forked from mindspore-Ecosystem/mindspore
!7298 refactor seed interfaces
Merge pull request !7298 from yihuaijie/master
This commit is contained in:
commit
311a4b0dd1
|
@ -18,7 +18,7 @@ from .api import ms_function
|
|||
from .dtype import *
|
||||
from .parameter import Parameter, ParameterTuple
|
||||
from .tensor import MetaTensor, Tensor, RowTensor, SparseTensor
|
||||
from .seed import set_seed, _get_seed, get_global_seed
|
||||
from .seed import set_seed, get_seed
|
||||
|
||||
|
||||
__all__ = dtype.__all__
|
||||
|
@ -27,5 +27,5 @@ __all__.extend([
|
|||
'ms_function', # api
|
||||
'Parameter', 'ParameterTuple', # parameter
|
||||
"dtype",
|
||||
"set_seed", "_get_seed", "get_global_seed" # random seed
|
||||
"set_seed", "get_seed" # random seed
|
||||
])
|
||||
|
|
|
@ -24,7 +24,7 @@ from mindspore import log as logger
|
|||
|
||||
from . import dtype as mstype
|
||||
from .tensor import Tensor
|
||||
from .seed import get_global_seed
|
||||
from .seed import get_seed
|
||||
from .._c_expression import random_normal
|
||||
|
||||
_INITIALIZER_ALIAS = dict()
|
||||
|
@ -89,7 +89,7 @@ class Initializer:
|
|||
logger.error(msg)
|
||||
raise ValueError(msg)
|
||||
|
||||
global_seed = get_global_seed()
|
||||
global_seed = get_seed()
|
||||
need_set_seed = ((slice_index is not None) and (global_seed is None))
|
||||
seed_saved = np.random.get_state()[1][0]
|
||||
if need_set_seed:
|
||||
|
|
|
@ -25,6 +25,15 @@ keyConstant = [3528531795, 2654435769, 3449720151, 3144134277]
|
|||
_GLOBAL_SEED = None
|
||||
_KERNEL_SEED = {}
|
||||
|
||||
|
||||
def _reset_op_seed():
|
||||
"""
|
||||
Reset op seeds in the kernel's dictionary.
|
||||
"""
|
||||
for kernel_name, op_seed in _KERNEL_SEED.items():
|
||||
_KERNEL_SEED[(kernel_name, op_seed)] = op_seed
|
||||
|
||||
|
||||
def set_seed(seed):
|
||||
"""
|
||||
Set global random seed.
|
||||
|
@ -46,6 +55,81 @@ def set_seed(seed):
|
|||
Raises:
|
||||
ValueError: If seed is invalid (< 0).
|
||||
TypeError: If seed isn't a int.
|
||||
|
||||
Examples:
|
||||
1. If global seed is not set, numpy.random and initializer will choose a random seed:
|
||||
>>> np_1 = np.random.normal(0, 1, [1]).astype(np.float32) # A1
|
||||
>>> np_1 = np.random.normal(0, 1, [1]).astype(np.float32) # A2
|
||||
>>> w1 = Parameter(initializer("uniform", [2, 2], ms.float32), name="w1") # W1
|
||||
>>> w1 = Parameter(initializer("uniform", [2, 2], ms.float32), name="w1") # W2
|
||||
Rerun the program will get diferent results:
|
||||
>>> np_1 = np.random.normal(0, 1, [1]).astype(np.float32) # A3
|
||||
>>> np_1 = np.random.normal(0, 1, [1]).astype(np.float32) # A4
|
||||
>>> w1 = Parameter(initializer("uniform", [2, 2], ms.float32), name="w1") # W3
|
||||
>>> w1 = Parameter(initializer("uniform", [2, 2], ms.float32), name="w1") # W4
|
||||
|
||||
2. If global seed is set, numpy.random and initializer will use it:
|
||||
>>> set_seed(1234)
|
||||
>>> np_1 = np.random.normal(0, 1, [1]).astype(np.float32) # A1
|
||||
>>> np_1 = np.random.normal(0, 1, [1]).astype(np.float32) # A2
|
||||
>>> w1 = Parameter(initializer("uniform", [2, 2], ms.float32), name="w1") # W1
|
||||
>>> w1 = Parameter(initializer("uniform", [2, 2], ms.float32), name="w1") # W2
|
||||
Rerun the program will get the same results:
|
||||
>>> set_seed(1234)
|
||||
>>> np_1 = np.random.normal(0, 1, [1]).astype(np.float32) # A1
|
||||
>>> np_1 = np.random.normal(0, 1, [1]).astype(np.float32) # A2
|
||||
>>> w1 = Parameter(initializer("uniform", [2, 2], ms.float32), name="w1") # W1
|
||||
>>> w1 = Parameter(initializer("uniform", [2, 2], ms.float32), name="w1") # W2
|
||||
|
||||
3. If neither global seed nor op seed is set, mindspore.ops.composite.random_ops and
|
||||
mindspore.nn.probability.distribution will choose a random seed:
|
||||
>>> c1 = C.uniform((1, 4)) # C1
|
||||
>>> c2 = C.uniform((1, 4)) # C2
|
||||
Rerun the program will get different results:
|
||||
>>> c1 = C.uniform((1, 4)) # C3
|
||||
>>> c2 = C.uniform((1, 4)) # C4
|
||||
|
||||
4. If global seed is set, but op seed is not set, mindspore.ops.composite.random_ops and
|
||||
mindspore.nn.probability.distribution will caculate a seed according to global seed and
|
||||
default op seed. Each call will change the default op seed, thus each call get different
|
||||
results.
|
||||
>>> set_seed(1234)
|
||||
>>> c1 = C.uniform((1, 4)) # C1
|
||||
>>> c2 = C.uniform((1, 4)) # C2
|
||||
Rerun the program will get the same results:
|
||||
>>> set_seed(1234)
|
||||
>>> c1 = C.uniform((1, 4)) # C1
|
||||
>>> c2 = C.uniform((1, 4)) # C2
|
||||
|
||||
5. If both global seed and op seed are set, mindspore.ops.composite.random_ops and
|
||||
mindspore.nn.probability.distribution will caculate a seed according to global seed and
|
||||
op seed counter. Each call will change the op seed counter, thus each call get different
|
||||
results.
|
||||
>>> set_seed(1234)
|
||||
>>> c1 = C.uniform((1, 4), seed=2) # C1
|
||||
>>> c2 = C.uniform((1, 4), seed=2) # C2
|
||||
Rerun the program will get the same results:
|
||||
>>> set_seed(1234)
|
||||
>>> c1 = C.uniform((1, 4), seed=2) # C1
|
||||
>>> c2 = C.uniform((1, 4), seed=2) # C2
|
||||
|
||||
6. If op seed is set but global seed is not set, 0 will be used as global seed. Then
|
||||
mindspore.ops.composite.random_ops and mindspore.nn.probability.distribution act as in
|
||||
condition 5.
|
||||
>>> c1 = C.uniform((1, 4), seed=2) # C1
|
||||
>>> c2 = C.uniform((1, 4), seed=2) # C2
|
||||
Rerun the program will get the same results:
|
||||
>>> c1 = C.uniform((1, 4), seed=2) # C1
|
||||
>>> c2 = C.uniform((1, 4), seed=2) # C2
|
||||
|
||||
7. Recall set_seed() in the program will reset numpy seed and op seed counter of
|
||||
mindspore.ops.composite.random_ops and mindspore.nn.probability.distribution.
|
||||
>>> set_seed(1234)
|
||||
>>> np_1 = np.random.normal(0, 1, [1]).astype(np.float32) # A1
|
||||
>>> c1 = C.uniform((1, 4), seed=2) # C1
|
||||
>>> set_seed(1234)
|
||||
>>> np_2 = np.random.normal(0, 1, [1]).astype(np.float32) # still get A1
|
||||
>>> c2 = C.uniform((1, 4), seed=2) # still get C1
|
||||
"""
|
||||
if not isinstance(seed, int):
|
||||
raise TypeError("The seed must be type of int.")
|
||||
|
@ -57,7 +141,7 @@ def set_seed(seed):
|
|||
_GLOBAL_SEED = seed
|
||||
|
||||
|
||||
def get_global_seed():
|
||||
def get_seed():
|
||||
"""
|
||||
Get global random seed.
|
||||
"""
|
||||
|
@ -101,7 +185,7 @@ def _get_op_seed(op_seed, kernel_name):
|
|||
return _KERNEL_SEED[(kernel_name, op_seed)]
|
||||
|
||||
|
||||
def _get_seed(op_seed, kernel_name):
|
||||
def _get_graph_seed(op_seed, kernel_name):
|
||||
"""
|
||||
Get the graph-level seed.
|
||||
Graph-level seed is used as a global variable, that can be used in different ops in case op-level seed is not set.
|
||||
|
@ -125,12 +209,12 @@ def _get_seed(op_seed, kernel_name):
|
|||
Examples:
|
||||
>>> _get_seed(seed, 'normal')
|
||||
"""
|
||||
global_seed = get_global_seed()
|
||||
global_seed = get_seed()
|
||||
if global_seed is None:
|
||||
global_seed = 0
|
||||
if op_seed is None:
|
||||
op_seed = 0
|
||||
# eigther global seed or op seed is set, return (0, 0) to let kernel choose random seed.
|
||||
# neither global seed or op seed is set, return (0, 0) to let kernel choose random seed.
|
||||
if global_seed == 0 and op_seed == 0:
|
||||
seeds = 0, 0
|
||||
else:
|
||||
|
@ -139,11 +223,3 @@ def _get_seed(op_seed, kernel_name):
|
|||
seeds = _truncate_seed(global_seed), _truncate_seed(temp_seed)
|
||||
_update_seeds(op_seed, kernel_name)
|
||||
return seeds
|
||||
|
||||
|
||||
def _reset_op_seed():
|
||||
"""
|
||||
Reset op seeds in the kernel's dictionary.
|
||||
"""
|
||||
for (kernel_name, op_seed) in _KERNEL_SEED:
|
||||
_KERNEL_SEED[(kernel_name, op_seed)] = op_seed
|
||||
|
|
|
@ -17,7 +17,7 @@
|
|||
|
||||
import numpy as np
|
||||
import mindspore.common.dtype as mstype
|
||||
from mindspore.common.seed import _get_seed
|
||||
from mindspore.common.seed import _get_graph_seed
|
||||
from mindspore.common.tensor import Tensor
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.ops import operations as P
|
||||
|
@ -89,7 +89,7 @@ class Dropout(Cell):
|
|||
Validator.check_subclass("dtype", dtype, mstype.number_type, self.cls_name)
|
||||
Validator.check_value_type('keep_prob', keep_prob, [float], self.cls_name)
|
||||
self.keep_prob = keep_prob
|
||||
seed0, seed1 = _get_seed(0, "dropout")
|
||||
seed0, seed1 = _get_graph_seed(0, "dropout")
|
||||
self.seed0 = seed0
|
||||
self.seed1 = seed1
|
||||
self.dtype = dtype
|
||||
|
|
|
@ -19,12 +19,12 @@ from .. import operations as P
|
|||
from .. import functional as F
|
||||
from .multitype_ops import _constexpr_utils as const_utils
|
||||
from ...common import dtype as mstype
|
||||
from ...common import _get_seed
|
||||
from ...common.seed import _get_graph_seed
|
||||
|
||||
@constexpr
|
||||
def get_seed(op_seed, kernel_name):
|
||||
"Get the graph-level seed."
|
||||
return _get_seed(op_seed, kernel_name)
|
||||
return _get_graph_seed(op_seed, kernel_name)
|
||||
|
||||
|
||||
def normal(shape, mean, stddev, seed=None):
|
||||
|
|
|
@ -22,6 +22,7 @@ from mindspore.common.dtype import dtype_to_nptype
|
|||
from mindspore.common import dtype as mstype
|
||||
from mindspore.communication.management import get_group_size, get_rank
|
||||
from mindspore.parallel._auto_parallel_context import auto_parallel_context
|
||||
from mindspore.common.seed import get_seed
|
||||
|
||||
|
||||
def _get_parallel_mode():
|
||||
|
@ -139,7 +140,7 @@ def _get_parameter_broadcast():
|
|||
parallel_mode = auto_parallel_context().get_parallel_mode()
|
||||
parameter_broadcast = auto_parallel_context().get_parameter_broadcast()
|
||||
|
||||
if parallel_mode in ("data_parallel", "hybrid_parallel") and parameter_broadcast is False:
|
||||
if parallel_mode in ("data_parallel", "hybrid_parallel") and parameter_broadcast is False and get_seed is None:
|
||||
logger.warning("You are suggested to use mindspore.common.set_seed() to share"
|
||||
" parameters among devices.")
|
||||
|
||||
|
|
Loading…
Reference in New Issue