forked from mindspore-Ecosystem/mindspore
!10191 update the example of some operations.
From: @wangshuide2020 Reviewed-by: @liangchenghui,@wuxuejian Signed-off-by: @liangchenghui
This commit is contained in:
commit
2e65c5de5c
|
@ -343,6 +343,8 @@ class LSTMCell(Cell):
|
|||
>>> c = Tensor(np.ones([1, 3, 12]).astype(np.float32))
|
||||
>>> w = Tensor(np.ones([1152, 1, 1]).astype(np.float32))
|
||||
>>> output, h, c, _, _ = net(input, h, c, w)
|
||||
>>> print(output.shape)
|
||||
(3, 5, 12)
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
|
|
|
@ -59,10 +59,10 @@ def repeat_elements(x, rep, axis=0):
|
|||
Repeat elements of a tensor along an axis, like np.repeat.
|
||||
|
||||
Args:
|
||||
- **x** (Tensor) - The tensor to repeat values for. Must be of type: float16,
|
||||
x (Tensor): The tensor to repeat values for. Must be of type: float16,
|
||||
float32, int8, uint8, int16, int32, or int64.
|
||||
- **rep** (int) - The number of times to repeat, must be positive, required.
|
||||
- **axis** (int) - The axis along which to repeat, default 0.
|
||||
rep (int): The number of times to repeat, must be positive, required.
|
||||
axis (int): The axis along which to repeat, default 0.
|
||||
|
||||
Outputs:
|
||||
One tensor with values repeated along the specified axis. If x has shape
|
||||
|
|
|
@ -142,16 +142,19 @@ class AllGather(PrimitiveWithInfer):
|
|||
``Ascend`` ``GPU``
|
||||
|
||||
Examples:
|
||||
>>> # This example should be run with two devices. Refer to the tutorial > Distirbuted Training on mindspore.cn.
|
||||
>>> import numpy as np
|
||||
>>> import mindspore.ops.operations as ops
|
||||
>>> import mindspore.nn as nn
|
||||
>>> from mindspore.communication import init
|
||||
>>> from mindspore import Tensor
|
||||
>>> from mindspore import Tensor, context
|
||||
>>>
|
||||
>>> context.set_context(mode=context.GRAPH_MODE)
|
||||
>>> init()
|
||||
... class Net(nn.Cell):
|
||||
... def __init__(self):
|
||||
... super(Net, self).__init__()
|
||||
... self.allgather = ops.AllGather(group="nccl_world_group")
|
||||
... self.allgather = ops.AllGather()
|
||||
...
|
||||
... def construct(self, x):
|
||||
... return self.allgather(x)
|
||||
|
@ -160,6 +163,10 @@ class AllGather(PrimitiveWithInfer):
|
|||
>>> net = Net()
|
||||
>>> output = net(input_)
|
||||
>>> print(output)
|
||||
[[1. 1. 1. 1. 1. 1. 1. 1.]
|
||||
[1. 1. 1. 1. 1. 1. 1. 1.]
|
||||
[1. 1. 1. 1. 1. 1. 1. 1.]
|
||||
[1. 1. 1. 1. 1. 1. 1. 1.]]
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
|
@ -255,16 +262,18 @@ class ReduceScatter(PrimitiveWithInfer):
|
|||
ValueError: If the first dimension of the input cannot be divided by the rank size.
|
||||
|
||||
Supported Platforms:
|
||||
``GPU``
|
||||
``Ascend`` ``GPU``
|
||||
|
||||
Examples:
|
||||
>>> from mindspore import Tensor
|
||||
>>> # This example should be run with two devices. Refer to the tutorial > Distirbuted Training on mindspore.cn.
|
||||
>>> from mindspore import Tensor, context
|
||||
>>> from mindspore.communication import init
|
||||
>>> from mindspore.ops.operations.comm_ops import ReduceOp
|
||||
>>> import mindspore.nn as nn
|
||||
>>> import mindspore.ops.operations as ops
|
||||
>>> import numpy as np
|
||||
>>>
|
||||
>>> context.set_context(mode=context.GRAPH_MODE)
|
||||
>>> init()
|
||||
>>> class Net(nn.Cell):
|
||||
... def __init__(self):
|
||||
|
@ -278,6 +287,10 @@ class ReduceScatter(PrimitiveWithInfer):
|
|||
>>> net = Net()
|
||||
>>> output = net(input_)
|
||||
>>> print(output)
|
||||
[[2. 2. 2. 2. 2. 2. 2. 2.]
|
||||
[2. 2. 2. 2. 2. 2. 2. 2.]
|
||||
[2. 2. 2. 2. 2. 2. 2. 2.]
|
||||
[2. 2. 2. 2. 2. 2. 2. 2.]]
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
|
|
|
@ -350,7 +350,12 @@ class Print(PrimitiveWithInfer):
|
|||
>>> x = Tensor(np.ones([2, 1]).astype(np.int32))
|
||||
>>> y = Tensor(np.ones([2, 2]).astype(np.int32))
|
||||
>>> net = PrintDemo()
|
||||
>>> output = net(x, y)
|
||||
>>> result = net(x, y)
|
||||
Print Tensor x and Tensor y:
|
||||
[[1]
|
||||
[1]]
|
||||
[[1 1]
|
||||
[1 1]]
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
|
|
Loading…
Reference in New Issue