forked from mindspore-Ecosystem/mindspore
xception
This commit is contained in:
parent
27a90a6a1b
commit
306b48f137
|
@ -0,0 +1,234 @@
|
|||
# Contents
|
||||
|
||||
- [Contents](#contents)
|
||||
- [Xception Description](#xception-description)
|
||||
- [Model architecture](#model-architecture)
|
||||
- [Dataset](#dataset)
|
||||
- [Features](#features)
|
||||
- [Mixed Precision(Ascend)](#mixed-precisionascend)
|
||||
- [Environment Requirements](#environment-requirements)
|
||||
- [Script description](#script-description)
|
||||
- [Script and sample code](#script-and-sample-code)
|
||||
- [Script Parameters](#script-parameters)
|
||||
- [Training process](#training-process)
|
||||
- [Usage](#usage)
|
||||
- [Launch](#launch)
|
||||
- [Result](#result)
|
||||
- [Eval process](#eval-process)
|
||||
- [Usage](#usage-1)
|
||||
- [Launch](#launch-1)
|
||||
- [Result](#result-1)
|
||||
- [Model description](#model-description)
|
||||
- [Performance](#performance)
|
||||
- [Training Performance](#training-performance)
|
||||
- [Inference Performance](#inference-performance)
|
||||
- [Description of Random Situation](#description-of-random-situation)
|
||||
- [ModelZoo Homepage](#modelzoo-homepage)
|
||||
|
||||
# [Xception Description](#contents)
|
||||
|
||||
Xception by Google is extreme version of Inception. With a modified depthwise separable convolution, it is even better than Inception-v3. This paper was published in 2017.
|
||||
|
||||
[Paper](https://arxiv.org/pdf/1610.02357v3.pdf) Franois Chollet. Xception: Deep Learning with Depthwise Separable Convolutions. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) IEEE, 2017.
|
||||
|
||||
# [Model architecture](#contents)
|
||||
|
||||
The overall network architecture of Xception is show below:
|
||||
|
||||
[Link](https://arxiv.org/pdf/1610.02357v3.pdf)
|
||||
|
||||
# [Dataset](#contents)
|
||||
|
||||
Dataset used can refer to paper.
|
||||
|
||||
- Dataset size: 125G, 1250k colorful images in 1000 classes
|
||||
- Train: 120G, 1200k images
|
||||
- Test: 5G, 50k images
|
||||
- Data format: RGB images.
|
||||
- Note: Data will be processed in src/dataset.py
|
||||
|
||||
# [Features](#contents)
|
||||
|
||||
## [Mixed Precision(Ascend)](#contents)
|
||||
|
||||
The [mixed precision](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/enable_mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
|
||||
|
||||
For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching ‘reduce precision’.
|
||||
|
||||
# [Environment Requirements](#contents)
|
||||
|
||||
- Hardware(Ascend)
|
||||
- Prepare hardware environment with Ascend. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
|
||||
- Framework
|
||||
- [MindSpore](https://www.mindspore.cn/install/en)
|
||||
- For more information, please check the resources below:
|
||||
- [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
|
||||
- [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
|
||||
|
||||
# [Script description](#contents)
|
||||
|
||||
## [Script and sample code](#contents)
|
||||
|
||||
```shell
|
||||
.
|
||||
└─Xception
|
||||
├─README.md
|
||||
├─scripts
|
||||
├─run_standalone_train.sh # launch standalone training with ascend platform(1p)
|
||||
├─run_distribute_train.sh # launch distributed training with ascend platform(8p)
|
||||
└─run_eval.sh # launch evaluating with ascend platform
|
||||
├─src
|
||||
├─config.py # parameter configuration
|
||||
├─dataset.py # data preprocessing
|
||||
├─Xception.py # network definition
|
||||
├─CrossEntropySmooth.py # Customized CrossEntropy loss function
|
||||
└─lr_generator.py # learning rate generator
|
||||
├─train.py # train net
|
||||
└─eval.py # eval net
|
||||
|
||||
```
|
||||
|
||||
## [Script Parameters](#contents)
|
||||
|
||||
```python
|
||||
Major parameters in train.py and config.py are:
|
||||
'num_classes': 1000 # dataset class numbers
|
||||
'batch_size': 128 # input batchsize
|
||||
'loss_scale': 1024 # loss scale
|
||||
'momentum': 0.9 # momentum
|
||||
'weight_decay': 1e-4 # weight decay
|
||||
'epoch_size': 250 # total epoch numbers
|
||||
'save_checkpoint': True # save checkpoint
|
||||
'save_checkpoint_epochs': 1 # save checkpoint epochs
|
||||
'keep_checkpoint_max': 5 # max numbers to keep checkpoints
|
||||
'save_checkpoint_path': "./" # save checkpoint path
|
||||
'warmup_epochs': 1 # warmup epoch numbers
|
||||
'lr_decay_mode': "liner" # lr decay mode
|
||||
'use_label_smooth': True # use label smooth
|
||||
'finish_epoch': 0 # finished epochs numbers
|
||||
'label_smooth_factor': 0.1 # label smoothing factor
|
||||
'lr_init': 0.00004 # initiate learning rate
|
||||
'lr_max': 0.4 # max bound of learning rate
|
||||
'lr_end': 0.00004 # min bound of learning rate
|
||||
"weight_init": 'xavier_uniform' # Weight initialization mode
|
||||
```
|
||||
|
||||
## [Training process](#contents)
|
||||
|
||||
### Usage
|
||||
|
||||
You can start training using python or shell scripts. The usage of shell scripts as follows:
|
||||
|
||||
- Ascend:
|
||||
|
||||
```shell
|
||||
# distribute training example(8p)
|
||||
sh scripts/run_distribute_train.sh RANK_TABLE_FILE DATA_PATH
|
||||
# standalone training
|
||||
sh scripts/run_standalone_train.sh DEVICE_ID DATA_PATH
|
||||
```
|
||||
|
||||
> Notes: RANK_TABLE_FILE can refer to [Link](https://www.mindspore.cn/tutorial/training/en/master/advanced_use/distributed_training_ascend.html), and the device_ip can be got as [Link](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools).
|
||||
> This is processor cores binding operation regarding the `device_num` and total processor numbers. If you are not expect to do it, remove the operations `taskset` in `scripts/run_distribute_train.sh`
|
||||
|
||||
### Launch
|
||||
|
||||
``` shell
|
||||
# training example
|
||||
python:
|
||||
Ascend:
|
||||
python train.py --device_target Ascend --dataset_path /dataset/train
|
||||
|
||||
shell:
|
||||
Ascend:
|
||||
# distribute training example(8p)
|
||||
sh scripts/run_distribute_train.sh RANK_TABLE_FILE DATA_PATH
|
||||
# standalone training
|
||||
sh scripts/run_standalone_train.sh DEVICE_ID DATA_PATH
|
||||
```
|
||||
|
||||
### Result
|
||||
|
||||
Training result will be stored in the example path. Checkpoints will be stored at `. /model_0` by default, and training log will be redirected to `log.txt` like followings.
|
||||
|
||||
``` shell
|
||||
epoch: [ 0/250], step:[ 1250/ 1251], loss:[4.761/5.613], time:[529.305], lr:[0.400]
|
||||
epoch time: 1128662.862, per step time: 902.209, avg loss: 5.609
|
||||
epoch: [ 1/250], step:[ 1250/ 1251], loss:[4.164/4.318], time:[503.708], lr:[0.398]
|
||||
epoch time: 889163.081, per step time: 710.762, avg loss: 4.312
|
||||
```
|
||||
|
||||
## [Eval process](#contents)
|
||||
|
||||
### Usage
|
||||
|
||||
You can start training using python or shell scripts. The usage of shell scripts as follows:
|
||||
|
||||
```shell
|
||||
sh scripts/run_eval.sh DEVICE_ID DATA_DIR PATH_CHECKPOINT
|
||||
```
|
||||
|
||||
### Launch
|
||||
|
||||
```shell
|
||||
# eval example
|
||||
python:
|
||||
Ascend: python eval.py --device_target Ascend --checkpoint_path PATH_CHECKPOINT --dataset_path DATA_DIR
|
||||
|
||||
shell:
|
||||
Ascend: sh scripts/run_eval.sh DEVICE_ID DATA_DIR PATH_CHECKPOINT
|
||||
```
|
||||
|
||||
> checkpoint can be produced in training process.
|
||||
|
||||
### Result
|
||||
|
||||
Evaluation result will be stored in the example path, you can find result like the followings in `eval.log`.
|
||||
|
||||
```shell
|
||||
result: {'Loss': 1.7797744848789312, 'Top_1_Acc': 0.7985777243589743, 'Top_5_Acc': 0.9485777243589744}
|
||||
```
|
||||
|
||||
# [Model description](#contents)
|
||||
|
||||
## [Performance](#contents)
|
||||
|
||||
### Training Performance
|
||||
|
||||
| Parameters | Ascend |
|
||||
| -------------------------- | ---------------------------------------------- |
|
||||
| Model Version | Xception |
|
||||
| Resource | HUAWEI CLOUD Modelarts |
|
||||
| uploaded Date | 11/15/2020 |
|
||||
| MindSpore Version | 1.0.0 |
|
||||
| Dataset | 1200k images |
|
||||
| Batch_size | 128 |
|
||||
| Training Parameters | src/config.py |
|
||||
| Optimizer | Momentum |
|
||||
| Loss Function | CrossEntropySmooth |
|
||||
| Loss | 1.78 |
|
||||
| Accuracy (8p) | Top1[79.9%] Top5[94.9%] |
|
||||
| Total time (8p) | 63h |
|
||||
| Params (M) | 180M |
|
||||
| Scripts | [Xception script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/Xception) |
|
||||
|
||||
#### Inference Performance
|
||||
|
||||
| Parameters | Ascend |
|
||||
| ------------------- | --------------------------- |
|
||||
| Model Version | Xception |
|
||||
| Resource | HUAWEI CLOUD Modelarts |
|
||||
| Uploaded Date | 11/15/2020 |
|
||||
| MindSpore Version | 1.0.0 |
|
||||
| Dataset | 50k images |
|
||||
| Batch_size | 128 |
|
||||
| Accuracy | Top1[79.9%] Top5[94.9%] |
|
||||
| Total time | 3mins |
|
||||
|
||||
# [Description of Random Situation](#contents)
|
||||
|
||||
In `dataset.py`, we set the seed inside `create_dataset` function. We also use random seed in `train.py`.
|
||||
|
||||
# [ModelZoo Homepage](#contents)
|
||||
|
||||
Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|
|
@ -0,0 +1,63 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""eval Xception."""
|
||||
import argparse
|
||||
from mindspore import context, nn
|
||||
from mindspore.train.model import Model
|
||||
from mindspore.common import set_seed
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
|
||||
from src.Xception import xception
|
||||
from src.config import config
|
||||
from src.dataset import create_dataset
|
||||
from src.loss import CrossEntropySmooth
|
||||
|
||||
set_seed(1)
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Image classification')
|
||||
parser.add_argument('--device_target', type=str, default='Ascend', help='Device target')
|
||||
parser.add_argument('--device_id', type=int, default=0, help='Device id')
|
||||
parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
|
||||
parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
|
||||
args_opt = parser.parse_args()
|
||||
|
||||
context.set_context(device_id=args_opt.device_id)
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='Ascend', save_graphs=False)
|
||||
|
||||
# create dataset
|
||||
dataset = create_dataset(args_opt.dataset_path, do_train=False, batch_size=config.batch_size, device_num=1, rank=0)
|
||||
step_size = dataset.get_dataset_size()
|
||||
|
||||
# define net
|
||||
net = xception(class_num=config.class_num)
|
||||
|
||||
# load checkpoint
|
||||
param_dict = load_checkpoint(args_opt.checkpoint_path)
|
||||
load_param_into_net(net, param_dict)
|
||||
net.set_train(False)
|
||||
|
||||
# define loss, model
|
||||
loss = CrossEntropySmooth(smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
|
||||
|
||||
# define model
|
||||
eval_metrics = {'Loss': nn.Loss(),
|
||||
'Top_1_Acc': nn.Top1CategoricalAccuracy(),
|
||||
'Top_5_Acc': nn.Top5CategoricalAccuracy()}
|
||||
model = Model(net, loss_fn=loss, metrics=eval_metrics)
|
||||
|
||||
# eval model
|
||||
res = model.eval(dataset, dataset_sink_mode=False)
|
||||
print("result:", res, "ckpt=", args_opt.checkpoint_path)
|
|
@ -0,0 +1,50 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
DATA_DIR=$2
|
||||
export RANK_TABLE_FILE=$1
|
||||
export RANK_SIZE=8
|
||||
|
||||
|
||||
cores=`cat /proc/cpuinfo|grep "processor" |wc -l`
|
||||
echo "the number of logical core" $cores
|
||||
avg_core_per_rank=`expr $cores \/ $RANK_SIZE`
|
||||
core_gap=`expr $avg_core_per_rank \- 1`
|
||||
echo "avg_core_per_rank" $avg_core_per_rank
|
||||
echo "core_gap" $core_gap
|
||||
for((i=0;i<RANK_SIZE;i++))
|
||||
do
|
||||
start=`expr $i \* $avg_core_per_rank`
|
||||
export DEVICE_ID=$i
|
||||
export RANK_ID=$i
|
||||
export DEPLOY_MODE=0
|
||||
export GE_USE_STATIC_MEMORY=1
|
||||
end=`expr $start \+ $core_gap`
|
||||
cmdopt=$start"-"$end
|
||||
|
||||
rm -rf train_parallel$i
|
||||
mkdir ./train_parallel$i
|
||||
cp *.py ./train_parallel$i
|
||||
cd ./train_parallel$i || exit
|
||||
echo "start training for rank $i, device $DEVICE_ID"
|
||||
|
||||
env > env.log
|
||||
taskset -c $cmdopt python ../train.py \
|
||||
--is_distributed \
|
||||
--device_target=Ascend \
|
||||
--dataset_path=$DATA_DIR > log.txt 2>&1 &
|
||||
cd ../
|
||||
done
|
|
@ -0,0 +1,25 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
export DEVICE_ID=$1
|
||||
DATA_DIR=$2
|
||||
PATH_CHECKPOINT=$3
|
||||
|
||||
python ./eval.py \
|
||||
--device_target=Ascend \
|
||||
--device_id=$DEVICE_ID \
|
||||
--checkpoint_path=$PATH_CHECKPOINT \
|
||||
--dataset_path=$DATA_DIR > eval.log 2>&1 &
|
|
@ -0,0 +1,22 @@
|
|||
#!/bin/bash
|
||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
export DEVICE_ID=$1
|
||||
DATA_DIR=$2
|
||||
python ./train.py \
|
||||
--device_target=Ascend \
|
||||
--dataset_path=$DATA_DIR > log.txt 2>&1 &
|
||||
|
|
@ -0,0 +1,186 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""Xception."""
|
||||
import mindspore.nn as nn
|
||||
import mindspore.ops.operations as P
|
||||
from src.config import config
|
||||
|
||||
class SeparableConv2d(nn.Cell):
|
||||
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=0):
|
||||
super(SeparableConv2d, self).__init__()
|
||||
self.conv1 = nn.Conv2d(in_channels, in_channels, kernel_size, stride, group=in_channels, pad_mode='pad',
|
||||
padding=padding, weight_init=config.weight_init)
|
||||
self.pointwise = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, pad_mode='valid',
|
||||
weight_init=config.weight_init)
|
||||
|
||||
def construct(self, x):
|
||||
x = self.conv1(x)
|
||||
x = self.pointwise(x)
|
||||
return x
|
||||
|
||||
|
||||
class Block(nn.Cell):
|
||||
def __init__(self, in_filters, out_filters, reps, strides=1, start_with_relu=True, grow_first=True):
|
||||
super(Block, self).__init__()
|
||||
|
||||
if out_filters != in_filters or strides != 1:
|
||||
self.skip = nn.Conv2d(in_filters, out_filters, 1, stride=strides, pad_mode='valid', has_bias=False,
|
||||
weight_init=config.weight_init)
|
||||
self.skipbn = nn.BatchNorm2d(out_filters, momentum=0.9)
|
||||
else:
|
||||
self.skip = None
|
||||
|
||||
self.relu = nn.ReLU()
|
||||
rep = []
|
||||
filters = in_filters
|
||||
if grow_first:
|
||||
rep.append(nn.ReLU())
|
||||
rep.append(SeparableConv2d(in_filters, out_filters, kernel_size=3, stride=1, padding=1))
|
||||
rep.append(nn.BatchNorm2d(out_filters, momentum=0.9))
|
||||
filters = out_filters
|
||||
|
||||
for _ in range(reps - 1):
|
||||
rep.append(nn.ReLU())
|
||||
rep.append(SeparableConv2d(filters, filters, kernel_size=3, stride=1, padding=1))
|
||||
rep.append(nn.BatchNorm2d(filters, momentum=0.9))
|
||||
|
||||
if not grow_first:
|
||||
rep.append(nn.ReLU())
|
||||
rep.append(SeparableConv2d(in_filters, out_filters, kernel_size=3, stride=1, padding=1))
|
||||
rep.append(nn.BatchNorm2d(out_filters, momentum=0.9))
|
||||
|
||||
if not start_with_relu:
|
||||
rep = rep[1:]
|
||||
else:
|
||||
rep[0] = nn.ReLU()
|
||||
|
||||
if strides != 1:
|
||||
rep.append(nn.MaxPool2d(3, strides, pad_mode="same"))
|
||||
self.rep = nn.SequentialCell(*rep)
|
||||
self.add = P.TensorAdd()
|
||||
|
||||
def construct(self, inp):
|
||||
x = self.rep(inp)
|
||||
|
||||
if self.skip is not None:
|
||||
skip = self.skip(inp)
|
||||
skip = self.skipbn(skip)
|
||||
else:
|
||||
skip = inp
|
||||
x = self.add(x, skip)
|
||||
return x
|
||||
|
||||
|
||||
class Xception(nn.Cell):
|
||||
"""
|
||||
Xception optimized for the ImageNet dataset, as specified in
|
||||
https://arxiv.org/abs/1610.02357.pdf
|
||||
"""
|
||||
|
||||
def __init__(self, num_classes=1000):
|
||||
""" Constructor
|
||||
Args:
|
||||
num_classes: number of classes.
|
||||
"""
|
||||
super(Xception, self).__init__()
|
||||
self.num_classes = num_classes
|
||||
self.conv1 = nn.Conv2d(3, 32, 3, 2, pad_mode='valid', weight_init=config.weight_init)
|
||||
self.bn1 = nn.BatchNorm2d(32, momentum=0.9)
|
||||
self.relu = nn.ReLU()
|
||||
self.conv2 = nn.Conv2d(32, 64, 3, pad_mode='valid', weight_init=config.weight_init)
|
||||
self.bn2 = nn.BatchNorm2d(64, momentum=0.9)
|
||||
|
||||
# Entry flow
|
||||
self.block1 = Block(64, 128, 2, 2, start_with_relu=False, grow_first=True)
|
||||
self.block2 = Block(128, 256, 2, 2, start_with_relu=True, grow_first=True)
|
||||
self.block3 = Block(256, 728, 2, 2, start_with_relu=True, grow_first=True)
|
||||
|
||||
# Middle flow
|
||||
self.block4 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True)
|
||||
self.block5 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True)
|
||||
self.block6 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True)
|
||||
self.block7 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True)
|
||||
|
||||
self.block8 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True)
|
||||
self.block9 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True)
|
||||
self.block10 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True)
|
||||
self.block11 = Block(728, 728, 3, 1, start_with_relu=True, grow_first=True)
|
||||
|
||||
# Exit flow
|
||||
self.block12 = Block(728, 1024, 2, 2, start_with_relu=True, grow_first=False)
|
||||
self.conv3 = SeparableConv2d(1024, 1536, 3, 1, 1)
|
||||
self.bn3 = nn.BatchNorm2d(1536, momentum=0.9)
|
||||
|
||||
self.conv4 = SeparableConv2d(1536, 2048, 3, 1, 1)
|
||||
self.bn4 = nn.BatchNorm2d(2048, momentum=0.9)
|
||||
|
||||
self.avg_pool = nn.AvgPool2d(10)
|
||||
self.dropout = nn.Dropout()
|
||||
self.fc = nn.Dense(2048, num_classes)
|
||||
|
||||
def construct(self, x):
|
||||
shape = P.Shape()
|
||||
reshape = P.Reshape()
|
||||
x = self.conv1(x)
|
||||
x = self.bn1(x)
|
||||
x = self.relu(x)
|
||||
|
||||
x = self.conv2(x)
|
||||
x = self.bn2(x)
|
||||
x = self.relu(x)
|
||||
|
||||
x = self.block1(x)
|
||||
x = self.block2(x)
|
||||
x = self.block3(x)
|
||||
x = self.block4(x)
|
||||
x = self.block5(x)
|
||||
x = self.block6(x)
|
||||
x = self.block7(x)
|
||||
x = self.block8(x)
|
||||
x = self.block9(x)
|
||||
x = self.block10(x)
|
||||
x = self.block11(x)
|
||||
x = self.block12(x)
|
||||
|
||||
x = self.conv3(x)
|
||||
x = self.bn3(x)
|
||||
x = self.relu(x)
|
||||
|
||||
x = self.conv4(x)
|
||||
x = self.bn4(x)
|
||||
x = self.relu(x)
|
||||
x = self.avg_pool(x)
|
||||
x = self.dropout(x)
|
||||
|
||||
x = reshape(x, (shape(x)[0], -1))
|
||||
x = self.fc(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def xception(class_num=1000):
|
||||
"""
|
||||
Get Xception neural network.
|
||||
|
||||
Args:
|
||||
class_num (int): Class number.
|
||||
|
||||
Returns:
|
||||
Cell, cell instance of Xception neural network.
|
||||
|
||||
Examples:
|
||||
>>> net = xception(1000)
|
||||
"""
|
||||
return Xception(class_num)
|
|
@ -0,0 +1,41 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
network config setting, will be used in train.py and eval.py
|
||||
"""
|
||||
from easydict import EasyDict as ed
|
||||
|
||||
# config for Xception, imagenet2012.
|
||||
config = ed({
|
||||
"class_num": 1000,
|
||||
"batch_size": 128,
|
||||
"loss_scale": 1024,
|
||||
"momentum": 0.9,
|
||||
"weight_decay": 1e-4,
|
||||
"epoch_size": 250,
|
||||
"save_checkpoint": True,
|
||||
"save_checkpoint_epochs": 1,
|
||||
"keep_checkpoint_max": 5,
|
||||
"save_checkpoint_path": "./",
|
||||
"warmup_epochs": 1,
|
||||
"lr_decay_mode": "liner",
|
||||
"use_label_smooth": True,
|
||||
"finish_epoch": 0,
|
||||
"label_smooth_factor": 0.1,
|
||||
"lr_init": 0.00004,
|
||||
"lr_max": 0.4,
|
||||
"lr_end": 0.00004,
|
||||
"weight_init": 'xavier_uniform'
|
||||
})
|
|
@ -0,0 +1,66 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""
|
||||
Data operations, will be used in train.py and eval.py
|
||||
"""
|
||||
import mindspore.common.dtype as mstype
|
||||
import mindspore.dataset.engine as de
|
||||
import mindspore.dataset.transforms.c_transforms as C2
|
||||
import mindspore.dataset.vision.c_transforms as C
|
||||
|
||||
def create_dataset(dataset_path, do_train, batch_size=16, device_num=1, rank=0):
|
||||
"""
|
||||
create a train or eval dataset
|
||||
|
||||
Args:
|
||||
dataset_path(string): the path of dataset.
|
||||
do_train(bool): whether dataset is used for train or eval.
|
||||
batch_size(int): the batch size of dataset. Default: 16.
|
||||
device_num (int): Number of shards that the dataset should be divided into (default=1).
|
||||
rank (int): The shard ID within num_shards (default=0).
|
||||
|
||||
Returns:
|
||||
dataset
|
||||
"""
|
||||
if device_num == 1:
|
||||
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True)
|
||||
else:
|
||||
ds = de.ImageFolderDataset(dataset_path, num_parallel_workers=8, shuffle=True,
|
||||
num_shards=device_num, shard_id=rank)
|
||||
# define map operations
|
||||
if do_train:
|
||||
trans = [
|
||||
C.RandomCropDecodeResize(299),
|
||||
C.RandomHorizontalFlip(prob=0.5),
|
||||
C.RandomColorAdjust(brightness=0.4, contrast=0.4, saturation=0.4)
|
||||
]
|
||||
else:
|
||||
trans = [
|
||||
C.Decode(),
|
||||
C.Resize(320),
|
||||
C.CenterCrop(299)
|
||||
]
|
||||
trans += [
|
||||
C.Normalize(mean=[127.5, 127.5, 127.5], std=[127.5, 127.5, 127.5]),
|
||||
C.HWC2CHW(),
|
||||
C2.TypeCast(mstype.float32)
|
||||
]
|
||||
|
||||
type_cast_op = C2.TypeCast(mstype.int32)
|
||||
ds = ds.map(input_columns="image", operations=trans, num_parallel_workers=8)
|
||||
ds = ds.map(input_columns="label", operations=type_cast_op, num_parallel_workers=8)
|
||||
# apply batch operations
|
||||
ds = ds.batch(batch_size, drop_remainder=True)
|
||||
return ds
|
|
@ -0,0 +1,38 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""define loss function for network"""
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.nn.loss.loss import _Loss
|
||||
from mindspore.ops import functional as F
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class CrossEntropySmooth(_Loss):
|
||||
"""CrossEntropy"""
|
||||
def __init__(self, sparse=True, reduction='mean', smooth_factor=0., num_classes=1000):
|
||||
super(CrossEntropySmooth, self).__init__()
|
||||
self.onehot = P.OneHot()
|
||||
self.sparse = sparse
|
||||
self.on_value = Tensor(1.0 - smooth_factor, mstype.float32)
|
||||
self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32)
|
||||
self.ce = nn.SoftmaxCrossEntropyWithLogits(reduction=reduction)
|
||||
|
||||
def construct(self, logit, label):
|
||||
if self.sparse:
|
||||
label = self.onehot(label, F.shape(logit)[1], self.on_value, self.off_value)
|
||||
loss = self.ce(logit, label)
|
||||
return loss
|
|
@ -0,0 +1,87 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""learning rate generator"""
|
||||
import math
|
||||
import numpy as np
|
||||
|
||||
|
||||
def get_lr(lr_init, lr_end, lr_max, warmup_epochs, total_epochs, steps_per_epoch, lr_decay_mode):
|
||||
"""
|
||||
generate learning rate array
|
||||
|
||||
Args:
|
||||
lr_init(float): init learning rate
|
||||
lr_end(float): end learning rate
|
||||
lr_max(float): max learning rate
|
||||
warmup_epochs(int): number of warmup epochs
|
||||
total_epochs(int): total epoch of training
|
||||
steps_per_epoch(int): steps of one epoch
|
||||
lr_decay_mode(string): learning rate decay mode, including steps, poly or default
|
||||
|
||||
Returns:
|
||||
np.array, learning rate array
|
||||
"""
|
||||
lr_each_step = []
|
||||
total_steps = steps_per_epoch * total_epochs
|
||||
warmup_steps = steps_per_epoch * warmup_epochs
|
||||
if lr_decay_mode == 'steps':
|
||||
decay_epoch_index = [0.3 * total_steps, 0.6 * total_steps, 0.8 * total_steps]
|
||||
for i in range(total_steps):
|
||||
if i < decay_epoch_index[0]:
|
||||
lr = lr_max
|
||||
elif i < decay_epoch_index[1]:
|
||||
lr = lr_max * 0.1
|
||||
elif i < decay_epoch_index[2]:
|
||||
lr = lr_max * 0.01
|
||||
else:
|
||||
lr = lr_max * 0.001
|
||||
lr_each_step.append(lr)
|
||||
elif lr_decay_mode == 'poly':
|
||||
if warmup_steps != 0:
|
||||
inc_each_step = (float(lr_max) - float(lr_init)) / float(warmup_steps)
|
||||
else:
|
||||
inc_each_step = 0
|
||||
for i in range(total_steps):
|
||||
if i < warmup_steps:
|
||||
lr = float(lr_init) + inc_each_step * float(i)
|
||||
else:
|
||||
base = (1.0 - (float(i) - float(warmup_steps)) / (float(total_steps) - float(warmup_steps)))
|
||||
lr = float(lr_max) * base * base
|
||||
if lr < 0.0:
|
||||
lr = 0.0
|
||||
lr_each_step.append(lr)
|
||||
elif lr_decay_mode == 'cosine':
|
||||
decay_steps = total_steps - warmup_steps
|
||||
for i in range(total_steps):
|
||||
if i < warmup_steps:
|
||||
lr_inc = (float(lr_max) - float(lr_init)) / float(warmup_steps)
|
||||
lr = float(lr_init) + lr_inc * (i + 1)
|
||||
else:
|
||||
linear_decay = (total_steps - i) / decay_steps
|
||||
cosine_decay = 0.5 * (1 + math.cos(math.pi * 2 * 0.47 * i / decay_steps))
|
||||
decayed = linear_decay * cosine_decay + 0.00001
|
||||
lr = lr_max * decayed
|
||||
lr_each_step.append(lr)
|
||||
else:
|
||||
for i in range(total_steps):
|
||||
if i < warmup_steps:
|
||||
lr = lr_init + (lr_max - lr_init) * i / warmup_steps
|
||||
else:
|
||||
lr = lr_max - (lr_max - lr_end) * (i - warmup_steps) / (total_steps - warmup_steps)
|
||||
lr_each_step.append(lr)
|
||||
|
||||
lr_each_step = np.array(lr_each_step).astype(np.float32)
|
||||
|
||||
return lr_each_step
|
|
@ -0,0 +1,173 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
"""train Xception."""
|
||||
import os
|
||||
import time
|
||||
import argparse
|
||||
import numpy as np
|
||||
|
||||
from mindspore import context
|
||||
from mindspore import Tensor
|
||||
from mindspore.nn.optim.momentum import Momentum
|
||||
from mindspore.train.model import Model, ParallelMode
|
||||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, Callback
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
from mindspore.communication.management import init, get_rank, get_group_size
|
||||
from mindspore.train.loss_scale_manager import FixedLossScaleManager
|
||||
from mindspore.common import dtype as mstype
|
||||
from mindspore.common import set_seed
|
||||
|
||||
from src.lr_generator import get_lr
|
||||
from src.Xception import xception
|
||||
from src.config import config
|
||||
from src.dataset import create_dataset
|
||||
from src.loss import CrossEntropySmooth
|
||||
|
||||
set_seed(1)
|
||||
|
||||
class Monitor(Callback):
|
||||
"""
|
||||
Monitor loss and time.
|
||||
|
||||
Args:
|
||||
lr_init (numpy array): train lr
|
||||
|
||||
Returns:
|
||||
None
|
||||
|
||||
Examples:
|
||||
>>> Monitor(lr_init=Tensor([0.05]*100).asnumpy())
|
||||
"""
|
||||
|
||||
def __init__(self, lr_init=None):
|
||||
super(Monitor, self).__init__()
|
||||
self.lr_init = lr_init
|
||||
self.lr_init_len = len(lr_init)
|
||||
|
||||
def epoch_begin(self, run_context):
|
||||
self.losses = []
|
||||
self.epoch_time = time.time()
|
||||
|
||||
def epoch_end(self, run_context):
|
||||
cb_params = run_context.original_args()
|
||||
|
||||
epoch_mseconds = (time.time() - self.epoch_time) * 1000
|
||||
per_step_mseconds = epoch_mseconds / cb_params.batch_num
|
||||
print("epoch time: {:5.3f}, per step time: {:5.3f}, avg loss: {:5.3f}".format(epoch_mseconds,
|
||||
per_step_mseconds,
|
||||
np.mean(self.losses)))
|
||||
|
||||
def step_begin(self, run_context):
|
||||
self.step_time = time.time()
|
||||
|
||||
def step_end(self, run_context):
|
||||
cb_params = run_context.original_args()
|
||||
step_mseconds = (time.time() - self.step_time) * 1000
|
||||
step_loss = cb_params.net_outputs
|
||||
|
||||
if isinstance(step_loss, (tuple, list)) and isinstance(step_loss[0], Tensor):
|
||||
step_loss = step_loss[0]
|
||||
if isinstance(step_loss, Tensor):
|
||||
step_loss = np.mean(step_loss.asnumpy())
|
||||
|
||||
self.losses.append(step_loss)
|
||||
cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num
|
||||
|
||||
print("epoch: [{:3d}/{:3d}], step:[{:5d}/{:5d}], loss:[{:5.3f}/{:5.3f}], time:[{:5.3f}], lr:[{:5.3f}]".format(
|
||||
cb_params.cur_epoch_num - 1 + config.finish_epoch, cb_params.epoch_num + config.finish_epoch,
|
||||
cur_step_in_epoch, cb_params.batch_num, step_loss,
|
||||
np.mean(self.losses), step_mseconds, self.lr_init[cb_params.cur_step_num - 1]))
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='image classification training')
|
||||
parser.add_argument('--is_distributed', action='store_true', default=False, help='distributed training')
|
||||
parser.add_argument('--device_target', type=str, default='Ascend', help='run platform')
|
||||
parser.add_argument('--dataset_path', type=str, default=None, help='dataset path')
|
||||
parser.add_argument('--resume', type=str, default='', help='resume training with existed checkpoint')
|
||||
args_opt = parser.parse_args()
|
||||
|
||||
# init distributed
|
||||
if args_opt.is_distributed:
|
||||
if os.getenv('DEVICE_ID', "not_set").isdigit():
|
||||
context.set_context(device_id=int(os.getenv('DEVICE_ID')))
|
||||
rank = get_rank()
|
||||
group_size = get_group_size()
|
||||
parallel_mode = ParallelMode.DATA_PARALLEL
|
||||
context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=group_size, gradients_mean=True)
|
||||
init()
|
||||
else:
|
||||
rank = 0
|
||||
group_size = 1
|
||||
context.set_context(device_id=0)
|
||||
|
||||
if args_opt.device_target == "Ascend":
|
||||
#train on Ascend
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='Ascend', save_graphs=False)
|
||||
|
||||
# define network
|
||||
net = xception(class_num=config.class_num)
|
||||
net.to_float(mstype.float16)
|
||||
|
||||
# define loss
|
||||
if not config.use_label_smooth:
|
||||
config.label_smooth_factor = 0.0
|
||||
loss = CrossEntropySmooth(smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
|
||||
|
||||
# define dataset
|
||||
dataset = create_dataset(args_opt.dataset_path, do_train=True, batch_size=config.batch_size,
|
||||
device_num=group_size, rank=rank)
|
||||
step_size = dataset.get_dataset_size()
|
||||
|
||||
# resume
|
||||
if args_opt.resume:
|
||||
ckpt = load_checkpoint(args_opt.resume)
|
||||
load_param_into_net(net, ckpt)
|
||||
|
||||
# get learning rate
|
||||
loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
|
||||
lr = Tensor(get_lr(lr_init=config.lr_init,
|
||||
lr_end=config.lr_end,
|
||||
lr_max=config.lr_max,
|
||||
warmup_epochs=config.warmup_epochs,
|
||||
total_epochs=config.epoch_size,
|
||||
steps_per_epoch=step_size,
|
||||
lr_decay_mode=config.lr_decay_mode))
|
||||
|
||||
# define optimization
|
||||
opt = Momentum(net.trainable_params(), lr, config.momentum, config.weight_decay, config.loss_scale)
|
||||
|
||||
# define model
|
||||
model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'},
|
||||
amp_level='O3', keep_batchnorm_fp32=True)
|
||||
|
||||
# define callbacks
|
||||
cb = [Monitor(lr_init=lr.asnumpy())]
|
||||
if config.save_checkpoint:
|
||||
save_ckpt_path = os.path.join(config.save_checkpoint_path, 'model_' + str(rank) + '/')
|
||||
config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
|
||||
keep_checkpoint_max=config.keep_checkpoint_max)
|
||||
ckpt_cb = ModelCheckpoint(f"Xception-rank{rank}", directory=save_ckpt_path, config=config_ck)
|
||||
|
||||
# begin train
|
||||
if args_opt.is_distributed:
|
||||
if rank == 0:
|
||||
cb += [ckpt_cb]
|
||||
model.train(config.epoch_size - config.finish_epoch, dataset, callbacks=cb, dataset_sink_mode=False)
|
||||
else:
|
||||
cb += [ckpt_cb]
|
||||
model.train(config.epoch_size - config.finish_epoch, dataset, callbacks=cb, dataset_sink_mode=False)
|
||||
print("train success")
|
||||
else:
|
||||
raise ValueError("Unsupported device_target.")
|
Loading…
Reference in New Issue