds_per
data_set = data_set.shuffle(data_set.get_dataset_size())
data_set.channel_name = 'fasttext'
return ds
return data_set

View File

@ -15,7 +15,7 @@
"""Dataset loader to feed into model."""
import os
import mindspore.common.dtype as mstype
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as deC
@ -55,7 +55,7 @@ def _load_dataset(input_files, schema_file, batch_size, sink_mode=False,
print(f" | Loading {datafile}.")
if not is_translate:
ds = de.MindDataset(
data_set = ds.MindDataset(
input_files, columns_list=[
"src", "src_padding",
"prev_opt",
@ -64,18 +64,18 @@ def _load_dataset(input_files, schema_file, batch_size, sink_mode=False,
num_parallel_workers=8
)
ori_dataset_size = ds.get_dataset_size()
ori_dataset_size = data_set.get_dataset_size()
print(f" | Dataset size: {ori_dataset_size}.")
if shuffle:
ds = ds.shuffle(buffer_size=ori_dataset_size // 20)
data_set = data_set.shuffle(buffer_size=ori_dataset_size // 20)
type_cast_op = deC.TypeCast(mstype.int32)
ds = ds.map(input_columns="src", operations=type_cast_op, num_parallel_workers=8)
ds = ds.map(input_columns="src_padding", operations=type_cast_op, num_parallel_workers=8)
ds = ds.map(input_columns="prev_opt", operations=type_cast_op, num_parallel_workers=8)
ds = ds.map(input_columns="target", operations=type_cast_op, num_parallel_workers=8)
ds = ds.map(input_columns="tgt_padding", operations=type_cast_op, num_parallel_workers=8)
data_set = data_set.map(input_columns="src", operations=type_cast_op, num_parallel_workers=8)
data_set = data_set.map(input_columns="src_padding", operations=type_cast_op, num_parallel_workers=8)
data_set = data_set.map(input_columns="prev_opt", operations=type_cast_op, num_parallel_workers=8)
data_set = data_set.map(input_columns="target", operations=type_cast_op, num_parallel_workers=8)
data_set = data_set.map(input_columns="tgt_padding", operations=type_cast_op, num_parallel_workers=8)
ds = ds.rename(
data_set = data_set.rename(
input_columns=["src",
"src_padding",
"prev_opt",
@ -87,9 +87,9 @@ def _load_dataset(input_files, schema_file, batch_size, sink_mode=False,
"target_eos_ids",
"target_eos_mask"]
)
ds = ds.batch(batch_size, drop_remainder=drop_remainder)
data_set = data_set.batch(batch_size, drop_remainder=drop_remainder)
else:
ds = de.MindDataset(
data_set = ds.MindDataset(
input_files, columns_list=[
"src", "src_padding"
],
@ -97,23 +97,23 @@ def _load_dataset(input_files, schema_file, batch_size, sink_mode=False,
num_parallel_workers=8
)
ori_dataset_size = ds.get_dataset_size()
ori_dataset_size = data_set.get_dataset_size()
print(f" | Dataset size: {ori_dataset_size}.")
if shuffle:
ds = ds.shuffle(buffer_size=ori_dataset_size // 20)
data_set = data_set.shuffle(buffer_size=ori_dataset_size // 20)
type_cast_op = deC.TypeCast(mstype.int32)
ds = ds.map(input_columns="src", operations=type_cast_op, num_parallel_workers=8)
ds = ds.map(input_columns="src_padding", operations=type_cast_op, num_parallel_workers=8)
data_set = data_set.map(input_columns="src", operations=type_cast_op, num_parallel_workers=8)
data_set = data_set.map(input_columns="src_padding", operations=type_cast_op, num_parallel_workers=8)
ds = ds.rename(
data_set = data_set.rename(
input_columns=["src",
"src_padding"],
output_columns=["source_eos_ids",
"source_eos_mask"]
)
ds = ds.batch(batch_size, drop_remainder=drop_remainder)
data_set = data_set.batch(batch_size, drop_remainder=drop_remainder)
return ds
return data_set
def load_dataset(data_files: list, schema: str, batch_size: int, sink_mode: bool,

View File

@ -14,7 +14,7 @@
# ============================================================================
"""Dataset loader to feed into model."""
import mindspore.common.dtype as mstype
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as deC
@ -45,7 +45,7 @@ def _load_dataset(input_files, batch_size, epoch_count=1,
for datafile in input_files:
print(f" | Loading {datafile}.")
ds = de.TFRecordDataset(
data_set = ds.TFRecordDataset(
input_files,
columns_list=[
"src", "src_padding",
@ -55,19 +55,19 @@ def _load_dataset(input_files, batch_size, epoch_count=1,
shuffle=shuffle, num_shards=rank_size, shard_id=rank_id,
shard_equal_rows=True, num_parallel_workers=8)
ori_dataset_size = ds.get_dataset_size()
ori_dataset_size = data_set.get_dataset_size()
print(f" | Dataset size: {ori_dataset_size}.")
repeat_count = epoch_count
type_cast_op = deC.TypeCast(mstype.int32)
ds = ds.map(operations=type_cast_op, input_columns="src")
ds = ds.map(operations=type_cast_op, input_columns="src_padding")
ds = ds.map(operations=type_cast_op, input_columns="prev_opt")
ds = ds.map(operations=type_cast_op, input_columns="prev_padding")
ds = ds.map(operations=type_cast_op, input_columns="target")
ds = ds.map(operations=type_cast_op, input_columns="tgt_padding")
data_set = data_set.map(operations=type_cast_op, input_columns="src")
data_set = data_set.map(operations=type_cast_op, input_columns="src_padding")
data_set = data_set.map(operations=type_cast_op, input_columns="prev_opt")
data_set = data_set.map(operations=type_cast_op, input_columns="prev_padding")
data_set = data_set.map(operations=type_cast_op, input_columns="target")
data_set = data_set.map(operations=type_cast_op, input_columns="tgt_padding")
ds = ds.rename(
data_set = data_set.rename(
input_columns=["src",
"src_padding",
"prev_opt",
@ -82,11 +82,11 @@ def _load_dataset(input_files, batch_size, epoch_count=1,
"target_eos_mask"]
)
ds = ds.batch(batch_size, drop_remainder=True)
ds = ds.repeat(repeat_count)
data_set = data_set.batch(batch_size, drop_remainder=True)
data_set = data_set.repeat(repeat_count)
ds.channel_name = 'transformer'
return ds
data_set.channel_name = 'transformer'
return data_set
def load_dataset(data_files: list, batch_size: int, epoch_count: int,

View File

@ -14,7 +14,7 @@
# ============================================================================
"""Dataset loader to feed into model."""
import mindspore.common.dtype as mstype
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as deC
@ -45,7 +45,7 @@ def _load_dataset(input_files, batch_size, epoch_count=1,
for datafile in input_files:
print(f" | Loading {datafile}.")
ds = de.TFRecordDataset(
data_set = ds.TFRecordDataset(
input_files,
columns_list=[
"src", "src_padding",
@ -55,19 +55,19 @@ def _load_dataset(input_files, batch_size, epoch_count=1,
shuffle=shuffle, num_shards=rank_size, shard_id=rank_id,
shard_equal_rows=True, num_parallel_workers=8)
ori_dataset_size = ds.get_dataset_size()
ori_dataset_size = data_set.get_dataset_size()
print(f" | Dataset size: {ori_dataset_size}.")
repeat_count = epoch_count
type_cast_op = deC.TypeCast(mstype.int32)
ds = ds.map(input_columns="src", operations=type_cast_op)
ds = ds.map(input_columns="src_padding", operations=type_cast_op)
ds = ds.map(input_columns="prev_opt", operations=type_cast_op)
ds = ds.map(input_columns="prev_padding", operations=type_cast_op)
ds = ds.map(input_columns="target", operations=type_cast_op)
ds = ds.map(input_columns="tgt_padding", operations=type_cast_op)
data_set = data_set.map(input_columns="src", operations=type_cast_op)
data_set = data_set.map(input_columns="src_padding", operations=type_cast_op)
data_set = data_set.map(input_columns="prev_opt", operations=type_cast_op)
data_set = data_set.map(input_columns="prev_padding", operations=type_cast_op)
data_set = data_set.map(input_columns="target", operations=type_cast_op)
data_set = data_set.map(input_columns="tgt_padding", operations=type_cast_op)
ds = ds.rename(
data_set = data_set.rename(
input_columns=["src",
"src_padding",
"prev_opt",
@ -82,11 +82,11 @@ def _load_dataset(input_files, batch_size, epoch_count=1,
"target_eos_mask"]
)
ds = ds.batch(batch_size, drop_remainder=True)
ds = ds.repeat(repeat_count)
data_set = data_set.batch(batch_size, drop_remainder=True)
data_set = data_set.repeat(repeat_count)
ds.channel_name = 'transformer'
return ds
data_set.channel_name = 'transformer'
return data_set
def load_dataset(data_files: list, batch_size: int, epoch_count: int,

View File

@ -18,14 +18,16 @@
import os
from enum import Enum
import mindspore.common.dtype as mstype
import mindspore.dataset.engine.datasets as de
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C
class DataType(Enum):
"""Enumerate supported dataset format"""
TFRECORD = 1
MINDRECORD = 2
def create_tinybert_dataset(task='td', batch_size=32, device_num=1, rank=0,
do_shuffle="true", data_dir=None, schema_dir=None,
data_type=DataType.TFRECORD):
@ -47,22 +49,22 @@ def create_tinybert_dataset(task='td', batch_size=32, device_num=1, rank=0,
shuffle = False
if data_type == DataType.MINDRECORD:
ds = de.MindDataset(data_files, columns_list=columns_list,
shuffle=(do_shuffle == "true"), num_shards=device_num, shard_id=rank)
data_set = ds.MindDataset(data_files, columns_list=columns_list,
shuffle=(do_shuffle == "true"), num_shards=device_num, shard_id=rank)
else:
ds = de.TFRecordDataset(data_files, schema_dir, columns_list=columns_list,
shuffle=shuffle, num_shards=device_num, shard_id=rank,
shard_equal_rows=shard_equal_rows)
data_set = ds.TFRecordDataset(data_files, schema_dir, columns_list=columns_list,
shuffle=shuffle, num_shards=device_num, shard_id=rank,
shard_equal_rows=shard_equal_rows)
if device_num == 1 and shuffle is True:
ds = ds.shuffle(10000)
data_set = data_set.shuffle(10000)
type_cast_op = C.TypeCast(mstype.int32)
ds = ds.map(operations=type_cast_op, input_columns="segment_ids")
ds = ds.map(operations=type_cast_op, input_columns="input_mask")
ds = ds.map(operations=type_cast_op, input_columns="input_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="segment_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="input_mask")
data_set = data_set.map(operations=type_cast_op, input_columns="input_ids")
if task == "td":
ds = ds.map(operations=type_cast_op, input_columns="label_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="label_ids")
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
data_set = data_set.batch(batch_size, drop_remainder=True)
return ds
return data_set

View File

@ -23,38 +23,41 @@ from mindspore.common.parameter import Parameter
from mindspore.common.tensor import Tensor
from mindspore.train.model import Model
from mindspore.train.serialization import load_checkpoint, load_param_into_net
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as deC
from mindspore import context
from src.transformer_model import TransformerModel
from src.eval_config import cfg, transformer_net_cfg
def load_test_data(batch_size=1, data_file=None):
"""
Load test dataset
"""
ds = de.MindDataset(data_file,
columns_list=["source_eos_ids", "source_eos_mask",
"target_sos_ids", "target_sos_mask",
"target_eos_ids", "target_eos_mask"],
shuffle=False)
data_set = ds.MindDataset(data_file,
columns_list=["source_eos_ids", "source_eos_mask",
"target_sos_ids", "target_sos_mask",
"target_eos_ids", "target_eos_mask"],
shuffle=False)
type_cast_op = deC.TypeCast(mstype.int32)
ds = ds.map(operations=type_cast_op, input_columns="source_eos_ids")
ds = ds.map(operations=type_cast_op, input_columns="source_eos_mask")
ds = ds.map(operations=type_cast_op, input_columns="target_sos_ids")
ds = ds.map(operations=type_cast_op, input_columns="target_sos_mask")
ds = ds.map(operations=type_cast_op, input_columns="target_eos_ids")
ds = ds.map(operations=type_cast_op, input_columns="target_eos_mask")
data_set = data_set.map(operations=type_cast_op, input_columns="source_eos_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="source_eos_mask")
data_set = data_set.map(operations=type_cast_op, input_columns="target_sos_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="target_sos_mask")
data_set = data_set.map(operations=type_cast_op, input_columns="target_eos_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="target_eos_mask")
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
ds.channel_name = 'transformer'
return ds
data_set = data_set.batch(batch_size, drop_remainder=True)
data_set.channel_name = 'transformer'
return data_set
class TransformerInferCell(nn.Cell):
"""
Encapsulation class of transformer network infer.
"""
def __init__(self, network):
super(TransformerInferCell, self).__init__(auto_prefix=False)
self.network = network
@ -65,6 +68,7 @@ class TransformerInferCell(nn.Cell):
predicted_ids = self.network(source_ids, source_mask)
return predicted_ids
def load_weights(model_path):
"""
Load checkpoint as parameter dict, support both npz file and mindspore checkpoint file.
@ -93,6 +97,7 @@ def load_weights(model_path):
parameter_dict[name] = Parameter(Tensor(weights[name]), name=name)
return parameter_dict
def run_transformer_eval():
"""
Transformer evaluation.
@ -136,5 +141,6 @@ def run_transformer_eval():
f.write(" ".join(token_ids) + "\n")
f.close()
if __name__ == "__main__":
run_transformer_eval()

View File

@ -21,7 +21,7 @@ from enum import Enum
import numpy as np
import pandas as pd
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.common.dtype as mstype
from .config import DataConfig
@ -142,8 +142,8 @@ class H5Dataset():
X_id = X[:, 0:self.max_length]
X_va = X[:, self.max_length:]
yield np.array(X_id.astype(dtype=np.int32)), \
np.array(X_va.astype(dtype=np.float32)), \
np.array(y.astype(dtype=np.float32))
np.array(X_va.astype(dtype=np.float32)), \
np.array(y.astype(dtype=np.float32))
def _get_h5_dataset(directory, train_mode=True, epochs=1, batch_size=1000):
@ -172,9 +172,9 @@ def _get_h5_dataset(directory, train_mode=True, epochs=1, batch_size=1000):
for _ in range(0, numbers_of_batch, 1):
yield train_eval_gen.__next__()
ds = de.GeneratorDataset(_iter_h5_data, ["ids", "weights", "labels"])
ds = ds.repeat(epochs)
return ds
data_set = ds.GeneratorDataset(_iter_h5_data, ["ids", "weights", "labels"])
data_set = data_set.repeat(epochs)
return data_set
def _get_mindrecord_dataset(directory, train_mode=True, epochs=1, batch_size=1000,
@ -199,23 +199,23 @@ def _get_mindrecord_dataset(directory, train_mode=True, epochs=1, batch_size=100
shuffle = train_mode
if rank_size is not None and rank_id is not None:
ds = de.MindDataset(os.path.join(directory, file_prefix_name + file_suffix_name),
columns_list=['feat_ids', 'feat_vals', 'label'],
num_shards=rank_size, shard_id=rank_id, shuffle=shuffle,
num_parallel_workers=8)
data_set = ds.MindDataset(os.path.join(directory, file_prefix_name + file_suffix_name),
columns_list=['feat_ids', 'feat_vals', 'label'],
num_shards=rank_size, shard_id=rank_id, shuffle=shuffle,
num_parallel_workers=8)
else:
ds = de.MindDataset(os.path.join(directory, file_prefix_name + file_suffix_name),
columns_list=['feat_ids', 'feat_vals', 'label'],
shuffle=shuffle, num_parallel_workers=8)
ds = ds.batch(int(batch_size / line_per_sample), drop_remainder=True)
ds = ds.map(operations=(lambda x, y, z: (np.array(x).flatten().reshape(batch_size, 39),
np.array(y).flatten().reshape(batch_size, 39),
np.array(z).flatten().reshape(batch_size, 1))),
input_columns=['feat_ids', 'feat_vals', 'label'],
column_order=['feat_ids', 'feat_vals', 'label'],
num_parallel_workers=8)
ds = ds.repeat(epochs)
return ds
data_set = ds.MindDataset(os.path.join(directory, file_prefix_name + file_suffix_name),
columns_list=['feat_ids', 'feat_vals', 'label'],
shuffle=shuffle, num_parallel_workers=8)
data_set = data_set.batch(int(batch_size / line_per_sample), drop_remainder=True)
data_set = data_set.map(operations=(lambda x, y, z: (np.array(x).flatten().reshape(batch_size, 39),
np.array(y).flatten().reshape(batch_size, 39),
np.array(z).flatten().reshape(batch_size, 1))),
input_columns=['feat_ids', 'feat_vals', 'label'],
column_order=['feat_ids', 'feat_vals', 'label'],
num_parallel_workers=8)
data_set = data_set.repeat(epochs)
return data_set
def _get_tf_dataset(directory, train_mode=True, epochs=1, batch_size=1000,
@ -242,28 +242,28 @@ def _get_tf_dataset(directory, train_mode=True, epochs=1, batch_size=1000,
for filename in filenames:
if file_prefixt_name in filename and 'tfrecord' in filename:
dataset_files.append(os.path.join(dir_path, filename))
schema = de.Schema()
schema = ds.Schema()
schema.add_column('feat_ids', de_type=mstype.int32)
schema.add_column('feat_vals', de_type=mstype.float32)
schema.add_column('label', de_type=mstype.float32)
if rank_size is not None and rank_id is not None:
ds = de.TFRecordDataset(dataset_files=dataset_files, shuffle=shuffle,
schema=schema, num_parallel_workers=8,
num_shards=rank_size, shard_id=rank_id,
shard_equal_rows=True)
data_set = ds.TFRecordDataset(dataset_files=dataset_files, shuffle=shuffle,
schema=schema, num_parallel_workers=8,
num_shards=rank_size, shard_id=rank_id,
shard_equal_rows=True)
else:
ds = de.TFRecordDataset(dataset_files=dataset_files, shuffle=shuffle,
schema=schema, num_parallel_workers=8)
ds = ds.batch(int(batch_size / line_per_sample), drop_remainder=True)
ds = ds.map(operations=(lambda x, y, z: (
data_set = ds.TFRecordDataset(dataset_files=dataset_files, shuffle=shuffle,
schema=schema, num_parallel_workers=8)
data_set = data_set.batch(int(batch_size / line_per_sample), drop_remainder=True)
data_set = data_set.map(operations=(lambda x, y, z: (
np.array(x).flatten().reshape(batch_size, 39),
np.array(y).flatten().reshape(batch_size, 39),
np.array(z).flatten().reshape(batch_size, 1))),
input_columns=['feat_ids', 'feat_vals', 'label'],
column_order=['feat_ids', 'feat_vals', 'label'],
num_parallel_workers=8)
ds = ds.repeat(epochs)
return ds
input_columns=['feat_ids', 'feat_vals', 'label'],
column_order=['feat_ids', 'feat_vals', 'label'],
num_parallel_workers=8)
data_set = data_set.repeat(epochs)
return data_set
def create_dataset(directory, train_mode=True, epochs=1, batch_size=1000,

View File

@ -14,13 +14,12 @@
# ============================================================================
"""train_dataset."""
import os
import math
from enum import Enum
import numpy as np
import pandas as pd
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.common.dtype as mstype
@ -84,9 +83,9 @@ class H5Dataset():
yield os.path.join(self._hdf_data_dir,
self._file_prefix + '_input_part_' + str(
p) + '.h5'), \
os.path.join(self._hdf_data_dir,
self._file_prefix + '_output_part_' + str(
p) + '.h5'), i + 1 == len(parts)
os.path.join(self._hdf_data_dir,
self._file_prefix + '_output_part_' + str(
p) + '.h5'), i + 1 == len(parts)
def _generator(self, X, y, batch_size, shuffle=True):
"""
@ -106,8 +105,7 @@ class H5Dataset():
np.random.shuffle(sample_index)
assert X.shape[0] > 0
while True:
batch_index = sample_index[
batch_size * counter: batch_size * (counter + 1)]
batch_index = sample_index[batch_size * counter: batch_size * (counter + 1)]
X_batch = X[batch_index]
y_batch = y[batch_index]
counter += 1
@ -140,9 +138,8 @@ class H5Dataset():
X, y, finished = data_gen.__next__()
X_id = X[:, 0:self.input_length]
X_va = X[:, self.input_length:]
yield np.array(X_id.astype(dtype=np.int32)), np.array(
X_va.astype(dtype=np.float32)), np.array(
y.astype(dtype=np.float32))
yield np.array(X_id.astype(dtype=np.int32)), np.array(X_va.astype(dtype=np.float32)), np.array(
y.astype(dtype=np.float32))
def _get_h5_dataset(data_dir, train_mode=True, epochs=1, batch_size=1000):
@ -164,9 +161,9 @@ def _get_h5_dataset(data_dir, train_mode=True, epochs=1, batch_size=1000):
for _ in range(0, numbers_of_batch, 1):
yield train_eval_gen.__next__()
ds = de.GeneratorDataset(_iter_h5_data(), ["ids", "weights", "labels"])
ds = ds.repeat(epochs)
return ds
data_set = ds.GeneratorDataset(_iter_h5_data(), ["ids", "weights", "labels"])
data_set = data_set.repeat(epochs)
return data_set
def _padding_func(batch_size, manual_shape, target_column, field_size=39):
@ -174,11 +171,11 @@ def _padding_func(batch_size, manual_shape, target_column, field_size=39):
get padding_func
"""
if manual_shape:
generate_concat_offset = [item[0]+item[1] for item in manual_shape]
generate_concat_offset = [item[0] + item[1] for item in manual_shape]
part_size = int(target_column / len(generate_concat_offset))
filled_value = []
for i in range(field_size, target_column):
filled_value.append(generate_concat_offset[i//part_size]-1)
filled_value.append(generate_concat_offset[i // part_size] - 1)
print("Filed Value:", filled_value)
def padding_func(x, y, z):
@ -190,7 +187,7 @@ def _padding_func(batch_size, manual_shape, target_column, field_size=39):
dtype=np.int32) * filled_value
x_id = np.concatenate([x, x_id.astype(dtype=np.int32)], axis=1)
mask = np.concatenate(
[y, np.zeros((batch_size, target_column-39), dtype=np.float32)], axis=1)
[y, np.zeros((batch_size, target_column - 39), dtype=np.float32)], axis=1)
return (x_id, mask, z)
else:
def padding_func(x, y, z):
@ -214,24 +211,25 @@ def _get_tf_dataset(data_dir, train_mode=True, epochs=1, batch_size=1000,
for filename in filenames:
if file_prefix_name in filename and "tfrecord" in filename:
dataset_files.append(os.path.join(dirpath, filename))
schema = de.Schema()
schema = ds.Schema()
schema.add_column('feat_ids', de_type=mstype.int32)
schema.add_column('feat_vals', de_type=mstype.float32)
schema.add_column('label', de_type=mstype.float32)
if rank_size is not None and rank_id is not None:
ds = de.TFRecordDataset(dataset_files=dataset_files, shuffle=shuffle, schema=schema, num_parallel_workers=8,
num_shards=rank_size, shard_id=rank_id, shard_equal_rows=True)
data_set = ds.TFRecordDataset(dataset_files=dataset_files, shuffle=shuffle, schema=schema,
num_parallel_workers=8,
num_shards=rank_size, shard_id=rank_id, shard_equal_rows=True)
else:
ds = de.TFRecordDataset(dataset_files=dataset_files,
shuffle=shuffle, schema=schema, num_parallel_workers=8)
ds = ds.batch(int(batch_size / line_per_sample),
drop_remainder=True)
data_set = ds.TFRecordDataset(dataset_files=dataset_files,
shuffle=shuffle, schema=schema, num_parallel_workers=8)
data_set = data_set.batch(int(batch_size / line_per_sample),
drop_remainder=True)
ds = ds.map(operations=_padding_func(batch_size, manual_shape, target_column),
input_columns=['feat_ids', 'feat_vals', 'label'],
column_order=['feat_ids', 'feat_vals', 'label'], num_parallel_workers=8)
ds = ds.repeat(epochs)
return ds
data_set = data_set.map(operations=_padding_func(batch_size, manual_shape, target_column),
input_columns=['feat_ids', 'feat_vals', 'label'],
column_order=['feat_ids', 'feat_vals', 'label'], num_parallel_workers=8)
data_set = data_set.repeat(epochs)
return data_set
def _get_mindrecord_dataset(directory, train_mode=True, epochs=1, batch_size=1000,
@ -257,21 +255,21 @@ def _get_mindrecord_dataset(directory, train_mode=True, epochs=1, batch_size=100
shuffle = train_mode
if rank_size is not None and rank_id is not None:
ds = de.MindDataset(os.path.join(directory, file_prefix_name + file_suffix_name),
columns_list=['feat_ids', 'feat_vals', 'label'],
num_shards=rank_size, shard_id=rank_id, shuffle=shuffle,
num_parallel_workers=8)
data_set = ds.MindDataset(os.path.join(directory, file_prefix_name + file_suffix_name),
columns_list=['feat_ids', 'feat_vals', 'label'],
num_shards=rank_size, shard_id=rank_id, shuffle=shuffle,
num_parallel_workers=8)
else:
ds = de.MindDataset(os.path.join(directory, file_prefix_name + file_suffix_name),
columns_list=['feat_ids', 'feat_vals', 'label'],
shuffle=shuffle, num_parallel_workers=8)
ds = ds.batch(int(batch_size / line_per_sample), drop_remainder=True)
ds = ds.map(_padding_func(batch_size, manual_shape, target_column),
input_columns=['feat_ids', 'feat_vals', 'label'],
column_order=['feat_ids', 'feat_vals', 'label'],
num_parallel_workers=8)
ds = ds.repeat(epochs)
return ds
data_set = ds.MindDataset(os.path.join(directory, file_prefix_name + file_suffix_name),
columns_list=['feat_ids', 'feat_vals', 'label'],
shuffle=shuffle, num_parallel_workers=8)
data_set = data_set.batch(int(batch_size / line_per_sample), drop_remainder=True)
data_set = data_set.map(_padding_func(batch_size, manual_shape, target_column),
input_columns=['feat_ids', 'feat_vals', 'label'],
column_order=['feat_ids', 'feat_vals', 'label'],
num_parallel_workers=8)
data_set = data_set.repeat(epochs)
return data_set
def _get_vocab_size(target_column_number, worker_size, total_vocab_size, multiply=False, per_vocab_size=None):
@ -284,7 +282,7 @@ def _get_vocab_size(target_column_number, worker_size, total_vocab_size, multipl
5, 21762, 14, 15, 15030, 61, 12220]
new_vocabs = inidival_vocabs + [1] * \
(target_column_number - len(inidival_vocabs))
(target_column_number - len(inidival_vocabs))
part_size = int(target_column_number / worker_size)
# According to the workers, we merge some fields into the same part
@ -304,21 +302,21 @@ def _get_vocab_size(target_column_number, worker_size, total_vocab_size, multipl
# Expands the vocabulary of each field by the multiplier
if multiply is True:
cur_sum = sum(new_vocab_size)
k = total_vocab_size/cur_sum
k = total_vocab_size / cur_sum
new_vocab_size = [
math.ceil(int(item*k)/worker_size)*worker_size for item in new_vocab_size]
new_vocab_size = [(item // 8 + 1)*8 for item in new_vocab_size]
math.ceil(int(item * k) / worker_size) * worker_size for item in new_vocab_size]
new_vocab_size = [(item // 8 + 1) * 8 for item in new_vocab_size]
else:
if total_vocab_size > sum(new_vocab_size):
new_vocab_size[-1] = total_vocab_size - \
sum(new_vocab_size[:-1])
sum(new_vocab_size[:-1])
new_vocab_size = [item for item in new_vocab_size]
else:
raise ValueError(
"Please providede the correct vocab size, now is {}".format(total_vocab_size))
for i in range(worker_size-1):
for i in range(worker_size - 1):
off = index_offsets[i] + features[i]
index_offsets.append(off)

View File

@ -17,7 +17,7 @@
import os
import sys
import mindspore.dataset.engine as de
import mindspore.dataset as ds
from mindspore import Model, context
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor
from mindspore.context import ParallelMode
@ -88,7 +88,7 @@ def train_and_eval(config):
print("epochs is {}".format(epochs))
if config.full_batch:
context.set_auto_parallel_context(full_batch=True)
de.config.set_seed(1)
ds.config.set_seed(1)
if config.field_slice:
compute_manual_shape(config, get_group_size())
ds_train = create_dataset(data_path, train_mode=True, epochs=1,

View File

@ -17,7 +17,7 @@
import os
import sys
import mindspore.dataset.engine as de
import mindspore.dataset as ds
from mindspore import Model, context
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor
from mindspore.context import ParallelMode
@ -92,7 +92,7 @@ def train_and_eval(config):
print("epochs is {}".format(epochs))
if config.full_batch:
context.set_auto_parallel_context(full_batch=True)
de.config.set_seed(1)
ds.config.set_seed(1)
ds_train = create_dataset(data_path, train_mode=True, epochs=1,
batch_size=batch_size*get_group_size(), data_type=dataset_type)
ds_eval = create_dataset(data_path, train_mode=False, epochs=1,

View File

@ -18,7 +18,7 @@ import math
import pickle
import numpy as np
import pandas as pd
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.common.dtype as mstype
@ -97,8 +97,7 @@ class H5Dataset():
np.random.shuffle(sample_index)
assert X.shape[0] > 0
while True:
batch_index = sample_index[batch_size * counter:batch_size *
(counter + 1)]
batch_index = sample_index[batch_size * counter:batch_size * (counter + 1)]
X_batch = X[batch_index]
y_batch = y[batch_index]
counter += 1
@ -135,9 +134,8 @@ class H5Dataset():
X, y, finished = data_gen.__next__()
X_id = X[:, 0:self.input_length]
X_va = X[:, self.input_length:]
yield np.array(X_id.astype(dtype=np.int32)), np.array(
X_va.astype(dtype=np.float32)), np.array(
y.astype(dtype=np.float32))
yield np.array(X_id.astype(dtype=np.int32)), np.array(X_va.astype(dtype=np.float32)), np.array(
y.astype(dtype=np.float32))
def _get_h5_dataset(data_dir, train_mode=True, epochs=1, batch_size=1000):
@ -159,10 +157,10 @@ def _get_h5_dataset(data_dir, train_mode=True, epochs=1, batch_size=1000):
for _ in range(0, numbers_of_batch, 1):
yield train_eval_gen.__next__()
ds = de.GeneratorDataset(_iter_h5_data(),
["ids", "weights", "labels"])
ds = ds.repeat(epochs)
return ds
data_set = ds.GeneratorDataset(_iter_h5_data(),
["ids", "weights", "labels"])
data_set = data_set.repeat(epochs)
return data_set
def _get_tf_dataset(data_dir,
@ -184,7 +182,7 @@ def _get_tf_dataset(data_dir,
for filename in filenames:
if file_prefix_name in filename and "tfrecord" in filename:
dataset_files.append(os.path.join(dirpath, filename))
schema = de.Schema()
schema = ds.Schema()
float_key_list = ["label", "continue_val"]
@ -199,19 +197,19 @@ def _get_tf_dataset(data_dir,
schema.add_column(key, de_type=ms_dtype)
if rank_size is not None and rank_id is not None:
ds = de.TFRecordDataset(dataset_files=dataset_files,
shuffle=shuffle,
schema=schema,
num_parallel_workers=8,
num_shards=rank_size,
shard_id=rank_id,
shard_equal_rows=True)
data_set = ds.TFRecordDataset(dataset_files=dataset_files,
shuffle=shuffle,
schema=schema,
num_parallel_workers=8,
num_shards=rank_size,
shard_id=rank_id,
shard_equal_rows=True)
else:
ds = de.TFRecordDataset(dataset_files=dataset_files,
shuffle=shuffle,
schema=schema,
num_parallel_workers=8)
ds = ds.batch(int(batch_size / line_per_sample), drop_remainder=True)
data_set = ds.TFRecordDataset(dataset_files=dataset_files,
shuffle=shuffle,
schema=schema,
num_parallel_workers=8)
data_set = data_set.batch(int(batch_size / line_per_sample), drop_remainder=True)
operations_list = []
for key in columns_list:
@ -249,7 +247,7 @@ def _get_tf_dataset(data_dir,
u = np.array(u).flatten().reshape(batch_size, -1)
return a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u
ds = ds.map(
data_set = data_set.map(
operations=mixup,
input_columns=[
'label', 'continue_val', 'indicator_id', 'emb_128_id',
@ -275,8 +273,8 @@ def _get_tf_dataset(data_dir,
],
num_parallel_workers=8)
ds = ds.repeat(epochs)
return ds
data_set = data_set.repeat(epochs)
return data_set
def compute_emb_dim(config):

View File

@ -24,16 +24,17 @@ import cv2
import numpy as np
import pycocotools.coco as coco
import mindspore.dataset.engine.datasets as de
import mindspore.dataset as ds
from mindspore import log as logger
from mindspore.mindrecord import FileWriter
from src.image import color_aug, get_affine_transform, affine_transform
from src.image import gaussian_radius, draw_umich_gaussian, draw_msra_gaussian, draw_dense_reg
from src.visual import visual_image
_current_dir = os.path.dirname(os.path.realpath(__file__))
class COCOHP(de.Dataset):
class COCOHP(ds.Dataset):
"""
Encapsulation class of COCO person keypoints datast.
Initilize and preprocess of image for training and testing.
@ -47,6 +48,7 @@ class COCOHP(de.Dataset):
Returns:
Prepocessed training or testing dataset for CenterNet network.
"""
def __init__(self, data_opt, run_mode="train", net_opt=None, enable_visual_image=False, save_path=None):
super(COCOHP, self).__init__()
self._data_rng = np.random.RandomState(123)
@ -64,7 +66,6 @@ class COCOHP(de.Dataset):
if not os.path.exists(self.save_path):
os.makedirs(self.save_path)
def init(self, data_dir, keep_res=False, flip_test=False):
"""initailize additional info"""
logger.info('Initializing coco 2017 {} data.'.format(self.run_mode))
@ -124,7 +125,7 @@ class COCOHP(de.Dataset):
for img_id in self.images:
image_info = self.coco.loadImgs([img_id])
annos = self.coco.loadAnns(self.anns[img_id])
#get image
# get image
img_name = image_info[0]['file_name']
img_name = os.path.join(self.image_path, img_name)
with open(img_name, 'rb') as f:
@ -147,19 +148,16 @@ class COCOHP(de.Dataset):
writer.commit()
logger.info("Create Mindrecord Done, at {}".format(mindrecord_dir))
def _coco_box_to_bbox(self, box):
bbox = np.array([box[0], box[1], box[0] + box[2], box[1] + box[3]], dtype=np.float32)
return bbox
def _get_border(self, border, size):
i = 1
while size - border // i <= border // i:
i *= 2
return border // i
def __getitem__(self, index):
img_id = self.images[index]
file_name = self.coco.loadImgs(ids=[img_id])[0]['file_name']
@ -169,7 +167,6 @@ class COCOHP(de.Dataset):
ret = (img, image_id)
return ret
def pre_process_for_test(self, image, img_id, scale, meta=None):
"""image pre-process for evaluation"""
b, h, w, ch = image.shape
@ -249,7 +246,6 @@ class COCOHP(de.Dataset):
return images, meta
def preprocess_fn(self, img, num_objects, keypoints, bboxes, category_id):
"""image pre-process and augmentation"""
num_objs = min(num_objects, self.data_opt.max_objs)
@ -269,12 +265,12 @@ class COCOHP(de.Dataset):
else:
sf = self.data_opt.scale
cf = self.data_opt.shift
c[0] += s * np.clip(np.random.randn()*cf, -2*cf, 2*cf)
c[1] += s * np.clip(np.random.randn()*cf, -2*cf, 2*cf)
s = s * np.clip(np.random.randn()*sf + 1, 1 - sf, 1 + sf)
c[0] += s * np.clip(np.random.randn() * cf, -2 * cf, 2 * cf)
c[1] += s * np.clip(np.random.randn() * cf, -2 * cf, 2 * cf)
s = s * np.clip(np.random.randn() * sf + 1, 1 - sf, 1 + sf)
if np.random.random() < self.data_opt.aug_rot:
rf = self.data_opt.rotate
rot = np.clip(np.random.randn()*rf, -rf*2, rf*2)
rot = np.clip(np.random.randn() * rf, -rf * 2, rf * 2)
if np.random.random() < self.data_opt.flip_prop:
flipped = True
@ -323,7 +319,7 @@ class COCOHP(de.Dataset):
cls_id = int(category_id[k]) - 1
pts = np.array(keypoints[k], np.float32).reshape(num_joints, 3)
if flipped:
bbox[[0, 2]] = width - bbox[[2, 0]] - 1 # index begin from zero
bbox[[0, 2]] = width - bbox[[2, 0]] - 1 # index begin from zero
pts[:, 0] = width - pts[:, 0] - 1
for e in self.data_opt.flip_idx:
pts[e[0]], pts[e[1]] = pts[e[1]].copy(), pts[e[0]].copy()
@ -360,7 +356,7 @@ class COCOHP(de.Dataset):
if pts[j, 2] > 0:
pts[j, :2] = affine_transform(pts[j, :2], trans_output_rot)
if pts[j, 0] >= 0 and pts[j, 0] < output_res and \
pts[j, 1] >= 0 and pts[j, 1] < output_res:
pts[j, 1] >= 0 and pts[j, 1] < output_res:
kps[k, j * 2: j * 2 + 2] = pts[j, :2] - ct_int
kps_mask[k, j * 2: j * 2 + 2] = 1
pt_int = pts[j, :2].astype(np.int32)
@ -399,7 +395,6 @@ class COCOHP(de.Dataset):
visual_image(out_img, ground_truth, self.save_path, ratio=self.data_opt.input_res[0] // output_res)
return ret
def create_train_dataset(self, mindrecord_dir, prefix="coco_hp.train.mind", batch_size=1,
device_num=1, rank=0, num_parallel_workers=1, do_shuffle=True):
"""create train dataset based on mindrecord file"""
@ -415,41 +410,43 @@ class COCOHP(de.Dataset):
raise ValueError('data_dir {} have no data files'.format(mindrecord_dir))
columns = ["image", "num_objects", "keypoints", "bbox", "category_id"]
ds = de.MindDataset(data_files,
columns_list=columns,
num_parallel_workers=num_parallel_workers, shuffle=do_shuffle,
num_shards=device_num, shard_id=rank)
ori_dataset_size = ds.get_dataset_size()
data_set = ds.MindDataset(data_files,
columns_list=columns,
num_parallel_workers=num_parallel_workers, shuffle=do_shuffle,
num_shards=device_num, shard_id=rank)
ori_dataset_size = data_set.get_dataset_size()
logger.info('origin dataset size: {}'.format(ori_dataset_size))
ds = ds.map(operations=self.preprocess_fn,
input_columns=["image", "num_objects", "keypoints", "bbox", "category_id"],
output_columns=["image", "hm", "reg_mask", "ind", "wh", "kps", "kps_mask",
"reg", "hm_hp", "hp_offset", "hp_ind", "hp_mask"],
column_order=["image", "hm", "reg_mask", "ind", "wh", "kps", "kps_mask",
"reg", "hm_hp", "hp_offset", "hp_ind", "hp_mask"],
num_parallel_workers=num_parallel_workers,
python_multiprocessing=True)
ds = ds.batch(batch_size, drop_remainder=True, num_parallel_workers=8)
logger.info("data size: {}".format(ds.get_dataset_size()))
logger.info("repeat count: {}".format(ds.get_repeat_count()))
return ds
data_set = data_set.map(operations=self.preprocess_fn,
input_columns=["image", "num_objects", "keypoints", "bbox", "category_id"],
output_columns=["image", "hm", "reg_mask", "ind", "wh", "kps", "kps_mask",
"reg", "hm_hp", "hp_offset", "hp_ind", "hp_mask"],
column_order=["image", "hm", "reg_mask", "ind", "wh", "kps", "kps_mask",
"reg", "hm_hp", "hp_offset", "hp_ind", "hp_mask"],
num_parallel_workers=num_parallel_workers,
python_multiprocessing=True)
data_set = data_set.batch(batch_size, drop_remainder=True, num_parallel_workers=8)
logger.info("data size: {}".format(data_set.get_dataset_size()))
logger.info("repeat count: {}".format(data_set.get_repeat_count()))
return data_set
def create_eval_dataset(self, batch_size=1, num_parallel_workers=1):
"""create testing dataset based on coco format"""
def generator():
for i in range(self.num_samples):
yield self.__getitem__(i)
column = ["image", "image_id"]
ds = de.GeneratorDataset(generator, column, num_parallel_workers=num_parallel_workers)
ds = ds.batch(batch_size, drop_remainder=True, num_parallel_workers=8)
return ds
data_set = ds.GeneratorDataset(generator, column, num_parallel_workers=num_parallel_workers)
data_set = data_set.batch(batch_size, drop_remainder=True, num_parallel_workers=8)
return data_set
if __name__ == '__main__':
# Convert coco2017 dataset to mindrecord to improve performance on host
from src.config import dataset_config
parser = argparse.ArgumentParser(description='CenterNet MindRecord dataset')
parser.add_argument("--coco_data_dir", type=str, default="", help="Coco dataset directory.")
parser.add_argument("--mindrecord_dir", type=str, default="", help="MindRecord dataset dir.")

View File

@ -17,7 +17,7 @@ create train or eval dataset.
"""
import os
import mindspore.common.dtype as mstype
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as C
import mindspore.dataset.transforms.vision.py_transforms as P
import mindspore.dataset.transforms.c_transforms as C2
@ -41,18 +41,18 @@ def create_dataset(dataset_path, do_train, config, platform, repeat_num=1, batch
rank_size = int(os.getenv("RANK_SIZE"))
rank_id = int(os.getenv("RANK_ID"))
if rank_size == 1:
ds = de.MindDataset(
data_set = ds.MindDataset(
dataset_path, num_parallel_workers=8, shuffle=True)
else:
ds = de.MindDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=rank_size, shard_id=rank_id)
data_set = ds.MindDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=rank_size, shard_id=rank_id)
elif platform == "GPU":
if do_train:
from mindspore.communication.management import get_rank, get_group_size
ds = de.MindDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=get_group_size(), shard_id=get_rank())
data_set = ds.MindDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=get_group_size(), shard_id=get_rank())
else:
ds = de.MindDataset(
data_set = ds.MindDataset(
dataset_path, num_parallel_workers=8, shuffle=True)
else:
raise ValueError("Unsupport platform.")
@ -67,7 +67,7 @@ def create_dataset(dataset_path, do_train, config, platform, repeat_num=1, batch
color_op = C.RandomColorAdjust(
brightness=0.4, contrast=0.4, saturation=0.4)
rescale_op = C.Rescale(1/255.0, 0)
rescale_op = C.Rescale(1 / 255.0, 0)
normalize_op = C.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
change_swap_op = C.HWC2CHW()
@ -93,18 +93,18 @@ def create_dataset(dataset_path, do_train, config, platform, repeat_num=1, batch
trans = composeop()
type_cast_op = C2.TypeCast(mstype.int32)
ds = ds.map(input_columns="image", operations=trans,
num_parallel_workers=8)
ds = ds.map(input_columns="label_list",
operations=type_cast_op, num_parallel_workers=8)
data_set = data_set.map(input_columns="image", operations=trans,
num_parallel_workers=8)
data_set = data_set.map(input_columns="label_list",
operations=type_cast_op, num_parallel_workers=8)
# apply shuffle operations
ds = ds.shuffle(buffer_size=buffer_size)
data_set = data_set.shuffle(buffer_size=buffer_size)
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
data_set = data_set.batch(batch_size, drop_remainder=True)
# apply dataset repeat operation
ds = ds.repeat(repeat_num)
data_set = data_set.repeat(repeat_num)
return ds
return data_set

View File

@ -17,7 +17,7 @@ create train or eval dataset.
"""
import os
import mindspore.common.dtype as mstype
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as C
import mindspore.dataset.transforms.vision.py_transforms as P
import mindspore.dataset.transforms.c_transforms as C2
@ -41,18 +41,18 @@ def create_dataset(dataset_path, do_train, config, platform, repeat_num=1, batch
rank_size = int(os.getenv("RANK_SIZE"))
rank_id = int(os.getenv("RANK_ID"))
if rank_size == 1:
ds = de.MindDataset(
data_set = ds.MindDataset(
dataset_path, num_parallel_workers=8, shuffle=True)
else:
ds = de.MindDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=rank_size, shard_id=rank_id)
data_set = ds.MindDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=rank_size, shard_id=rank_id)
elif platform == "GPU":
if do_train:
from mindspore.communication.management import get_rank, get_group_size
ds = de.MindDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=get_group_size(), shard_id=get_rank())
data_set = ds.MindDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=get_group_size(), shard_id=get_rank())
else:
ds = de.MindDataset(
data_set = ds.MindDataset(
dataset_path, num_parallel_workers=8, shuffle=True)
else:
raise ValueError("Unsupport platform.")
@ -67,7 +67,7 @@ def create_dataset(dataset_path, do_train, config, platform, repeat_num=1, batch
color_op = C.RandomColorAdjust(
brightness=0.4, contrast=0.4, saturation=0.4)
rescale_op = C.Rescale(1/255.0, 0)
rescale_op = C.Rescale(1 / 255.0, 0)
normalize_op = C.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
change_swap_op = C.HWC2CHW()
@ -93,18 +93,18 @@ def create_dataset(dataset_path, do_train, config, platform, repeat_num=1, batch
trans = composeop()
type_cast_op = C2.TypeCast(mstype.int32)
ds = ds.map(input_columns="image", operations=trans,
num_parallel_workers=8)
ds = ds.map(input_columns="label_list",
operations=type_cast_op, num_parallel_workers=8)
data_set = data_set.map(input_columns="image", operations=trans,
num_parallel_workers=8)
data_set = data_set.map(input_columns="label_list",
operations=type_cast_op, num_parallel_workers=8)
# apply shuffle operations
ds = ds.shuffle(buffer_size=buffer_size)
data_set = data_set.shuffle(buffer_size=buffer_size)
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
data_set = data_set.batch(batch_size, drop_remainder=True)
# apply dataset repeat operation
ds = ds.repeat(repeat_num)
data_set = data_set.repeat(repeat_num)
return ds
return data_set

View File

@ -17,7 +17,7 @@ create train or eval dataset.
"""
import os
import mindspore.common.dtype as mstype
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.dataset.vision.c_transforms as C
import mindspore.dataset.vision.py_transforms as P
import mindspore.dataset.transforms.c_transforms as C2
@ -42,18 +42,18 @@ def create_dataset(dataset_path, do_train, config, platform, repeat_num=1, batch
rank_size = int(os.getenv("RANK_SIZE"))
rank_id = int(os.getenv("RANK_ID"))
if rank_size == 1:
ds = de.MindDataset(
data_set = ds.MindDataset(
dataset_path, num_parallel_workers=8, shuffle=True)
else:
ds = de.MindDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=rank_size, shard_id=rank_id)
data_set = ds.MindDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=rank_size, shard_id=rank_id)
elif platform == "GPU":
if do_train:
from mindspore.communication.management import get_rank, get_group_size
ds = de.MindDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=get_group_size(), shard_id=get_rank())
data_set = ds.MindDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=get_group_size(), shard_id=get_rank())
else:
ds = de.MindDataset(
data_set = ds.MindDataset(
dataset_path, num_parallel_workers=8, shuffle=False)
else:
raise ValueError("Unsupport platform.")
@ -68,7 +68,7 @@ def create_dataset(dataset_path, do_train, config, platform, repeat_num=1, batch
color_op = C.RandomColorAdjust(
brightness=0.4, contrast=0.4, saturation=0.4)
rescale_op = C.Rescale(1/255.0, 0)
rescale_op = C.Rescale(1 / 255.0, 0)
normalize_op = C.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
change_swap_op = C.HWC2CHW()
@ -88,18 +88,18 @@ def create_dataset(dataset_path, do_train, config, platform, repeat_num=1, batch
trans = composeop
type_cast_op = C2.TypeCast(mstype.int32)
ds = ds.map(input_columns="image", operations=trans,
num_parallel_workers=8)
ds = ds.map(input_columns="label_list",
operations=type_cast_op, num_parallel_workers=8)
data_set = data_set.map(input_columns="image", operations=trans,
num_parallel_workers=8)
data_set = data_set.map(input_columns="label_list",
operations=type_cast_op, num_parallel_workers=8)
# apply shuffle operations
ds = ds.shuffle(buffer_size=buffer_size)
data_set = data_set.shuffle(buffer_size=buffer_size)
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
data_set = data_set.batch(batch_size, drop_remainder=True)
# apply dataset repeat operation
ds = ds.repeat(repeat_num)
data_set = data_set.repeat(repeat_num)
return ds
return data_set

View File

@ -17,7 +17,7 @@ create train or eval dataset.
"""
import os
import mindspore.common.dtype as mstype
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.dataset.vision.c_transforms as C
import mindspore.dataset.transforms.c_transforms as C2
from mindspore.communication.management import init, get_rank, get_group_size
@ -48,15 +48,15 @@ def create_dataset_cifar(dataset_path,
device_num = get_group_size()
if device_num == 1:
ds = de.Cifar10Dataset(dataset_path,
num_parallel_workers=8,
shuffle=True)
data_set = ds.Cifar10Dataset(dataset_path,
num_parallel_workers=8,
shuffle=True)
else:
ds = de.Cifar10Dataset(dataset_path,
num_parallel_workers=8,
shuffle=True,
num_shards=device_num,
shard_id=rank_id)
data_set = ds.Cifar10Dataset(dataset_path,
num_parallel_workers=8,
shuffle=True,
num_shards=device_num,
shard_id=rank_id)
# define map operations
if do_train:
@ -80,20 +80,20 @@ def create_dataset_cifar(dataset_path,
type_cast_op = C2.TypeCast(mstype.int32)
ds = ds.map(operations=type_cast_op,
input_columns="label",
num_parallel_workers=8)
ds = ds.map(operations=trans,
input_columns="image",
num_parallel_workers=8)
data_set = data_set.map(operations=type_cast_op,
input_columns="label",
num_parallel_workers=8)
data_set = data_set.map(operations=trans,
input_columns="image",
num_parallel_workers=8)
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
data_set = data_set.batch(batch_size, drop_remainder=True)
# apply dataset repeat operation
ds = ds.repeat(repeat_num)
data_set = data_set.repeat(repeat_num)
return ds
return data_set
def create_dataset_imagenet(dataset_path,
@ -122,15 +122,15 @@ def create_dataset_imagenet(dataset_path,
device_num = get_group_size()
if device_num == 1:
ds = de.ImageFolderDataset(dataset_path,
num_parallel_workers=8,
shuffle=True)
data_set = ds.ImageFolderDataset(dataset_path,
num_parallel_workers=8,
shuffle=True)
else:
ds = de.ImageFolderDataset(dataset_path,
num_parallel_workers=8,
shuffle=True,
num_shards=device_num,
shard_id=rank_id)
data_set = ds.ImageFolderDataset(dataset_path,
num_parallel_workers=8,
shuffle=True,
num_shards=device_num,
shard_id=rank_id)
image_size = 227
mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
@ -159,20 +159,20 @@ def create_dataset_imagenet(dataset_path,
type_cast_op = C2.TypeCast(mstype.int32)
ds = ds.map(operations=type_cast_op,
input_columns="label",
num_parallel_workers=8)
ds = ds.map(operations=trans,
input_columns="image",
num_parallel_workers=8)
data_set = data_set.map(operations=type_cast_op,
input_columns="label",
num_parallel_workers=8)
data_set = data_set.map(operations=trans,
input_columns="image",
num_parallel_workers=8)
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
data_set = data_set.batch(batch_size, drop_remainder=True)
# apply dataset repeat operation
ds = ds.repeat(repeat_num)
data_set = data_set.repeat(repeat_num)
return ds
return data_set
def _get_rank_info():

View File

@ -21,7 +21,7 @@ from enum import Enum
import numpy as np
import pandas as pd
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.common.dtype as mstype
from .config import DataConfig
@ -142,8 +142,8 @@ class H5Dataset():
X_id = X[:, 0:self.max_length]
X_va = X[:, self.max_length:]
yield np.array(X_id.astype(dtype=np.int32)), \
np.array(X_va.astype(dtype=np.float32)), \
np.array(y.astype(dtype=np.float32))
np.array(X_va.astype(dtype=np.float32)), \
np.array(y.astype(dtype=np.float32))
def _get_h5_dataset(directory, train_mode=True, epochs=1, batch_size=1000):
@ -172,9 +172,9 @@ def _get_h5_dataset(directory, train_mode=True, epochs=1, batch_size=1000):
for _ in range(0, numbers_of_batch, 1):
yield train_eval_gen.__next__()
ds = de.GeneratorDataset(_iter_h5_data, ["ids", "weights", "labels"])
ds = ds.repeat(epochs)
return ds
data_set = ds.GeneratorDataset(_iter_h5_data, ["ids", "weights", "labels"])
data_set = data_set.repeat(epochs)
return data_set
def _get_mindrecord_dataset(directory, train_mode=True, epochs=1, batch_size=1000,
@ -199,23 +199,23 @@ def _get_mindrecord_dataset(directory, train_mode=True, epochs=1, batch_size=100
shuffle = train_mode
if rank_size is not None and rank_id is not None:
ds = de.MindDataset(os.path.join(directory, file_prefix_name + file_suffix_name),
columns_list=['feat_ids', 'feat_vals', 'label'],
num_shards=rank_size, shard_id=rank_id, shuffle=shuffle,
num_parallel_workers=8)
data_set = ds.MindDataset(os.path.join(directory, file_prefix_name + file_suffix_name),
columns_list=['feat_ids', 'feat_vals', 'label'],
num_shards=rank_size, shard_id=rank_id, shuffle=shuffle,
num_parallel_workers=8)
else:
ds = de.MindDataset(os.path.join(directory, file_prefix_name + file_suffix_name),
columns_list=['feat_ids', 'feat_vals', 'label'],
shuffle=shuffle, num_parallel_workers=8)
ds = ds.batch(int(batch_size / line_per_sample), drop_remainder=True)
ds = ds.map(operations=(lambda x, y, z: (np.array(x).flatten().reshape(batch_size, 39),
np.array(y).flatten().reshape(batch_size, 39),
np.array(z).flatten().reshape(batch_size, 1))),
input_columns=['feat_ids', 'feat_vals', 'label'],
column_order=['feat_ids', 'feat_vals', 'label'],
num_parallel_workers=8)
ds = ds.repeat(epochs)
return ds
data_set = ds.MindDataset(os.path.join(directory, file_prefix_name + file_suffix_name),
columns_list=['feat_ids', 'feat_vals', 'label'],
shuffle=shuffle, num_parallel_workers=8)
data_set = data_set.batch(int(batch_size / line_per_sample), drop_remainder=True)
data_set = data_set.map(operations=(lambda x, y, z: (np.array(x).flatten().reshape(batch_size, 39),
np.array(y).flatten().reshape(batch_size, 39),
np.array(z).flatten().reshape(batch_size, 1))),
input_columns=['feat_ids', 'feat_vals', 'label'],
column_order=['feat_ids', 'feat_vals', 'label'],
num_parallel_workers=8)
data_set = data_set.repeat(epochs)
return data_set
def _get_tf_dataset(directory, train_mode=True, epochs=1, batch_size=1000,
@ -242,28 +242,28 @@ def _get_tf_dataset(directory, train_mode=True, epochs=1, batch_size=1000,
for filename in filenames:
if file_prefixt_name in filename and 'tfrecord' in filename:
dataset_files.append(os.path.join(dir_path, filename))
schema = de.Schema()
schema = ds.Schema()
schema.add_column('feat_ids', de_type=mstype.int32)
schema.add_column('feat_vals', de_type=mstype.float32)
schema.add_column('label', de_type=mstype.float32)
if rank_size is not None and rank_id is not None:
ds = de.TFRecordDataset(dataset_files=dataset_files, shuffle=shuffle,
schema=schema, num_parallel_workers=8,
num_shards=rank_size, shard_id=rank_id,
shard_equal_rows=True)
data_set = ds.TFRecordDataset(dataset_files=dataset_files, shuffle=shuffle,
schema=schema, num_parallel_workers=8,
num_shards=rank_size, shard_id=rank_id,
shard_equal_rows=True)
else:
ds = de.TFRecordDataset(dataset_files=dataset_files, shuffle=shuffle,
schema=schema, num_parallel_workers=8)
ds = ds.batch(int(batch_size / line_per_sample), drop_remainder=True)
ds = ds.map(operations=(lambda x, y, z: (
data_set = ds.TFRecordDataset(dataset_files=dataset_files, shuffle=shuffle,
schema=schema, num_parallel_workers=8)
data_set = data_set.batch(int(batch_size / line_per_sample), drop_remainder=True)
data_set = data_set.map(operations=(lambda x, y, z: (
np.array(x).flatten().reshape(batch_size, 39),
np.array(y).flatten().reshape(batch_size, 39),
np.array(z).flatten().reshape(batch_size, 1))),
input_columns=['feat_ids', 'feat_vals', 'label'],
column_order=['feat_ids', 'feat_vals', 'label'],
num_parallel_workers=8)
ds = ds.repeat(epochs)
return ds
input_columns=['feat_ids', 'feat_vals', 'label'],
column_order=['feat_ids', 'feat_vals', 'label'],
num_parallel_workers=8)
data_set = data_set.repeat(epochs)
return data_set
def create_dataset(directory, train_mode=True, epochs=1, batch_size=1000,

View File

@ -21,7 +21,7 @@ from enum import Enum
import pandas as pd
import numpy as np
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.common.dtype as mstype
from .config import DataConfig
@ -142,8 +142,8 @@ class H5Dataset():
X_id = X[:, 0:self.max_length]
X_va = X[:, self.max_length:]
yield np.array(X_id.astype(dtype=np.int32)), \
np.array(X_va.astype(dtype=np.float32)), \
np.array(y.astype(dtype=np.float32))
np.array(X_va.astype(dtype=np.float32)), \
np.array(y.astype(dtype=np.float32))
def _get_h5_dataset(directory, train_mode=True, epochs=1, batch_size=1000):
@ -172,9 +172,9 @@ def _get_h5_dataset(directory, train_mode=True, epochs=1, batch_size=1000):
for _ in range(0, numbers_of_batch, 1):
yield train_eval_gen.__next__()
ds = de.GeneratorDataset(_iter_h5_data, ["ids", "weights", "labels"], num_samples=3000)
ds = ds.repeat(epochs)
return ds
data_set = ds.GeneratorDataset(_iter_h5_data, ["ids", "weights", "labels"], num_samples=3000)
data_set = data_set.repeat(epochs)
return data_set
def _get_mindrecord_dataset(directory, train_mode=True, epochs=1, batch_size=1000,
@ -199,23 +199,23 @@ def _get_mindrecord_dataset(directory, train_mode=True, epochs=1, batch_size=100
shuffle = train_mode
if rank_size is not None and rank_id is not None:
ds = de.MindDataset(os.path.join(directory, file_prefix_name + file_suffix_name),
columns_list=['feat_ids', 'feat_vals', 'label'],
num_shards=rank_size, shard_id=rank_id, shuffle=shuffle,
num_parallel_workers=8)
data_set = ds.MindDataset(os.path.join(directory, file_prefix_name + file_suffix_name),
columns_list=['feat_ids', 'feat_vals', 'label'],
num_shards=rank_size, shard_id=rank_id, shuffle=shuffle,
num_parallel_workers=8)
else:
ds = de.MindDataset(os.path.join(directory, file_prefix_name + file_suffix_name),
columns_list=['feat_ids', 'feat_vals', 'label'],
shuffle=shuffle, num_parallel_workers=8)
ds = ds.batch(int(batch_size / line_per_sample), drop_remainder=True)
ds = ds.map(operations=(lambda x, y, z: (np.array(x).flatten().reshape(batch_size, 39),
np.array(y).flatten().reshape(batch_size, 39),
np.array(z).flatten().reshape(batch_size, 1))),
input_columns=['feat_ids', 'feat_vals', 'label'],
column_order=['feat_ids', 'feat_vals', 'label'],
num_parallel_workers=8)
ds = ds.repeat(epochs)
return ds
data_set = ds.MindDataset(os.path.join(directory, file_prefix_name + file_suffix_name),
columns_list=['feat_ids', 'feat_vals', 'label'],
shuffle=shuffle, num_parallel_workers=8)
data_set = data_set.batch(int(batch_size / line_per_sample), drop_remainder=True)
data_set = data_set.map(operations=(lambda x, y, z: (np.array(x).flatten().reshape(batch_size, 39),
np.array(y).flatten().reshape(batch_size, 39),
np.array(z).flatten().reshape(batch_size, 1))),
input_columns=['feat_ids', 'feat_vals', 'label'],
column_order=['feat_ids', 'feat_vals', 'label'],
num_parallel_workers=8)
data_set = data_set.repeat(epochs)
return data_set
def _get_tf_dataset(directory, train_mode=True, epochs=1, batch_size=1000,
@ -242,28 +242,28 @@ def _get_tf_dataset(directory, train_mode=True, epochs=1, batch_size=1000,
for filename in filenames:
if file_prefixt_name in filename and 'tfrecord' in filename:
dataset_files.append(os.path.join(dir_path, filename))
schema = de.Schema()
schema = ds.Schema()
schema.add_column('feat_ids', de_type=mstype.int32)
schema.add_column('feat_vals', de_type=mstype.float32)
schema.add_column('label', de_type=mstype.float32)
if rank_size is not None and rank_id is not None:
ds = de.TFRecordDataset(dataset_files=dataset_files, shuffle=shuffle,
schema=schema, num_parallel_workers=8,
num_shards=rank_size, shard_id=rank_id,
shard_equal_rows=True, num_samples=3000)
data_set = ds.TFRecordDataset(dataset_files=dataset_files, shuffle=shuffle,
schema=schema, num_parallel_workers=8,
num_shards=rank_size, shard_id=rank_id,
shard_equal_rows=True, num_samples=3000)
else:
ds = de.TFRecordDataset(dataset_files=dataset_files, shuffle=shuffle,
schema=schema, num_parallel_workers=8, num_samples=3000)
ds = ds.batch(int(batch_size / line_per_sample), drop_remainder=True)
ds = ds.map(operations=(lambda x, y, z: (
data_set = ds.TFRecordDataset(dataset_files=dataset_files, shuffle=shuffle,
schema=schema, num_parallel_workers=8, num_samples=3000)
data_set = data_set.batch(int(batch_size / line_per_sample), drop_remainder=True)
data_set = data_set.map(operations=(lambda x, y, z: (
np.array(x).flatten().reshape(batch_size, 39),
np.array(y).flatten().reshape(batch_size, 39),
np.array(z).flatten().reshape(batch_size, 1))),
input_columns=['feat_ids', 'feat_vals', 'label'],
column_order=['feat_ids', 'feat_vals', 'label'],
num_parallel_workers=8)
ds = ds.repeat(epochs)
return ds
input_columns=['feat_ids', 'feat_vals', 'label'],
column_order=['feat_ids', 'feat_vals', 'label'],
num_parallel_workers=8)
data_set = data_set.repeat(epochs)
return data_set
def create_dataset(directory, train_mode=True, epochs=1, batch_size=1000,

View File

@ -24,17 +24,18 @@ from mindspore.nn.optim import Adam
from mindspore.train.model import Model
from mindspore.train.loss_scale_manager import DynamicLossScaleManager
from mindspore.train.callback import Callback
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as deC
from mindspore import context
from model_zoo.official.nlp.transformer.src.transformer_model import TransformerConfig
from model_zoo.official.nlp.transformer.src.transformer_for_train import TransformerNetworkWithLoss, \
TransformerTrainOneStepWithLossScaleCell
TransformerTrainOneStepWithLossScaleCell
from model_zoo.official.nlp.transformer.src.config import cfg, transformer_net_cfg
from model_zoo.official.nlp.transformer.src.lr_schedule import create_dynamic_lr
DATA_DIR = ["/home/workspace/mindspore_dataset/transformer/test-mindrecord"]
def get_config(version='base', batch_size=1):
"""get config"""
if version == 'large':
@ -75,23 +76,25 @@ def get_config(version='base', batch_size=1):
transformer_cfg = TransformerConfig(batch_size=batch_size)
return transformer_cfg
def load_test_data(batch_size=1, data_file=None):
"""Load test dataset."""
ds = de.MindDataset(data_file,
columns_list=["source_eos_ids", "source_eos_mask",
"target_sos_ids", "target_sos_mask",
"target_eos_ids", "target_eos_mask"],
shuffle=False)
data_set = ds.MindDataset(data_file,
columns_list=["source_eos_ids", "source_eos_mask",
"target_sos_ids", "target_sos_mask",
"target_eos_ids", "target_eos_mask"],
shuffle=False)
type_cast_op = deC.TypeCast(mstype.int32)
ds = ds.map(operations=type_cast_op, input_columns="source_eos_ids")
ds = ds.map(operations=type_cast_op, input_columns="source_eos_mask")
ds = ds.map(operations=type_cast_op, input_columns="target_sos_ids")
ds = ds.map(operations=type_cast_op, input_columns="target_sos_mask")
ds = ds.map(operations=type_cast_op, input_columns="target_eos_ids")
ds = ds.map(operations=type_cast_op, input_columns="target_eos_mask")
data_set = data_set.map(operations=type_cast_op, input_columns="source_eos_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="source_eos_mask")
data_set = data_set.map(operations=type_cast_op, input_columns="target_sos_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="target_sos_mask")
data_set = data_set.map(operations=type_cast_op, input_columns="target_eos_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="target_eos_mask")
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
return ds
data_set = data_set.batch(batch_size, drop_remainder=True)
return data_set
class ModelCallback(Callback):
def __init__(self):
@ -107,13 +110,16 @@ class ModelCallback(Callback):
self.lossscale_list.append(cb_params.net_outputs[2].asnumpy())
print("epoch: {}, outputs are: {}".format(cb_params.cur_epoch_num, str(cb_params.net_outputs)))
class TimeMonitor(Callback):
"""Time Monitor."""
def __init__(self, data_size):
super(TimeMonitor, self).__init__()
self.data_size = data_size
self.epoch_mseconds_list = []
self.per_step_mseconds_list = []
def epoch_begin(self, run_context):
self.epoch_time = time.time()
@ -122,6 +128,7 @@ class TimeMonitor(Callback):
self.epoch_mseconds_list.append(epoch_mseconds)
self.per_step_mseconds_list.append(epoch_mseconds / self.data_size)
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@ -142,7 +149,7 @@ def test_transformer():
netwithloss = TransformerNetworkWithLoss(config, True)
lr = Tensor(create_dynamic_lr(schedule="constant*rsqrt_hidden*linear_warmup*rsqrt_decay",
training_steps=dataset.get_dataset_size()*epoch_size,
training_steps=dataset.get_dataset_size() * epoch_size,
learning_rate=cfg.lr_schedule.learning_rate,
warmup_steps=cfg.lr_schedule.warmup_steps,
hidden_size=config.hidden_size), mstype.float32)
@ -193,5 +200,6 @@ def test_transformer():
print("per step mseconds: {}".format(per_step_mseconds))
assert per_step_mseconds <= expect_per_step_mseconds + 2
if __name__ == '__main__':
test_transformer()

View File

@ -14,13 +14,13 @@
# ============================================================================
"""train_imagenet."""
import os
from enum import Enum
import numpy as np
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.common.dtype as mstype
class DataType(Enum):
"""
Enumerate supported dataset format.
@ -29,6 +29,7 @@ class DataType(Enum):
TFRECORD = 2
H5 = 3
def _get_tf_dataset(data_dir, train_mode=True, epochs=1, batch_size=1000,
line_per_sample=1000, rank_size=None, rank_id=None):
"""
@ -41,26 +42,29 @@ def _get_tf_dataset(data_dir, train_mode=True, epochs=1, batch_size=1000,
for filename in filenames:
if file_prefix_name in filename and "tfrecord" in filename:
dataset_files.append(os.path.join(dirpath, filename))
schema = de.Schema()
schema = ds.Schema()
schema.add_column('feat_ids', de_type=mstype.int32)
schema.add_column('feat_vals', de_type=mstype.float32)
schema.add_column('label', de_type=mstype.float32)
if rank_size is not None and rank_id is not None:
ds = de.TFRecordDataset(dataset_files=dataset_files, shuffle=shuffle, schema=schema, num_parallel_workers=8,
num_shards=rank_size, shard_id=rank_id, shard_equal_rows=True)
data_set = ds.TFRecordDataset(dataset_files=dataset_files, shuffle=shuffle, schema=schema,
num_parallel_workers=8,
num_shards=rank_size, shard_id=rank_id, shard_equal_rows=True)
else:
ds = de.TFRecordDataset(dataset_files=dataset_files, shuffle=shuffle, schema=schema, num_parallel_workers=8)
ds = ds.batch(int(batch_size / line_per_sample),
drop_remainder=True)
ds = ds.map(operations=(lambda x, y, z: (
data_set = ds.TFRecordDataset(dataset_files=dataset_files, shuffle=shuffle, schema=schema,
num_parallel_workers=8)
data_set = data_set.batch(int(batch_size / line_per_sample),
drop_remainder=True)
data_set = data_set.map(operations=(lambda x, y, z: (
np.array(x).flatten().reshape(batch_size, 39),
np.array(y).flatten().reshape(batch_size, 39),
np.array(z).flatten().reshape(batch_size, 1))),
input_columns=['feat_ids', 'feat_vals', 'label'],
column_order=['feat_ids', 'feat_vals', 'label'], num_parallel_workers=8)
#if train_mode:
ds = ds.repeat(epochs)
return ds
input_columns=['feat_ids', 'feat_vals', 'label'],
column_order=['feat_ids', 'feat_vals', 'label'], num_parallel_workers=8)
# if train_mode:
data_set = data_set.repeat(epochs)
return data_set
def _get_mindrecord_dataset(directory, train_mode=True, epochs=1, batch_size=1000,
line_per_sample=1000, rank_size=None, rank_id=None):
@ -84,23 +88,23 @@ def _get_mindrecord_dataset(directory, train_mode=True, epochs=1, batch_size=100
shuffle = train_mode
if rank_size is not None and rank_id is not None:
ds = de.MindDataset(os.path.join(directory, file_prefix_name + file_suffix_name),
columns_list=['feat_ids', 'feat_vals', 'label'],
num_shards=rank_size, shard_id=rank_id, shuffle=shuffle,
num_parallel_workers=8)
data_set = ds.MindDataset(os.path.join(directory, file_prefix_name + file_suffix_name),
columns_list=['feat_ids', 'feat_vals', 'label'],
num_shards=rank_size, shard_id=rank_id, shuffle=shuffle,
num_parallel_workers=8)
else:
ds = de.MindDataset(os.path.join(directory, file_prefix_name + file_suffix_name),
columns_list=['feat_ids', 'feat_vals', 'label'],
shuffle=shuffle, num_parallel_workers=8)
ds = ds.batch(int(batch_size / line_per_sample), drop_remainder=True)
ds = ds.map(operations=(lambda x, y, z: (np.array(x).flatten().reshape(batch_size, 39),
np.array(y).flatten().reshape(batch_size, 39),
np.array(z).flatten().reshape(batch_size, 1))),
input_columns=['feat_ids', 'feat_vals', 'label'],
column_order=['feat_ids', 'feat_vals', 'label'],
num_parallel_workers=8)
ds = ds.repeat(epochs)
return ds
data_set = ds.MindDataset(os.path.join(directory, file_prefix_name + file_suffix_name),
columns_list=['feat_ids', 'feat_vals', 'label'],
shuffle=shuffle, num_parallel_workers=8)
data_set = data_set.batch(int(batch_size / line_per_sample), drop_remainder=True)
data_set = data_set.map(operations=(lambda x, y, z: (np.array(x).flatten().reshape(batch_size, 39),
np.array(y).flatten().reshape(batch_size, 39),
np.array(z).flatten().reshape(batch_size, 1))),
input_columns=['feat_ids', 'feat_vals', 'label'],
column_order=['feat_ids', 'feat_vals', 'label'],
num_parallel_workers=8)
data_set = data_set.repeat(epochs)
return data_set
def create_dataset(data_dir, train_mode=True, epochs=1, batch_size=1000,

View File

@ -20,7 +20,7 @@ import time
import numpy as np
import pytest
import mindspore.common.dtype as mstype
import mindspore.dataset.engine.datasets as de
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C
from mindspore import context
from mindspore import log as logger
@ -35,7 +35,6 @@ from model_zoo.official.nlp.bert.src.bert_for_pre_training import BertNetworkWit
from model_zoo.official.nlp.bert.src.bert_for_pre_training import BertTrainOneStepWithLossScaleCell
from model_zoo.official.nlp.bert.src.bert_model import BertConfig
_current_dir = os.path.dirname(os.path.realpath(__file__))
DATA_DIR = ["/home/workspace/mindspore_dataset/bert/example/examples.tfrecord"]
SCHEMA_DIR = "/home/workspace/mindspore_dataset/bert/example/datasetSchema.json"
@ -88,25 +87,26 @@ def me_de_train_dataset(sink_mode=False):
repeat_count = 1
sink_size = -1
batch_size = 16
ds = de.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["input_ids", "input_mask", "segment_ids",
"next_sentence_labels", "masked_lm_positions",
"masked_lm_ids", "masked_lm_weights"], shuffle=False)
data_set = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["input_ids", "input_mask", "segment_ids",
"next_sentence_labels", "masked_lm_positions",
"masked_lm_ids", "masked_lm_weights"],
shuffle=False)
type_cast_op = C.TypeCast(mstype.int32)
new_repeat_count = repeat_count
if sink_mode:
sink_size = 100
new_repeat_count = 3
ds = ds.map(operations=type_cast_op, input_columns="masked_lm_ids")
ds = ds.map(operations=type_cast_op, input_columns="masked_lm_positions")
ds = ds.map(operations=type_cast_op, input_columns="next_sentence_labels")
ds = ds.map(operations=type_cast_op, input_columns="segment_ids")
ds = ds.map(operations=type_cast_op, input_columns="input_mask")
ds = ds.map(operations=type_cast_op, input_columns="input_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="masked_lm_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="masked_lm_positions")
data_set = data_set.map(operations=type_cast_op, input_columns="next_sentence_labels")
data_set = data_set.map(operations=type_cast_op, input_columns="segment_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="input_mask")
data_set = data_set.map(operations=type_cast_op, input_columns="input_ids")
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
logger.info("data size: {}".format(ds.get_dataset_size()))
logger.info("repeat_count: {}".format(ds.get_repeat_count()))
return ds, new_repeat_count, sink_size
data_set = data_set.batch(batch_size, drop_remainder=True)
logger.info("data size: {}".format(data_set.get_dataset_size()))
logger.info("repeat_count: {}".format(data_set.get_repeat_count()))
return data_set, new_repeat_count, sink_size
def weight_variable(shape):
@ -155,13 +155,16 @@ class ModelCallback(Callback):
self.lossscale_list.append(cb_params.net_outputs[2].asnumpy())
print("epoch: {}, outputs are: {}".format(cb_params.cur_epoch_num, str(cb_params.net_outputs)))
class TimeMonitor(Callback):
"""Time Monitor."""
def __init__(self, data_size):
super(TimeMonitor, self).__init__()
self.data_size = data_size
self.epoch_mseconds_list = []
self.per_step_mseconds_list = []
def epoch_begin(self, run_context):
self.epoch_time = time.time()
@ -178,7 +181,7 @@ class TimeMonitor(Callback):
def test_bert_performance():
"""test bert performance"""
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", reserve_class_name_in_scope=False)
ds, new_repeat_count, sink_size = me_de_train_dataset(sink_mode=True)
data_set, new_repeat_count, sink_size = me_de_train_dataset(sink_mode=True)
version = os.getenv('VERSION', 'large')
config = get_config(version=version)
netwithloss = BertNetworkWithLoss(config, True)
@ -221,7 +224,7 @@ def test_bert_performance():
logger.info("***************** BERT param name is 3 {}".format(name))
param.set_data(weight_variable(value.asnumpy().shape))
time_monitor_callback = TimeMonitor(sink_size)
model.train(new_repeat_count, ds, callbacks=[time_monitor_callback, callback],
model.train(new_repeat_count, data_set, callbacks=[time_monitor_callback, callback],
dataset_sink_mode=True, sink_size=sink_size)
# assertion occurs while the loss value, overflow state or loss_scale value is wrong
@ -250,5 +253,6 @@ def test_bert_performance():
print("per step mseconds: {}".format(per_step_mseconds))
assert per_step_mseconds <= expect_per_step_mseconds + 1
if __name__ == '__main__':
test_bert_performance()

View File

@ -20,7 +20,7 @@ import time
from multiprocessing import Process, Queue
import pytest
import numpy as np
import mindspore.dataset as dataset
import mindspore.dataset as ds
import mindspore.common.dtype as mstype
import mindspore.communication.management as D
from mindspore import context
@ -28,7 +28,6 @@ from mindspore import log as logger
from mindspore.train.callback import Callback
from mindspore.context import ParallelMode
from mindspore.train.serialization import load_checkpoint, load_param_into_net
import mindspore.dataset.engine.datasets as de
import mindspore.dataset.transforms.c_transforms as C
from model_zoo.official.nlp.bert_thor.src.bert_for_pre_training import BertNetworkWithLoss, BertTrainOneStepCell
from model_zoo.official.nlp.bert_thor.src.bert_net_config import bert_net_cfg
@ -45,11 +44,13 @@ train_steps = 200
batch_size = 12
np.random.seed(1)
dataset.config.set_seed(1)
ds.config.set_seed(1)
os.environ['GLOG_v'] = str(2)
class TimeMonitor(Callback):
"""Time Monitor."""
def __init__(self, data_size):
super(TimeMonitor, self).__init__()
self.data_size = data_size
@ -67,6 +68,7 @@ class TimeMonitor(Callback):
self.per_step_mseconds_list.append(per_step_mseconds)
print("epoch: {}, per_step_mseconds are {}".format(cb_params.cur_epoch_num, str(per_step_mseconds)), flush=True)
class LossCallback(Callback):
def __init__(self):
super(LossCallback, self).__init__()
@ -78,6 +80,7 @@ class LossCallback(Callback):
print("epoch: {}, step: {}, outputs are {}".format(cb_params.cur_epoch_num, cb_params.cur_step_num,
str(cb_params.net_outputs)), flush=True)
def create_bert_dataset(device_num=1, rank=0, do_shuffle="true", data_dir=None, schema_dir=None):
"""create train dataset"""
# apply repeat operations
@ -87,25 +90,25 @@ def create_bert_dataset(device_num=1, rank=0, do_shuffle="true", data_dir=None,
if "tfrecord" in file_name:
data_files.append(os.path.join(data_dir, file_name))
data_files = sorted(data_files)
ds = de.TFRecordDataset(data_files, schema_dir if schema_dir != "" else None,
columns_list=["input_ids", "input_mask", "segment_ids", "next_sentence_labels",
"masked_lm_positions", "masked_lm_ids", "masked_lm_weights"],
shuffle=de.Shuffle.FILES if do_shuffle == "true" else False,
num_shards=device_num, shard_id=rank, shard_equal_rows=True)
ori_dataset_size = ds.get_dataset_size()
data_set = ds.TFRecordDataset(data_files, schema_dir if schema_dir != "" else None,
columns_list=["input_ids", "input_mask", "segment_ids", "next_sentence_labels",
"masked_lm_positions", "masked_lm_ids", "masked_lm_weights"],
shuffle=ds.Shuffle.FILES if do_shuffle == "true" else False,
num_shards=device_num, shard_id=rank, shard_equal_rows=True)
ori_dataset_size = data_set.get_dataset_size()
print('origin dataset size: ', ori_dataset_size)
type_cast_op = C.TypeCast(mstype.int32)
ds = ds.map(operations=type_cast_op, input_columns="masked_lm_ids")
ds = ds.map(operations=type_cast_op, input_columns="masked_lm_positions")
ds = ds.map(operations=type_cast_op, input_columns="next_sentence_labels")
ds = ds.map(operations=type_cast_op, input_columns="segment_ids")
ds = ds.map(operations=type_cast_op, input_columns="input_mask")
ds = ds.map(operations=type_cast_op, input_columns="input_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="masked_lm_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="masked_lm_positions")
data_set = data_set.map(operations=type_cast_op, input_columns="next_sentence_labels")
data_set = data_set.map(operations=type_cast_op, input_columns="segment_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="input_mask")
data_set = data_set.map(operations=type_cast_op, input_columns="input_ids")
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
logger.info("data size: {}".format(ds.get_dataset_size()))
logger.info("repeat count: {}".format(ds.get_repeat_count()))
return ds
data_set = data_set.batch(batch_size, drop_remainder=True)
logger.info("data size: {}".format(data_set.get_dataset_size()))
logger.info("repeat count: {}".format(data_set.get_repeat_count()))
return data_set
def _set_bert_all_reduce_split():
@ -151,13 +154,13 @@ def train_process_bert_thor(q, device_id, epoch_size, device_num):
device_num=device_num)
bert_net_cfg.num_hidden_layers = 4
ds = create_bert_dataset(device_num=device_num, rank=rank, do_shuffle=False, data_dir=DATASET_PATH, schema_dir=None)
data_set = create_bert_dataset(device_num=device_num, rank=rank, do_shuffle=False, data_dir=DATASET_PATH,
schema_dir=None)
net_with_loss = BertNetworkWithLoss(bert_net_cfg, True)
new_repeat_count = epoch_size * ds.get_dataset_size() // data_sink_steps
new_repeat_count = epoch_size * data_set.get_dataset_size() // data_sink_steps
new_repeat_count = min(new_repeat_count, train_steps // data_sink_steps)
lr = get_bert_lr()
damping = get_bert_damping()
optimizer = THOR(filter(lambda x: x.requires_grad, net_with_loss.get_parameters()), lr, cfg.Thor.momentum,
@ -175,7 +178,7 @@ def train_process_bert_thor(q, device_id, epoch_size, device_num):
net_with_grads = BertTrainOneStepCell(net_with_loss, optimizer=optimizer)
model = Model(net_with_grads, frequency=cfg.Thor.frequency)
model.train(new_repeat_count, ds, callbacks=callback, dataset_sink_mode=True, sink_size=data_sink_steps)
model.train(new_repeat_count, data_set, callbacks=callback, dataset_sink_mode=True, sink_size=data_sink_steps)
loss_list = loss_callback.loss_list
per_step_mseconds = time_monitor_callback.per_step_mseconds_list
@ -230,5 +233,6 @@ def test_bert_thor_mlperf_8p():
assert mean_cost < 64.2
assert mean_loss < 7.9
if __name__ == '__main__':
test_bert_thor_mlperf_8p()

View File

@ -20,7 +20,7 @@ import time
import numpy as np
import pytest
import mindspore.common.dtype as mstype
import mindspore.dataset.engine.datasets as de
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C
from mindspore import context
from mindspore import log as logger
@ -87,25 +87,26 @@ def me_de_train_dataset(sink_mode=False):
repeat_count = 1
sink_size = -1
batch_size = 16
ds = de.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["input_ids", "input_mask", "segment_ids",
"next_sentence_labels", "masked_lm_positions",
"masked_lm_ids", "masked_lm_weights"], shuffle=False)
data_set = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["input_ids", "input_mask", "segment_ids",
"next_sentence_labels", "masked_lm_positions",
"masked_lm_ids", "masked_lm_weights"],
shuffle=False)
type_cast_op = C.TypeCast(mstype.int32)
new_repeat_count = repeat_count
if sink_mode:
sink_size = 100
new_repeat_count = 3
ds = ds.map(operations=type_cast_op, input_columns="masked_lm_ids")
ds = ds.map(operations=type_cast_op, input_columns="masked_lm_positions")
ds = ds.map(operations=type_cast_op, input_columns="next_sentence_labels")
ds = ds.map(operations=type_cast_op, input_columns="segment_ids")
ds = ds.map(operations=type_cast_op, input_columns="input_mask")
ds = ds.map(operations=type_cast_op, input_columns="input_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="masked_lm_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="masked_lm_positions")
data_set = data_set.map(operations=type_cast_op, input_columns="next_sentence_labels")
data_set = data_set.map(operations=type_cast_op, input_columns="segment_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="input_mask")
data_set = data_set.map(operations=type_cast_op, input_columns="input_ids")
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
logger.info("data size: {}".format(ds.get_dataset_size()))
logger.info("repeat_count: {}".format(ds.get_repeat_count()))
return ds, new_repeat_count, sink_size
data_set = data_set.batch(batch_size, drop_remainder=True)
logger.info("data size: {}".format(data_set.get_dataset_size()))
logger.info("repeat_count: {}".format(data_set.get_repeat_count()))
return data_set, new_repeat_count, sink_size
def weight_variable(shape):
@ -178,11 +179,11 @@ def test_bert_percision(enable_graph_kernel=False):
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", reserve_class_name_in_scope=False)
if enable_graph_kernel:
context.set_context(enable_graph_kernel=True)
ds, new_repeat_count, _ = me_de_train_dataset()
data_set, new_repeat_count, _ = me_de_train_dataset()
version = os.getenv('VERSION', 'large')
config = get_config(version=version)
netwithloss = BertNetworkWithLoss(config, True)
lr = BertLearningRate(decay_steps=ds.get_dataset_size() * new_repeat_count,
lr = BertLearningRate(decay_steps=data_set.get_dataset_size() * new_repeat_count,
learning_rate=5e-5, end_learning_rate=1e-9,
power=10.0, warmup_steps=0)
decay_filter = lambda x: 'layernorm' not in x.name.lower() and 'bias' not in x.name.lower()
@ -218,7 +219,7 @@ def test_bert_percision(enable_graph_kernel=False):
else:
logger.info("***************** BERT param name is 3 {}".format(name))
param.set_data(weight_variable(value.asnumpy().shape))
model.train(new_repeat_count, ds, callbacks=callback, dataset_sink_mode=False)
model.train(new_repeat_count, data_set, callbacks=callback, dataset_sink_mode=False)
# assertion occurs while the loss value, overflow state or loss_scale value is wrong
loss_value = np.array(callback.loss_list)

View File

@ -17,7 +17,7 @@ Data operations, will be used in run_pretrain.py
"""
import os
import mindspore.common.dtype as mstype
import mindspore.dataset.engine.datasets as de
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C
from mindspore import log as logger
from .config import bert_net_cfg
@ -32,24 +32,24 @@ def create_bert_dataset(epoch_size=1, device_num=1, rank=0, do_shuffle="true", d
for file_name in files:
if "tfrecord" in file_name:
data_files.append(os.path.join(data_dir, file_name))
ds = de.TFRecordDataset(data_files, schema_dir if schema_dir != "" else None,
columns_list=["input_ids", "input_mask", "segment_ids", "next_sentence_labels",
"masked_lm_positions", "masked_lm_ids", "masked_lm_weights"],
shuffle=(do_shuffle == "true"), num_shards=device_num, shard_id=rank,
shard_equal_rows=True)
ori_dataset_size = ds.get_dataset_size()
data_set = ds.TFRecordDataset(data_files, schema_dir if schema_dir != "" else None,
columns_list=["input_ids", "input_mask", "segment_ids", "next_sentence_labels",
"masked_lm_positions", "masked_lm_ids", "masked_lm_weights"],
shuffle=(do_shuffle == "true"), num_shards=device_num, shard_id=rank,
shard_equal_rows=True)
ori_dataset_size = data_set.get_dataset_size()
print('origin dataset size: ', ori_dataset_size)
new_repeat_count = int(repeat_count * ori_dataset_size // ds.get_dataset_size())
new_repeat_count = int(repeat_count * ori_dataset_size // data_set.get_dataset_size())
type_cast_op = C.TypeCast(mstype.int32)
ds = ds.map(operations=type_cast_op, input_columns="masked_lm_ids")
ds = ds.map(operations=type_cast_op, input_columns="masked_lm_positions")
ds = ds.map(operations=type_cast_op, input_columns="next_sentence_labels")
ds = ds.map(operations=type_cast_op, input_columns="segment_ids")
ds = ds.map(operations=type_cast_op, input_columns="input_mask")
ds = ds.map(operations=type_cast_op, input_columns="input_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="masked_lm_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="masked_lm_positions")
data_set = data_set.map(operations=type_cast_op, input_columns="next_sentence_labels")
data_set = data_set.map(operations=type_cast_op, input_columns="segment_ids")
data_set = data_set.map(operations=type_cast_op, input_columns="input_mask")
data_set = data_set.map(operations=type_cast_op, input_columns="input_ids")
# apply batch operations
ds = ds.batch(bert_net_cfg.batch_size, drop_remainder=True)
ds = ds.repeat(max(new_repeat_count, repeat_count))
logger.info("data size: {}".format(ds.get_dataset_size()))
logger.info("repeatcount: {}".format(ds.get_repeat_count()))
return ds, new_repeat_count
data_set = data_set.batch(bert_net_cfg.batch_size, drop_remainder=True)
data_set = data_set.repeat(max(new_repeat_count, repeat_count))
logger.info("data size: {}".format(data_set.get_dataset_size()))
logger.info("repeatcount: {}".format(data_set.get_repeat_count()))
return data_set, new_repeat_count

View File

@ -17,7 +17,7 @@
import os
import mindspore.common.dtype as mstype
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.dataset.vision.c_transforms as C
import mindspore.dataset.transforms.c_transforms as C2
@ -39,10 +39,10 @@ def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32):
device_num = int(os.getenv("RANK_SIZE"))
rank_id = int(os.getenv("RANK_ID"))
if device_num == 1:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True)
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True)
else:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=device_num, shard_id=rank_id)
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=device_num, shard_id=rank_id)
image_size = 224
mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
@ -65,15 +65,14 @@ def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32):
C.HWC2CHW()
]
type_cast_op = C2.TypeCast(mstype.int32)
ds = ds.map(operations=trans, input_columns="image", num_parallel_workers=8)
ds = ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=8)
data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=8)
data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=8)
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
data_set = data_set.batch(batch_size, drop_remainder=True)
# apply dataset repeat operation
ds = ds.repeat(repeat_num)
return ds
data_set = data_set.repeat(repeat_num)
return data_set

View File

@ -18,12 +18,11 @@
import os
import mindspore.common.dtype as mstype
import mindspore.dataset as dataset
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C2
import mindspore.dataset.vision.c_transforms as C
dataset.config.set_seed(1)
ds.config.set_seed(1)
def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32):
@ -43,10 +42,10 @@ def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32):
device_num = int(os.getenv("RANK_SIZE"))
rank_id = int(os.getenv("RANK_ID"))
if device_num == 1:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True)
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True)
else:
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=device_num, shard_id=rank_id)
data_set = ds.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True,
num_shards=device_num, shard_id=rank_id)
image_size = 224
mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
@ -71,12 +70,12 @@ def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32):
type_cast_op = C2.TypeCast(mstype.int32)
ds = ds.map(operations=trans, input_columns="image", num_parallel_workers=8)
ds = ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=8)
data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=8)
data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=8)
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
data_set = data_set.batch(batch_size, drop_remainder=True)
# apply dataset repeat operation
ds = ds.repeat(repeat_num)
return ds
data_set = data_set.repeat(repeat_num)
return data_set

View File

@ -14,11 +14,10 @@
# ============================================================================
""" create train dataset. """
from functools import partial
import mindspore.common.dtype as mstype
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C2
import mindspore.dataset.vision.c_transforms as C
@ -37,8 +36,8 @@ def create_dataset(dataset_path, config, repeat_num=1, batch_size=32):
dataset
"""
load_func = partial(de.Cifar10Dataset, dataset_path)
ds = load_func(num_parallel_workers=8, shuffle=False)
load_func = partial(ds.Cifar10Dataset, dataset_path)
data_set = load_func(num_parallel_workers=8, shuffle=False)
resize_height = config.image_height
resize_width = config.image_width
@ -54,15 +53,15 @@ def create_dataset(dataset_path, config, repeat_num=1, batch_size=32):
type_cast_op = C2.TypeCast(mstype.int32)
ds = ds.map(operations=c_trans, input_columns="image",
num_parallel_workers=8)
ds = ds.map(operations=type_cast_op,
input_columns="label", num_parallel_workers=8)
data_set = data_set.map(operations=c_trans, input_columns="image",
num_parallel_workers=8)
data_set = data_set.map(operations=type_cast_op,
input_columns="label", num_parallel_workers=8)
# apply batch operations
ds = ds.batch(batch_size, drop_remainder=True)
data_set = data_set.batch(batch_size, drop_remainder=True)
# apply dataset repeat operation
ds = ds.repeat(repeat_num)
data_set = data_set.repeat(repeat_num)
return ds
return data_set

View File

@ -16,7 +16,7 @@
Testing AutoContrast op in DE
"""
import numpy as np
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.dataset.transforms.py_transforms
import mindspore.dataset.vision.py_transforms as F
import mindspore.dataset.vision.c_transforms as C
@ -36,13 +36,13 @@ def test_auto_contrast_py(plot=False):
logger.info("Test AutoContrast Python Op")
# Original Images
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
transforms_original = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
F.Resize((224, 224)),
F.ToTensor()])
ds_original = ds.map(operations=transforms_original, input_columns="image")
ds_original = data_set.map(operations=transforms_original, input_columns="image")
ds_original = ds_original.batch(512)
@ -55,7 +55,7 @@ def test_auto_contrast_py(plot=False):
axis=0)
# AutoContrast Images
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
transforms_auto_contrast = \
mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
@ -63,7 +63,7 @@ def test_auto_contrast_py(plot=False):
F.AutoContrast(cutoff=10.0, ignore=[10, 20]),
F.ToTensor()])
ds_auto_contrast = ds.map(operations=transforms_auto_contrast, input_columns="image")
ds_auto_contrast = data_set.map(operations=transforms_auto_contrast, input_columns="image")
ds_auto_contrast = ds_auto_contrast.batch(512)
@ -96,15 +96,15 @@ def test_auto_contrast_c(plot=False):
logger.info("Test AutoContrast C Op")
# AutoContrast Images
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(operations=[C.Decode(), C.Resize((224, 224))], input_columns=["image"])
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data_set = data_set.map(operations=[C.Decode(), C.Resize((224, 224))], input_columns=["image"])
python_op = F.AutoContrast(cutoff=10.0, ignore=[10, 20])
c_op = C.AutoContrast(cutoff=10.0, ignore=[10, 20])
transforms_op = mindspore.dataset.transforms.py_transforms.Compose([lambda img: F.ToPIL()(img.astype(np.uint8)),
python_op,
np.array])
ds_auto_contrast_py = ds.map(operations=transforms_op, input_columns="image")
ds_auto_contrast_py = data_set.map(operations=transforms_op, input_columns="image")
ds_auto_contrast_py = ds_auto_contrast_py.batch(512)
@ -116,10 +116,10 @@ def test_auto_contrast_c(plot=False):
image.asnumpy(),
axis=0)
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(operations=[C.Decode(), C.Resize((224, 224))], input_columns=["image"])
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data_set = data_set.map(operations=[C.Decode(), C.Resize((224, 224))], input_columns=["image"])
ds_auto_contrast_c = ds.map(operations=c_op, input_columns="image")
ds_auto_contrast_c = data_set.map(operations=c_op, input_columns="image")
ds_auto_contrast_c = ds_auto_contrast_c.batch(512)
@ -153,8 +153,8 @@ def test_auto_contrast_one_channel_c(plot=False):
logger.info("Test AutoContrast C Op With One Channel Images")
# AutoContrast Images
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(operations=[C.Decode(), C.Resize((224, 224))], input_columns=["image"])
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data_set = data_set.map(operations=[C.Decode(), C.Resize((224, 224))], input_columns=["image"])
python_op = F.AutoContrast()
c_op = C.AutoContrast()
# not using F.ToTensor() since it converts to floats
@ -164,7 +164,7 @@ def test_auto_contrast_one_channel_c(plot=False):
python_op,
np.array])
ds_auto_contrast_py = ds.map(operations=transforms_op, input_columns="image")
ds_auto_contrast_py = data_set.map(operations=transforms_op, input_columns="image")
ds_auto_contrast_py = ds_auto_contrast_py.batch(512)
@ -176,11 +176,11 @@ def test_auto_contrast_one_channel_c(plot=False):
image.asnumpy(),
axis=0)
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(operations=[C.Decode(), C.Resize((224, 224)), lambda img: np.array(img[:, :, 0])],
input_columns=["image"])
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data_set = data_set.map(operations=[C.Decode(), C.Resize((224, 224)), lambda img: np.array(img[:, :, 0])],
input_columns=["image"])
ds_auto_contrast_c = ds.map(operations=c_op, input_columns="image")
ds_auto_contrast_c = data_set.map(operations=c_op, input_columns="image")
ds_auto_contrast_c = ds_auto_contrast_c.batch(512)
@ -208,9 +208,9 @@ def test_auto_contrast_mnist_c(plot=False):
Test AutoContrast C op with MNIST dataset (Grayscale images)
"""
logger.info("Test AutoContrast C Op With MNIST Images")
ds = de.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
ds_auto_contrast_c = ds.map(operations=C.AutoContrast(cutoff=1, ignore=(0, 255)), input_columns="image")
ds_orig = de.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
data_set = ds.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
ds_auto_contrast_c = data_set.map(operations=C.AutoContrast(cutoff=1, ignore=(0, 255)), input_columns="image")
ds_orig = ds.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
images = []
images_trans = []
@ -236,21 +236,21 @@ def test_auto_contrast_invalid_ignore_param_c():
"""
logger.info("Test AutoContrast C Op with invalid ignore parameter")
try:
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(operations=[C.Decode(),
C.Resize((224, 224)),
lambda img: np.array(img[:, :, 0])], input_columns=["image"])
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data_set = data_set.map(operations=[C.Decode(),
C.Resize((224, 224)),
lambda img: np.array(img[:, :, 0])], input_columns=["image"])
# invalid ignore
ds = ds.map(operations=C.AutoContrast(ignore=255.5), input_columns="image")
data_set = data_set.map(operations=C.AutoContrast(ignore=255.5), input_columns="image")
except TypeError as error:
logger.info("Got an exception in DE: {}".format(str(error)))
assert "Argument ignore with value 255.5 is not of type" in str(error)
try:
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(operations=[C.Decode(), C.Resize((224, 224)),
lambda img: np.array(img[:, :, 0])], input_columns=["image"])
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data_set = data_set.map(operations=[C.Decode(), C.Resize((224, 224)),
lambda img: np.array(img[:, :, 0])], input_columns=["image"])
# invalid ignore
ds = ds.map(operations=C.AutoContrast(ignore=(10, 100)), input_columns="image")
data_set = data_set.map(operations=C.AutoContrast(ignore=(10, 100)), input_columns="image")
except TypeError as error:
logger.info("Got an exception in DE: {}".format(str(error)))
assert "Argument ignore with value (10,100) is not of type" in str(error)
@ -262,22 +262,22 @@ def test_auto_contrast_invalid_cutoff_param_c():
"""
logger.info("Test AutoContrast C Op with invalid cutoff parameter")
try:
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(operations=[C.Decode(),
C.Resize((224, 224)),
lambda img: np.array(img[:, :, 0])], input_columns=["image"])
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data_set = data_set.map(operations=[C.Decode(),
C.Resize((224, 224)),
lambda img: np.array(img[:, :, 0])], input_columns=["image"])
# invalid ignore
ds = ds.map(operations=C.AutoContrast(cutoff=-10.0), input_columns="image")
data_set = data_set.map(operations=C.AutoContrast(cutoff=-10.0), input_columns="image")
except ValueError as error:
logger.info("Got an exception in DE: {}".format(str(error)))
assert "Input cutoff is not within the required interval of (0 to 100)." in str(error)
try:
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(operations=[C.Decode(),
C.Resize((224, 224)),
lambda img: np.array(img[:, :, 0])], input_columns=["image"])
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data_set = data_set.map(operations=[C.Decode(),
C.Resize((224, 224)),
lambda img: np.array(img[:, :, 0])], input_columns=["image"])
# invalid ignore
ds = ds.map(operations=C.AutoContrast(cutoff=120.0), input_columns="image")
data_set = data_set.map(operations=C.AutoContrast(cutoff=120.0), input_columns="image")
except ValueError as error:
logger.info("Got an exception in DE: {}".format(str(error)))
assert "Input cutoff is not within the required interval of (0 to 100)." in str(error)
@ -289,22 +289,24 @@ def test_auto_contrast_invalid_ignore_param_py():
"""
logger.info("Test AutoContrast python Op with invalid ignore parameter")
try:
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(operations=[mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
F.Resize((224, 224)),
F.AutoContrast(ignore=255.5),
F.ToTensor()])],
input_columns=["image"])
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data_set = data_set.map(operations=[mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
F.Resize((224, 224)),
F.AutoContrast(
ignore=255.5),
F.ToTensor()])],
input_columns=["image"])
except TypeError as error:
logger.info("Got an exception in DE: {}".format(str(error)))
assert "Argument ignore with value 255.5 is not of type" in str(error)
try:
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(operations=[mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
F.Resize((224, 224)),
F.AutoContrast(ignore=(10, 100)),
F.ToTensor()])],
input_columns=["image"])
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data_set = data_set.map(operations=[mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
F.Resize((224, 224)),
F.AutoContrast(
ignore=(10, 100)),
F.ToTensor()])],
input_columns=["image"])
except TypeError as error:
logger.info("Got an exception in DE: {}".format(str(error)))
assert "Argument ignore with value (10,100) is not of type" in str(error)
@ -316,18 +318,19 @@ def test_auto_contrast_invalid_cutoff_param_py():
"""
logger.info("Test AutoContrast python Op with invalid cutoff parameter")
try:
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(operations=[mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
F.Resize((224, 224)),
F.AutoContrast(cutoff=-10.0),
F.ToTensor()])],
input_columns=["image"])
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data_set = data_set.map(operations=[mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
F.Resize((224, 224)),
F.AutoContrast(
cutoff=-10.0),
F.ToTensor()])],
input_columns=["image"])
except ValueError as error:
logger.info("Got an exception in DE: {}".format(str(error)))
assert "Input cutoff is not within the required interval of (0 to 100)." in str(error)
try:
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data_set = data_set.map(
operations=[mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
F.Resize((224, 224)),
F.AutoContrast(cutoff=120.0),

View File

@ -17,7 +17,7 @@ Testing Equalize op in DE
"""
import numpy as np
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.dataset.transforms.py_transforms
import mindspore.dataset.vision.c_transforms as C
import mindspore.dataset.vision.py_transforms as F
@ -37,13 +37,13 @@ def test_equalize_py(plot=False):
logger.info("Test Equalize")
# Original Images
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
transforms_original = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
F.Resize((224, 224)),
F.ToTensor()])
ds_original = ds.map(operations=transforms_original, input_columns="image")
ds_original = data_set.map(operations=transforms_original, input_columns="image")
ds_original = ds_original.batch(512)
@ -56,14 +56,14 @@ def test_equalize_py(plot=False):
axis=0)
# Color Equalized Images
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
transforms_equalize = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
F.Resize((224, 224)),
F.Equalize(),
F.ToTensor()])
ds_equalize = ds.map(operations=transforms_equalize, input_columns="image")
ds_equalize = data_set.map(operations=transforms_equalize, input_columns="image")
ds_equalize = ds_equalize.batch(512)
@ -92,11 +92,11 @@ def test_equalize_c(plot=False):
logger.info("Test Equalize cpp op")
# Original Images
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
transforms_original = [C.Decode(), C.Resize(size=[224, 224])]
ds_original = ds.map(operations=transforms_original, input_columns="image")
ds_original = data_set.map(operations=transforms_original, input_columns="image")
ds_original = ds_original.batch(512)
@ -109,12 +109,12 @@ def test_equalize_c(plot=False):
axis=0)
# Equalize Images
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
transform_equalize = [C.Decode(), C.Resize(size=[224, 224]),
C.Equalize()]
ds_equalize = ds.map(operations=transform_equalize, input_columns="image")
ds_equalize = data_set.map(operations=transform_equalize, input_columns="image")
ds_equalize = ds_equalize.batch(512)
@ -142,10 +142,10 @@ def test_equalize_py_c(plot=False):
logger.info("Test Equalize cpp and python op")
# equalize Images in cpp
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(operations=[C.Decode(), C.Resize((224, 224))], input_columns=["image"])
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data_set = data_set.map(operations=[C.Decode(), C.Resize((224, 224))], input_columns=["image"])
ds_c_equalize = ds.map(operations=C.Equalize(), input_columns="image")
ds_c_equalize = data_set.map(operations=C.Equalize(), input_columns="image")
ds_c_equalize = ds_c_equalize.batch(512)
@ -158,15 +158,15 @@ def test_equalize_py_c(plot=False):
axis=0)
# Equalize images in python
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(operations=[C.Decode(), C.Resize((224, 224))], input_columns=["image"])
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data_set = data_set.map(operations=[C.Decode(), C.Resize((224, 224))], input_columns=["image"])
transforms_p_equalize = mindspore.dataset.transforms.py_transforms.Compose([lambda img: img.astype(np.uint8),
F.ToPIL(),
F.Equalize(),
np.array])
ds_p_equalize = ds.map(operations=transforms_p_equalize, input_columns="image")
ds_p_equalize = data_set.map(operations=transforms_p_equalize, input_columns="image")
ds_p_equalize = ds_p_equalize.batch(512)
@ -197,11 +197,11 @@ def test_equalize_one_channel():
c_op = C.Equalize()
try:
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(operations=[C.Decode(), C.Resize((224, 224)),
lambda img: np.array(img[:, :, 0])], input_columns=["image"])
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data_set = data_set.map(operations=[C.Decode(), C.Resize((224, 224)),
lambda img: np.array(img[:, :, 0])], input_columns=["image"])
ds.map(operations=c_op, input_columns="image")
data_set.map(operations=c_op, input_columns="image")
except RuntimeError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
@ -213,9 +213,9 @@ def test_equalize_mnist_c(plot=False):
Test Equalize C op with MNIST dataset (Grayscale images)
"""
logger.info("Test Equalize C Op With MNIST Images")
ds = de.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
ds_equalize_c = ds.map(operations=C.Equalize(), input_columns="image")
ds_orig = de.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
data_set = ds.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
ds_equalize_c = data_set.map(operations=C.Equalize(), input_columns="image")
ds_orig = ds.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
images = []
images_trans = []
@ -242,7 +242,7 @@ def test_equalize_md5_py():
logger.info("Test Equalize")
# First dataset
data1 = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data1 = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
transforms = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
F.Equalize(),
F.ToTensor()])
@ -260,14 +260,14 @@ def test_equalize_md5_c():
logger.info("Test Equalize cpp op with md5 check")
# Generate dataset
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
transforms_equalize = [C.Decode(),
C.Resize(size=[224, 224]),
C.Equalize(),
F.ToTensor()]
data = ds.map(operations=transforms_equalize, input_columns="image")
data = data_set.map(operations=transforms_equalize, input_columns="image")
# Compare with expected md5 from images
filename = "equalize_01_result_c.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)

View File

@ -17,7 +17,7 @@ Testing Invert op in DE
"""
import numpy as np
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.dataset.transforms.py_transforms
import mindspore.dataset.vision.py_transforms as F
import mindspore.dataset.vision.c_transforms as C
@ -36,13 +36,13 @@ def test_invert_py(plot=False):
logger.info("Test Invert Python op")
# Original Images
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
transforms_original = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
F.Resize((224, 224)),
F.ToTensor()])
ds_original = ds.map(operations=transforms_original, input_columns="image")
ds_original = data_set.map(operations=transforms_original, input_columns="image")
ds_original = ds_original.batch(512)
@ -55,14 +55,14 @@ def test_invert_py(plot=False):
axis=0)
# Color Inverted Images
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
transforms_invert = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
F.Resize((224, 224)),
F.Invert(),
F.ToTensor()])
ds_invert = ds.map(operations=transforms_invert, input_columns="image")
ds_invert = data_set.map(operations=transforms_invert, input_columns="image")
ds_invert = ds_invert.batch(512)
@ -91,11 +91,11 @@ def test_invert_c(plot=False):
logger.info("Test Invert cpp op")
# Original Images
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
transforms_original = [C.Decode(), C.Resize(size=[224, 224])]
ds_original = ds.map(operations=transforms_original, input_columns="image")
ds_original = data_set.map(operations=transforms_original, input_columns="image")
ds_original = ds_original.batch(512)
@ -108,12 +108,12 @@ def test_invert_c(plot=False):
axis=0)
# Invert Images
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
transform_invert = [C.Decode(), C.Resize(size=[224, 224]),
C.Invert()]
ds_invert = ds.map(operations=transform_invert, input_columns="image")
ds_invert = data_set.map(operations=transform_invert, input_columns="image")
ds_invert = ds_invert.batch(512)
@ -141,10 +141,10 @@ def test_invert_py_c(plot=False):
logger.info("Test Invert cpp and python op")
# Invert Images in cpp
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(operations=[C.Decode(), C.Resize((224, 224))], input_columns=["image"])
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data_set = data_set.map(operations=[C.Decode(), C.Resize((224, 224))], input_columns=["image"])
ds_c_invert = ds.map(operations=C.Invert(), input_columns="image")
ds_c_invert = data_set.map(operations=C.Invert(), input_columns="image")
ds_c_invert = ds_c_invert.batch(512)
@ -157,15 +157,15 @@ def test_invert_py_c(plot=False):
axis=0)
# invert images in python
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(operations=[C.Decode(), C.Resize((224, 224))], input_columns=["image"])
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data_set = data_set.map(operations=[C.Decode(), C.Resize((224, 224))], input_columns=["image"])
transforms_p_invert = mindspore.dataset.transforms.py_transforms.Compose([lambda img: img.astype(np.uint8),
F.ToPIL(),
F.Invert(),
np.array])
ds_p_invert = ds.map(operations=transforms_p_invert, input_columns="image")
ds_p_invert = data_set.map(operations=transforms_p_invert, input_columns="image")
ds_p_invert = ds_p_invert.batch(512)
@ -196,11 +196,11 @@ def test_invert_one_channel():
c_op = C.Invert()
try:
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
ds = ds.map(operations=[C.Decode(), C.Resize((224, 224)),
lambda img: np.array(img[:, :, 0])], input_columns=["image"])
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data_set = data_set.map(operations=[C.Decode(), C.Resize((224, 224)),
lambda img: np.array(img[:, :, 0])], input_columns=["image"])
ds.map(operations=c_op, input_columns="image")
data_set.map(operations=c_op, input_columns="image")
except RuntimeError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
@ -214,13 +214,13 @@ def test_invert_md5_py():
logger.info("Test Invert python op with md5 check")
# Generate dataset
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
transforms_invert = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
F.Invert(),
F.ToTensor()])
data = ds.map(operations=transforms_invert, input_columns="image")
data = data_set.map(operations=transforms_invert, input_columns="image")
# Compare with expected md5 from images
filename = "invert_01_result_py.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
@ -233,14 +233,14 @@ def test_invert_md5_c():
logger.info("Test Invert cpp op with md5 check")
# Generate dataset
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
transforms_invert = [C.Decode(),
C.Resize(size=[224, 224]),
C.Invert(),
F.ToTensor()]
data = ds.map(operations=transforms_invert, input_columns="image")
data = data_set.map(operations=transforms_invert, input_columns="image")
# Compare with expected md5 from images
filename = "invert_01_result_c.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)

View File

@ -19,7 +19,6 @@ import numpy as np
import pytest
import mindspore.dataset as ds
import mindspore.dataset.engine as de
import mindspore.dataset.transforms.py_transforms
import mindspore.dataset.vision.c_transforms as vision
import mindspore.dataset.vision.py_transforms as F
@ -44,7 +43,7 @@ def test_random_color_py(degrees=(0.1, 1.9), plot=False):
logger.info("Test RandomColor")
# Original Images
data = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
transforms_original = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
F.Resize((224, 224)),
@ -63,7 +62,7 @@ def test_random_color_py(degrees=(0.1, 1.9), plot=False):
axis=0)
# Random Color Adjusted Images
data = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
transforms_random_color = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
F.Resize((224, 224)),
@ -146,7 +145,7 @@ def test_random_color_py_md5():
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
# Generate dataset
data = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
transforms = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
F.RandomColor((2.0, 2.5)),
@ -234,7 +233,7 @@ def test_random_color_c_errors():
assert "degrees must be a sequence with length 2." in str(error_info.value)
# RandomColor Cpp Op will fail with one channel input
mnist_ds = de.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
mnist_ds = ds.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
mnist_ds = mnist_ds.map(operations=vision.RandomColor(), input_columns="image")
with pytest.raises(RuntimeError) as error_info:

View File

@ -17,7 +17,6 @@ Testing RandomSharpness op in DE
"""
import numpy as np
import mindspore.dataset as ds
import mindspore.dataset.engine as de
import mindspore.dataset.transforms.py_transforms
import mindspore.dataset.vision.py_transforms as F
import mindspore.dataset.vision.c_transforms as C
@ -38,7 +37,7 @@ def test_random_sharpness_py(degrees=(0.7, 0.7), plot=False):
logger.info("Test RandomSharpness python op")
# Original Images
data = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
transforms_original = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
F.Resize((224, 224)),
@ -57,7 +56,7 @@ def test_random_sharpness_py(degrees=(0.7, 0.7), plot=False):
axis=0)
# Random Sharpness Adjusted Images
data = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
py_op = F.RandomSharpness()
if degrees is not None:
@ -108,7 +107,7 @@ def test_random_sharpness_py_md5():
transform = mindspore.dataset.transforms.py_transforms.Compose(transforms)
# Generate dataset
data = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data = data.map(operations=transform, input_columns=["image"])
# check results with md5 comparison
@ -128,7 +127,7 @@ def test_random_sharpness_c(degrees=(1.6, 1.6), plot=False):
logger.info("Test RandomSharpness cpp op")
# Original Images
data = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
transforms_original = [C.Decode(),
C.Resize((224, 224))]
@ -146,7 +145,7 @@ def test_random_sharpness_c(degrees=(1.6, 1.6), plot=False):
axis=0)
# Random Sharpness Adjusted Images
data = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
c_op = C.RandomSharpness()
if degrees is not None:
@ -194,7 +193,7 @@ def test_random_sharpness_c_md5():
]
# Generate dataset
data = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data = data.map(operations=transforms, input_columns=["image"])
# check results with md5 comparison
@ -213,7 +212,7 @@ def test_random_sharpness_c_py(degrees=(1.0, 1.0), plot=False):
logger.info("Test RandomSharpness C and python Op")
# RandomSharpness Images
data = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data = data.map(operations=[C.Decode(), C.Resize((200, 300))], input_columns=["image"])
python_op = F.RandomSharpness(degrees)
@ -236,7 +235,7 @@ def test_random_sharpness_c_py(degrees=(1.0, 1.0), plot=False):
image,
axis=0)
data = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data = data.map(operations=[C.Decode(), C.Resize((200, 300))], input_columns=["image"])
ds_images_random_sharpness_c = data.map(operations=c_op, input_columns="image")
@ -271,10 +270,10 @@ def test_random_sharpness_one_channel_c(degrees=(1.4, 1.4), plot=False):
if degrees is not None:
c_op = C.RandomSharpness(degrees)
# RandomSharpness Images
data = de.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
data = ds.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
ds_random_sharpness_c = data.map(operations=c_op, input_columns="image")
# Original images
data = de.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
data = ds.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
images = []
images_trans = []
@ -296,7 +295,7 @@ def test_random_sharpness_invalid_params():
"""
logger.info("Test RandomSharpness with invalid input parameters.")
try:
data = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data = data.map(operations=[C.Decode(), C.Resize((224, 224)),
C.RandomSharpness(10)], input_columns=["image"])
except TypeError as error:
@ -304,7 +303,7 @@ def test_random_sharpness_invalid_params():
assert "tuple" in str(error)
try:
data = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data = data.map(operations=[C.Decode(), C.Resize((224, 224)),
C.RandomSharpness((-10, 10))], input_columns=["image"])
except ValueError as error:
@ -312,7 +311,7 @@ def test_random_sharpness_invalid_params():
assert "interval" in str(error)
try:
data = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data = data.map(operations=[C.Decode(), C.Resize((224, 224)),
C.RandomSharpness((10, 5))], input_columns=["image"])
except ValueError as error:

View File

@ -17,7 +17,6 @@ Testing RandomSolarizeOp op in DE
"""
import pytest
import mindspore.dataset as ds
import mindspore.dataset.engine as de
import mindspore.dataset.vision.c_transforms as vision
from mindspore import log as logger
from util import visualize_list, save_and_check_md5, config_get_set_seed, config_get_set_num_parallel_workers, \
@ -78,8 +77,8 @@ def test_random_solarize_mnist(plot=False, run_golden=True):
Test RandomSolarize op with MNIST dataset (Grayscale images)
"""
mnist_1 = de.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
mnist_2 = de.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
mnist_1 = ds.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
mnist_2 = ds.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
mnist_2 = mnist_2.map(operations=vision.RandomSolarize((0, 255)), input_columns="image")
images = []

View File

@ -18,7 +18,7 @@ Testing UniformAugment in DE
import numpy as np
import pytest
import mindspore.dataset.engine as de
import mindspore.dataset as ds
import mindspore.dataset.transforms.py_transforms
import mindspore.dataset.vision.c_transforms as C
import mindspore.dataset.vision.py_transforms as F
@ -35,13 +35,13 @@ def test_uniform_augment(plot=False, num_ops=2):
logger.info("Test UniformAugment")
# Original Images
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
transforms_original = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
F.Resize((224, 224)),
F.ToTensor()])
ds_original = ds.map(operations=transforms_original, input_columns="image")
ds_original = data_set.map(operations=transforms_original, input_columns="image")
ds_original = ds_original.batch(512)
@ -54,7 +54,7 @@ def test_uniform_augment(plot=False, num_ops=2):
axis=0)
# UniformAugment Images
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
transform_list = [F.RandomRotation(45),
F.RandomColor(),
@ -70,7 +70,7 @@ def test_uniform_augment(plot=False, num_ops=2):
num_ops=num_ops),
F.ToTensor()])
ds_ua = ds.map(operations=transforms_ua, input_columns="image")
ds_ua = data_set.map(operations=transforms_ua, input_columns="image")
ds_ua = ds_ua.batch(512)
@ -99,12 +99,12 @@ def test_cpp_uniform_augment(plot=False, num_ops=2):
logger.info("Test CPP UniformAugment")
# Original Images
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
transforms_original = [C.Decode(), C.Resize(size=[224, 224]),
F.ToTensor()]
ds_original = ds.map(operations=transforms_original, input_columns="image")
ds_original = data_set.map(operations=transforms_original, input_columns="image")
ds_original = ds_original.batch(512)
@ -117,7 +117,7 @@ def test_cpp_uniform_augment(plot=False, num_ops=2):
axis=0)
# UniformAugment Images
ds = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
transforms_ua = [C.RandomCrop(size=[224, 224], padding=[32, 32, 32, 32]),
C.RandomHorizontalFlip(),
C.RandomVerticalFlip(),
@ -130,7 +130,7 @@ def test_cpp_uniform_augment(plot=False, num_ops=2):
uni_aug,
F.ToTensor()]
ds_ua = ds.map(operations=transforms_all, input_columns="image", num_parallel_workers=1)
ds_ua = data_set.map(operations=transforms_all, input_columns="image", num_parallel_workers=1)
ds_ua = ds_ua.batch(512)
@ -240,7 +240,7 @@ def test_cpp_uniform_augment_random_crop_badinput(num_ops=1):
logger.info("Test CPP UniformAugment with random_crop bad input")
batch_size = 2
cifar10_dir = "../data/dataset/testCifar10Data"
ds1 = de.Cifar10Dataset(cifar10_dir, shuffle=False) # shape = [32,32,3]
ds1 = ds.Cifar10Dataset(cifar10_dir, shuffle=False) # shape = [32,32,3]
transforms_ua = [
# Note: crop size [224, 224] > image size [32, 32]