diff --git a/model_zoo/official/cv/mobilenetv2/README.md b/model_zoo/official/cv/mobilenetv2/README.md index 181dfecb226..2302ae1a3a6 100644 --- a/model_zoo/official/cv/mobilenetv2/README.md +++ b/model_zoo/official/cv/mobilenetv2/README.md @@ -10,6 +10,7 @@ - [Script and Sample Code](#script-and-sample-code) - [Training Process](#training-process) - [Evaluation Process](#eval-process) + - [Export MindIR](#export-mindir) - [Model Description](#model-description) - [Performance](#performance) - [Training Performance](#training-performance) @@ -62,21 +63,22 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil ```python ├── MobileNetV2 - ├── README.md # descriptions about MobileNetV2 + ├── README.md # descriptions about MobileNetV2 ├── scripts - │ ├──run_train.sh # shell script for train, fine_tune or incremental learn with CPU, GPU or Ascend - │ ├──run_eval.sh # shell script for evaluation with CPU, GPU or Ascend + │ ├──run_train.sh # shell script for train, fine_tune or incremental learn with CPU, GPU or Ascend + │ ├──run_eval.sh # shell script for evaluation with CPU, GPU or Ascend ├── src - │ ├──args.py # parse args - │ ├──config.py # parameter configuration - │ ├──dataset.py # creating dataset + │ ├──args.py # parse args + │ ├──config.py # parameter configuration + │ ├──dataset.py # creating dataset │ ├──lr_generator.py # learning rate config │ ├──mobilenetV2.py # MobileNetV2 architecture - │ ├──models.py # contain define_net and Loss, Monitor - │ ├──utils.py # utils to load ckpt_file for fine tune or incremental learn - ├── train.py # training script - ├── eval.py # evaluation script - ├── mindspore_hub_conf.py # mindspore hub interface + │ ├──models.py # contain define_net and Loss, Monitor + │ ├──utils.py # utils to load ckpt_file for fine tune or incremental learn + ├── train.py # training script + ├── eval.py # evaluation script + ├── export.py # export mindir script + ├── mindspore_hub_conf.py # mindspore hub interface ``` ## [Training process](#contents) @@ -172,6 +174,14 @@ Inference result will be stored in the example path, you can find result like th result: {'acc': 0.71976314102564111} ckpt=./ckpt_0/mobilenet-200_625.ckpt ``` +## [Export MindIR](#contents) + +Change the export mode and export file in `src/config.py`, and run `export.py`. + +``` +python export.py --platform [PLATFORM] --pretrain_ckpt [CKPT_PATH] +``` + # [Model description](#contents) ## [Performance](#contents) diff --git a/model_zoo/official/cv/mobilenetv2/export.py b/model_zoo/official/cv/mobilenetv2/export.py new file mode 100644 index 00000000000..58b6a578cf9 --- /dev/null +++ b/model_zoo/official/cv/mobilenetv2/export.py @@ -0,0 +1,35 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +""" +mobilenetv2 export mindir. +""" +import numpy as np +from mindspore import Tensor +from mindspore.train.serialization import export +from src.config import set_config +from src.args import export_parse_args +from src.models import define_net, load_ckpt +from src.utils import set_context + +if __name__ == '__main__': + args_opt = export_parse_args() + cfg = set_config(args_opt) + set_context(cfg) + _, _, net = define_net(cfg, args_opt.is_training) + + load_ckpt(net, args_opt.pretrain_ckpt) + input_shp = [1, 3, cfg.image_height, cfg.image_width] + input_array = Tensor(np.random.uniform(-1.0, 1.0, size=input_shp).astype(np.float32)) + export(net, input_array, file_name=cfg.export_file, file_format=cfg.export_format) diff --git a/model_zoo/official/cv/mobilenetv2/scripts/run_train.sh b/model_zoo/official/cv/mobilenetv2/scripts/run_train.sh index db84aed3b05..350e2e6d3db 100644 --- a/model_zoo/official/cv/mobilenetv2/scripts/run_train.sh +++ b/model_zoo/official/cv/mobilenetv2/scripts/run_train.sh @@ -31,14 +31,14 @@ run_ascend() BASEPATH=$(cd "`dirname $0`" || exit; pwd) export PYTHONPATH=${BASEPATH}:$PYTHONPATH export RANK_TABLE_FILE=$4 - DEVICE_NUM=$2 + export RANK_SIZE=$2 if [ -d "../train" ]; then rm -rf ../train fi mkdir ../train cd ../train || exit - for((i=0; i<${DEVICE_NUM}; i++)) + for((i=0; i<${RANK_SIZE}; i++)) do export DEVICE_ID=$i export RANK_ID=$i diff --git a/model_zoo/official/cv/mobilenetv2/src/args.py b/model_zoo/official/cv/mobilenetv2/src/args.py index 5308e8f8ed6..d972848d0a2 100644 --- a/model_zoo/official/cv/mobilenetv2/src/args.py +++ b/model_zoo/official/cv/mobilenetv2/src/args.py @@ -61,4 +61,14 @@ def eval_parse_args(): eval_args = eval_parser.parse_args() eval_args.is_training = False return eval_args - \ No newline at end of file + +def export_parse_args(): + export_parser = argparse.ArgumentParser(description='Image classification export') + export_parser.add_argument('--platform', type=str, default="Ascend", choices=("Ascend", "GPU", "CPU"), \ + help='run platform, only support GPU, CPU and Ascend') + export_parser.add_argument('--pretrain_ckpt', type=str, required=True, help='Pretrained checkpoint path \ + for fine tune or incremental learning') + export_args = export_parser.parse_args() + export_args.is_training = False + export_args.run_distribute = False + return export_args diff --git a/model_zoo/official/cv/mobilenetv2/src/config.py b/model_zoo/official/cv/mobilenetv2/src/config.py index 5c821b8b861..5eeceeec51e 100644 --- a/model_zoo/official/cv/mobilenetv2/src/config.py +++ b/model_zoo/official/cv/mobilenetv2/src/config.py @@ -19,6 +19,8 @@ import os from easydict import EasyDict as ed def set_config(args): + if not args.run_distribute: + args.run_distribute = False config_cpu = ed({ "num_classes": 26, "image_height": 224, @@ -38,8 +40,9 @@ def set_config(args): "keep_checkpoint_max": 20, "save_checkpoint_path": "./", "platform": args.platform, - "run_distribute": False, - "activation": "Softmax" + "activation": "Softmax", + "export_format": "MINDIR", + "export_file": "mobilenetv2.mindir" }) config_gpu = ed({ "num_classes": 1000, @@ -62,7 +65,9 @@ def set_config(args): "platform": args.platform, "ccl": "nccl", "run_distribute": args.run_distribute, - "activation": "Softmax" + "activation": "Softmax", + "export_format": "MINDIR", + "export_file": "mobilenetv2.mindir" }) config_ascend = ed({ "num_classes": 1000, @@ -88,7 +93,9 @@ def set_config(args): "rank_id": int(os.getenv('RANK_ID', '0')), "rank_size": int(os.getenv('RANK_SIZE', '1')), "run_distribute": int(os.getenv('RANK_SIZE', '1')) > 1., - "activation": "Softmax" + "activation": "Softmax", + "export_format": "MINDIR", + "export_file": "mobilenetv2.mindir" }) config = ed({"CPU": config_cpu, "GPU": config_gpu, diff --git a/model_zoo/official/cv/mobilenetv3/Readme.md b/model_zoo/official/cv/mobilenetv3/Readme.md index 1138975d6a4..86ff26f3fde 100644 --- a/model_zoo/official/cv/mobilenetv3/Readme.md +++ b/model_zoo/official/cv/mobilenetv3/Readme.md @@ -9,6 +9,7 @@ - [Training Process](#training-process) - [Evaluation Process](#evaluation-process) - [Evaluation](#evaluation) + - [Export MindIR](#export-mindir) - [Model Description](#model-description) - [Performance](#performance) - [Training Performance](#evaluation-performance) @@ -57,18 +58,19 @@ Dataset used: [imagenet](http://www.image-net.org/) ```python ├── MobileNetV3 - ├── Readme.md # descriptions about MobileNetV3 + ├── Readme.md # descriptions about MobileNetV3 ├── scripts - │ ├──run_train.sh # shell script for train - │ ├──run_eval.sh # shell script for evaluation + │ ├──run_train.sh # shell script for train + │ ├──run_eval.sh # shell script for evaluation ├── src - │ ├──config.py # parameter configuration - │ ├──dataset.py # creating dataset + │ ├──config.py # parameter configuration + │ ├──dataset.py # creating dataset │ ├──lr_generator.py # learning rate config │ ├──mobilenetV3.py # MobileNetV3 architecture - ├── train.py # training script - ├── eval.py # evaluation script - ├── mindspore_hub_conf.py # mindspore hub interface + ├── train.py # training script + ├── eval.py # evaluation script + ├── export.py # export mindir script + ├── mindspore_hub_conf.py # mindspore hub interface ``` ## [Training process](#contents) @@ -129,6 +131,14 @@ Inference result will be stored in the example path, you can find result like th result: {'acc': 0.71976314102564111} ckpt=/path/to/checkpoint/mobilenet-200_625.ckpt ``` +## [Export MindIR](#contents) + +Change the export mode and export file in `src/config.py`, and run `export.py`. + +``` +python export.py --device_target [PLATFORM] --checkpoint_path [CKPT_PATH] +``` + # [Model description](#contents) ## [Performance](#contents) diff --git a/model_zoo/official/cv/mobilenetv3/export.py b/model_zoo/official/cv/mobilenetv3/export.py new file mode 100644 index 00000000000..bfef101ccc8 --- /dev/null +++ b/model_zoo/official/cv/mobilenetv3/export.py @@ -0,0 +1,45 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +""" +mobilenetv3 export mindir. +""" +import argparse +import numpy as np +from mindspore import context, Tensor +from mindspore.train.serialization import load_checkpoint, load_param_into_net, export +from src.config import config_gpu +from src.mobilenetV3 import mobilenet_v3_large + + +parser = argparse.ArgumentParser(description='Image classification') +parser.add_argument('--checkpoint_path', type=str, required=True, help='Checkpoint file path') +parser.add_argument('--device_target', type=str, default="GPU", help='run device_target') +args_opt = parser.parse_args() + +if __name__ == '__main__': + cfg = None + if args_opt.device_target == "GPU": + cfg = config_gpu + context.set_context(mode=context.GRAPH_MODE, device_target="GPU") + else: + raise ValueError("Unsupported device_target.") + + net = mobilenet_v3_large(num_classes=cfg.num_classes, activation="Softmax") + + param_dict = load_checkpoint(args_opt.checkpoint_path) + load_param_into_net(net, param_dict) + input_shp = [1, 3, cfg.image_height, cfg.image_width] + input_array = Tensor(np.random.uniform(-1.0, 1.0, size=input_shp).astype(np.float32)) + export(net, input_array, file_name=cfg.export_file, file_format=cfg.export_format) diff --git a/model_zoo/official/cv/mobilenetv3/src/config.py b/model_zoo/official/cv/mobilenetv3/src/config.py index 586b93a7880..317f3e0073e 100644 --- a/model_zoo/official/cv/mobilenetv3/src/config.py +++ b/model_zoo/official/cv/mobilenetv3/src/config.py @@ -33,4 +33,6 @@ config_gpu = ed({ "save_checkpoint_epochs": 1, "keep_checkpoint_max": 500, "save_checkpoint_path": "./checkpoint", + "export_format": "MINDIR", + "export_file": "mobilenetv3.mindir" }) diff --git a/model_zoo/official/cv/resnext50/README.md b/model_zoo/official/cv/resnext50/README.md index aa5b492f2d8..c2b7a1c030a 100644 --- a/model_zoo/official/cv/resnext50/README.md +++ b/model_zoo/official/cv/resnext50/README.md @@ -12,6 +12,7 @@ - [Script Parameters](#script-parameters) - [Training Process](#training-process) - [Evaluation Process](#evaluation-process) + - [Export MindIR](#export-mindir) - [Model Description](#model-description) - [Performance](#performance) - [Training Performance](#evaluation-performance) @@ -97,6 +98,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil ├─warmup_step_lr.py # warmup step learning rate ├─eval.py # eval net ├──train.py # train net + ├──export.py # export mindir script ├──mindspore_hub_conf.py # mindspore hub interface ``` @@ -206,6 +208,14 @@ acc=78.16%(TOP1) acc=93.88%(TOP5) ``` +## [Export MindIR](#contents) + +Change the export mode and export file in `src/config.py`, and run `export.py`. + +``` +python export.py --platform PLATFORM --pretrained CKPT_PATH +``` + # [Model description](#contents) ## [Performance](#contents) diff --git a/model_zoo/official/cv/resnext50/export.py b/model_zoo/official/cv/resnext50/export.py new file mode 100644 index 00000000000..a04f9e9dd7f --- /dev/null +++ b/model_zoo/official/cv/resnext50/export.py @@ -0,0 +1,56 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +""" +resnext export mindir. +""" +import argparse +import numpy as np +from mindspore import context, Tensor +from mindspore.train.serialization import load_checkpoint, load_param_into_net, export +from src.config import config +from src.image_classification import get_network + + +def parse_args(): + """parse_args""" + parser = argparse.ArgumentParser('mindspore classification test') + parser.add_argument('--platform', type=str, default='Ascend', choices=('Ascend', 'GPU'), help='run platform') + + parser.add_argument('--pretrained', type=str, required=True, help='fully path of pretrained model to load. ' + 'If it is a direction, it will test all ckpt') + + args, _ = parser.parse_known_args() + args.image_size = config.image_size + args.num_classes = config.num_classes + args.backbone = config.backbone + + args.image_size = list(map(int, config.image_size.split(','))) + args.image_height = args.image_size[0] + args.image_width = args.image_size[1] + args.export_format = config.export_format + args.export_file = config.export_file + return args + +if __name__ == '__main__': + args_export = parse_args() + context.set_context(mode=context.GRAPH_MODE, device_target=args_export.platform) + + net = get_network(args_export.backbone, num_classes=args_export.num_classes, platform=args_export.platform) + + param_dict = load_checkpoint(args_export.pretrained) + load_param_into_net(net, param_dict) + input_shp = [1, 3, args_export.image_height, args_export.image_width] + input_array = Tensor(np.random.uniform(-1.0, 1.0, size=input_shp).astype(np.float32)) + export(net, input_array, file_name=args_export.export_file, file_format=args_export.export_format) diff --git a/model_zoo/official/cv/resnext50/src/config.py b/model_zoo/official/cv/resnext50/src/config.py index 0acff083421..75a39966f22 100644 --- a/model_zoo/official/cv/resnext50/src/config.py +++ b/model_zoo/official/cv/resnext50/src/config.py @@ -42,5 +42,7 @@ config = ed({ "is_save_on_master": 1, "rank": 0, - "group_size": 1 + "group_size": 1, + "export_format": "MINDIR", + "export_file": "resnext50.mindir" })