forked from mindspore-Ecosystem/mindspore
add cpu st lenet
This commit is contained in:
parent
e2df848597
commit
2dc9f632c1
|
@ -12,25 +12,44 @@
|
||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
# ============================================================================
|
# ============================================================================
|
||||||
"""
|
|
||||||
Function:
|
|
||||||
test network
|
|
||||||
Usage:
|
|
||||||
python test_network_main.py --net lenet --target Davinci
|
|
||||||
"""
|
|
||||||
import os
|
|
||||||
import time
|
|
||||||
import pytest
|
import pytest
|
||||||
import numpy as np
|
|
||||||
import argparse
|
|
||||||
import mindspore.nn as nn
|
|
||||||
from mindspore.common.tensor import Tensor
|
|
||||||
from mindspore.nn import TrainOneStepCell, WithLossCell
|
from mindspore.nn import TrainOneStepCell, WithLossCell
|
||||||
import mindspore.context as context
|
import mindspore.context as context
|
||||||
from mindspore.nn.optim import Momentum
|
from mindspore.nn.optim import Momentum
|
||||||
from models.lenet import LeNet
|
import numpy as np
|
||||||
from models.resnetv1_5 import resnet50
|
import mindspore.nn as nn
|
||||||
from models.alexnet import AlexNet
|
from mindspore.ops import operations as P
|
||||||
|
from mindspore import Tensor
|
||||||
|
|
||||||
|
class LeNet(nn.Cell):
|
||||||
|
def __init__(self):
|
||||||
|
super(LeNet, self).__init__()
|
||||||
|
self.relu = P.ReLU()
|
||||||
|
self.batch_size = 32
|
||||||
|
|
||||||
|
self.conv1 = nn.Conv2d(1, 6, kernel_size=5, stride=1, padding=0, has_bias=False, pad_mode='valid')
|
||||||
|
self.conv2 = nn.Conv2d(6, 16, kernel_size=5, stride=1, padding=0, has_bias=False, pad_mode='valid')
|
||||||
|
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
|
||||||
|
self.reshape = P.Reshape()
|
||||||
|
self.fc1 = nn.Dense(400, 120)
|
||||||
|
self.fc2 = nn.Dense(120, 84)
|
||||||
|
self.fc3 = nn.Dense(84, 10)
|
||||||
|
|
||||||
|
def construct(self, input_x):
|
||||||
|
output = self.conv1(input_x)
|
||||||
|
output = self.relu(output)
|
||||||
|
output = self.pool(output)
|
||||||
|
output = self.conv2(output)
|
||||||
|
output = self.relu(output)
|
||||||
|
output = self.pool(output)
|
||||||
|
output = self.reshape(output, (self.batch_size, -1))
|
||||||
|
output = self.fc1(output)
|
||||||
|
output = self.relu(output)
|
||||||
|
output = self.fc2(output)
|
||||||
|
output = self.relu(output)
|
||||||
|
output = self.fc3(output)
|
||||||
|
return output
|
||||||
|
|
||||||
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
|
||||||
|
|
||||||
def train(net, data, label):
|
def train(net, data, label):
|
||||||
|
@ -48,15 +67,6 @@ def train(net, data, label):
|
||||||
print("+++++++++++++++++++++++++++")
|
print("+++++++++++++++++++++++++++")
|
||||||
assert res
|
assert res
|
||||||
|
|
||||||
@pytest.mark.level0
|
|
||||||
@pytest.mark.platform_x86_cpu
|
|
||||||
@pytest.mark.env_onecard
|
|
||||||
def test_resnet50():
|
|
||||||
data = Tensor(np.ones([32, 3 ,224, 224]).astype(np.float32) * 0.01)
|
|
||||||
label = Tensor(np.ones([32]).astype(np.int32))
|
|
||||||
net = resnet50(32, 10)
|
|
||||||
train(net, data, label)
|
|
||||||
|
|
||||||
@pytest.mark.level0
|
@pytest.mark.level0
|
||||||
@pytest.mark.platform_x86_cpu
|
@pytest.mark.platform_x86_cpu
|
||||||
@pytest.mark.env_onecard
|
@pytest.mark.env_onecard
|
||||||
|
@ -65,12 +75,3 @@ def test_lenet():
|
||||||
label = Tensor(np.ones([32]).astype(np.int32))
|
label = Tensor(np.ones([32]).astype(np.int32))
|
||||||
net = LeNet()
|
net = LeNet()
|
||||||
train(net, data, label)
|
train(net, data, label)
|
||||||
|
|
||||||
@pytest.mark.level0
|
|
||||||
@pytest.mark.platform_x86_cpu
|
|
||||||
@pytest.mark.env_onecard
|
|
||||||
def test_alexnet():
|
|
||||||
data = Tensor(np.ones([32, 3 ,227, 227]).astype(np.float32) * 0.01)
|
|
||||||
label = Tensor(np.ones([32]).astype(np.int32))
|
|
||||||
net = AlexNet()
|
|
||||||
train(net, data, label)
|
|
Loading…
Reference in New Issue