!15881 CPU 告警清理

From: @he-botao
Reviewed-by: @wuxuejian,@c_34
Signed-off-by: @wuxuejian
This commit is contained in:
mindspore-ci-bot 2021-04-30 09:20:27 +08:00 committed by Gitee
commit 2faeca532e
3 changed files with 10 additions and 7 deletions

View File

@ -29,8 +29,7 @@ void EluGradCPUKernel::InitKernel(const CNodePtr &kernel_node) {
}
}
bool EluGradCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
const std::vector<kernel::AddressPtr> & /*workspace*/,
bool EluGradCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs, const std::vector<kernel::AddressPtr> &,
const std::vector<kernel::AddressPtr> &outputs) {
if (dtype_ == kNumberTypeFloat32 || dtype_ == kNumberTypeFloat) {
LaunchKernel<float>(inputs, outputs);
@ -43,7 +42,8 @@ bool EluGradCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs,
}
template <typename T>
void EluGradCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs) {
void EluGradCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs,
const std::vector<AddressPtr> &outputs) const {
T *input0 = reinterpret_cast<T *>(inputs[0]->addr);
T *input1 = reinterpret_cast<T *>(inputs[1]->addr);
T *output = reinterpret_cast<T *>(outputs[0]->addr);

View File

@ -32,7 +32,7 @@ class EluGradCPUKernel : public CPUKernel {
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
const std::vector<AddressPtr> &outputs) override;
template <typename T>
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs);
void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs) const;
private:
TypeId dtype_{kTypeUnknown};

View File

@ -43,9 +43,12 @@ bool SelectCPUKernel<T>::Launch(const std::vector<AddressPtr> &inputs, const std
auto input_x = reinterpret_cast<T *>(inputs[1]->addr);
auto input_y = reinterpret_cast<T *>(inputs[2]->addr);
auto output = reinterpret_cast<T *>(outputs[0]->addr);
for (size_t pos = 0; pos < element_num_; pos++) {
output[pos] = input_cond[pos] ? input_x[pos] : input_y[pos];
}
auto task = [=](const size_t start, const size_t end) {
for (size_t pos = start; pos < end; pos++) {
output[pos] = input_cond[pos] ? input_x[pos] : input_y[pos];
}
};
CPUKernelUtils::ParallelFor(task, element_num_);
return true;
}
} // namespace kernel