add a self attention test case

This commit is contained in:
Wan Hanyang 2020-09-11 16:30:28 +08:00
parent acd896cdea
commit 2ceea1e59d
2 changed files with 270 additions and 0 deletions

View File

@ -0,0 +1,121 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import mindspore as ms
from mindspore import context, Tensor, Parameter
from mindspore.nn import Cell, Momentum
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
from mindspore.ops import operations as P
from mindspore.train import Model
from tests.dataset_mock import MindData
class Dataset(MindData):
def __init__(self, predict, label, length=3):
super(Dataset, self).__init__(size=length)
self.predict = predict
self.label = label
self.index = 0
self.length = length
def __iter__(self):
return self
def __next__(self):
if self.index >= self.length:
raise StopIteration
self.index += 1
return self.predict, self.label
def reset(self):
self.index = 0
class Net(Cell):
def __init__(self, mul_weight, strategy1=None, strategy2=None):
super().__init__()
self.mul = P.Mul().shard(strategy1)
self.neg = P.Neg().shard(strategy2)
self.mul_weight = Parameter(mul_weight, "w1")
def construct(self, x):
out = self.mul(x, self.mul_weight)
out = self.neg(out)
return out
_x = Tensor(np.ones([32, 128]), dtype=ms.float32)
_b = Tensor(np.ones([32]), dtype=ms.int32)
_w1 = Tensor(np.ones([512, 128]), dtype=ms.float32)
def compile_net(net):
context.set_context(save_graphs=True)
learning_rate = 0.1
momentum = 0.9
epoch_size = 2
dataset = Dataset(_x, _b)
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
opt = Momentum(net.trainable_params(), learning_rate, momentum)
model = Model(net, loss, optimizer=opt, amp_level="O2")
model.train(epoch_size, dataset, dataset_sink_mode=False)
context.reset_auto_parallel_context()
def test_neg_data_parallel():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((16, 1), (16, 1))
strategy2 = ((16, 1),)
net = Net(_w1, strategy1, strategy2)
compile_net(net)
def test_neg_model_parallel():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((1, 16), (1, 16))
strategy2 = ((1, 16),)
net = Net(_w1, strategy1, strategy2)
compile_net(net)
def test_neg_hybrid_parallel():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((4, 4), (4, 4))
strategy2 = ((4, 4),)
net = Net(_w1, strategy1, strategy2)
compile_net(net)
def test_neg_auto_parallel():
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0)
net = Net(_w1)
compile_net(net)
def test_neg_repeat_calc():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((4, 4), (4, 4))
strategy2 = ((2, 2),)
net = Net(_w1, strategy1, strategy2)
compile_net(net)
def test_neg_repeat_calc2():
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
strategy1 = ((4, 2), (4, 2))
strategy2 = ((4, 4),)
net = Net(_w1, strategy1, strategy2)
compile_net(net)

View File

@ -0,0 +1,149 @@
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import mindspore as ms
import mindspore.nn as nn
from mindspore import Tensor
from mindspore import context
from mindspore.common.api import _executor
from mindspore.context import set_auto_parallel_context
from mindspore.ops import composite as C
from mindspore.ops import operations as P
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from tests.ut.python.ops.test_math_ops import VirtualLoss
grad_all = C.GradOperation(get_all=True)
class NetWithLoss(nn.Cell):
def __init__(self, network):
super(NetWithLoss, self).__init__()
self.loss = VirtualLoss()
self.network = network
def construct(self, x):
predict = self.network(x)
return self.loss(predict)
class GradWrap(nn.Cell):
def __init__(self, network):
super(GradWrap, self).__init__()
self.network = network
def construct(self, x):
return grad_all(self.network)(x)
def compile_net(net, x):
net.set_auto_parallel()
_executor.compile(net, x)
class Net(nn.Cell):
def __init__(self, strategy1, strategy2, strategy3, strategy4, strategy5):
super().__init__()
self.query_w = Parameter(initializer(
"normal", [8, 16], ms.float32), name='query')
self.query = P.MatMul().shard(strategy1)
self.key_w = Parameter(initializer(
"normal", [8, 16], ms.float32), name='key')
self.key = P.MatMul().shard(strategy2)
self.value_w = Parameter(initializer(
"normal", [8, 16], ms.float32), name='value')
self.value = P.MatMul().shard(strategy3)
self.score = P.MatMul().shard(strategy4)
self.context = P.MatMul().shard(strategy5)
self.transpose1 = P.Transpose()
self.transpose2 = P.Transpose()
self.relu = P.ReLU()
def construct(self, x):
q = self.query(x, self.query_w)
k = self.key(x, self.key_w)
v = self.value(x, self.value_w)
k = self.transpose1(k, (1, 0))
s = self.score(q, k)
v = self.transpose2(v, (1, 0))
c = self.context(v, s)
out = self.relu(c)
return out
def test_self_attention_standalone():
set_auto_parallel_context(device_num=8, global_rank=0)
context.set_auto_parallel_context(parallel_mode="stand_alone")
net = GradWrap(NetWithLoss(
Net(None, None, None, None, None)))
x = Tensor(np.ones([32, 8]), dtype=ms.float32)
compile_net(net, x)
def test_self_attention_semi():
set_auto_parallel_context(device_num=8, global_rank=0)
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
strategy1 = ((2, 2), (2, 2))
strategy2 = ((2, 2), (2, 2))
strategy3 = ((2, 2), (2, 2))
strategy4 = ((2, 4), (4, 1))
strategy5 = ((2, 1), (1, 4))
net = GradWrap(NetWithLoss(
Net(strategy1, strategy2, strategy3, strategy4, strategy5)))
x = Tensor(np.ones([32, 8]), dtype=ms.float32)
compile_net(net, x)
def test_self_attention_dp():
set_auto_parallel_context(device_num=8, global_rank=0)
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
strategy1 = ((8, 1), (1, 1))
strategy2 = ((8, 1), (1, 1))
strategy3 = ((8, 1), (1, 1))
strategy4 = ((8, 1), (1, 1))
strategy5 = ((8, 1), (1, 1))
net = GradWrap(NetWithLoss(
Net(strategy1, strategy2, strategy3, strategy4, strategy5)))
x = Tensor(np.ones([32, 8]), dtype=ms.float32)
compile_net(net, x)
def test_self_attention_auto():
set_auto_parallel_context(device_num=8, global_rank=0)
context.set_auto_parallel_context(parallel_mode="auto_parallel")
net = GradWrap(NetWithLoss(
Net(None, None, None, None, None)))
x = Tensor(np.ones([32, 8]), dtype=ms.float32)
compile_net(net, x)