forked from mindspore-Ecosystem/mindspore
add a self attention test case
This commit is contained in:
parent
acd896cdea
commit
2ceea1e59d
|
@ -0,0 +1,121 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
import numpy as np
|
||||
|
||||
import mindspore as ms
|
||||
from mindspore import context, Tensor, Parameter
|
||||
from mindspore.nn import Cell, Momentum
|
||||
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.train import Model
|
||||
from tests.dataset_mock import MindData
|
||||
|
||||
|
||||
class Dataset(MindData):
|
||||
def __init__(self, predict, label, length=3):
|
||||
super(Dataset, self).__init__(size=length)
|
||||
self.predict = predict
|
||||
self.label = label
|
||||
self.index = 0
|
||||
self.length = length
|
||||
|
||||
def __iter__(self):
|
||||
return self
|
||||
|
||||
def __next__(self):
|
||||
if self.index >= self.length:
|
||||
raise StopIteration
|
||||
self.index += 1
|
||||
return self.predict, self.label
|
||||
|
||||
def reset(self):
|
||||
self.index = 0
|
||||
|
||||
|
||||
class Net(Cell):
|
||||
def __init__(self, mul_weight, strategy1=None, strategy2=None):
|
||||
super().__init__()
|
||||
self.mul = P.Mul().shard(strategy1)
|
||||
self.neg = P.Neg().shard(strategy2)
|
||||
self.mul_weight = Parameter(mul_weight, "w1")
|
||||
|
||||
def construct(self, x):
|
||||
out = self.mul(x, self.mul_weight)
|
||||
out = self.neg(out)
|
||||
return out
|
||||
|
||||
|
||||
_x = Tensor(np.ones([32, 128]), dtype=ms.float32)
|
||||
_b = Tensor(np.ones([32]), dtype=ms.int32)
|
||||
_w1 = Tensor(np.ones([512, 128]), dtype=ms.float32)
|
||||
|
||||
|
||||
def compile_net(net):
|
||||
context.set_context(save_graphs=True)
|
||||
learning_rate = 0.1
|
||||
momentum = 0.9
|
||||
epoch_size = 2
|
||||
dataset = Dataset(_x, _b)
|
||||
loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
||||
opt = Momentum(net.trainable_params(), learning_rate, momentum)
|
||||
model = Model(net, loss, optimizer=opt, amp_level="O2")
|
||||
model.train(epoch_size, dataset, dataset_sink_mode=False)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
||||
def test_neg_data_parallel():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
||||
strategy1 = ((16, 1), (16, 1))
|
||||
strategy2 = ((16, 1),)
|
||||
net = Net(_w1, strategy1, strategy2)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_neg_model_parallel():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
||||
strategy1 = ((1, 16), (1, 16))
|
||||
strategy2 = ((1, 16),)
|
||||
net = Net(_w1, strategy1, strategy2)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_neg_hybrid_parallel():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
||||
strategy1 = ((4, 4), (4, 4))
|
||||
strategy2 = ((4, 4),)
|
||||
net = Net(_w1, strategy1, strategy2)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_neg_auto_parallel():
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0)
|
||||
net = Net(_w1)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_neg_repeat_calc():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
||||
strategy1 = ((4, 4), (4, 4))
|
||||
strategy2 = ((2, 2),)
|
||||
net = Net(_w1, strategy1, strategy2)
|
||||
compile_net(net)
|
||||
|
||||
|
||||
def test_neg_repeat_calc2():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
||||
strategy1 = ((4, 2), (4, 2))
|
||||
strategy2 = ((4, 4),)
|
||||
net = Net(_w1, strategy1, strategy2)
|
||||
compile_net(net)
|
|
@ -0,0 +1,149 @@
|
|||
# Copyright 2019 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
|
||||
import mindspore as ms
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore import context
|
||||
from mindspore.common.api import _executor
|
||||
from mindspore.context import set_auto_parallel_context
|
||||
from mindspore.ops import composite as C
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common.initializer import initializer
|
||||
from mindspore.common.parameter import Parameter
|
||||
from tests.ut.python.ops.test_math_ops import VirtualLoss
|
||||
|
||||
|
||||
grad_all = C.GradOperation(get_all=True)
|
||||
|
||||
|
||||
class NetWithLoss(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(NetWithLoss, self).__init__()
|
||||
self.loss = VirtualLoss()
|
||||
self.network = network
|
||||
|
||||
def construct(self, x):
|
||||
predict = self.network(x)
|
||||
return self.loss(predict)
|
||||
|
||||
|
||||
class GradWrap(nn.Cell):
|
||||
def __init__(self, network):
|
||||
super(GradWrap, self).__init__()
|
||||
self.network = network
|
||||
|
||||
def construct(self, x):
|
||||
return grad_all(self.network)(x)
|
||||
|
||||
|
||||
def compile_net(net, x):
|
||||
net.set_auto_parallel()
|
||||
_executor.compile(net, x)
|
||||
|
||||
|
||||
class Net(nn.Cell):
|
||||
def __init__(self, strategy1, strategy2, strategy3, strategy4, strategy5):
|
||||
super().__init__()
|
||||
self.query_w = Parameter(initializer(
|
||||
"normal", [8, 16], ms.float32), name='query')
|
||||
self.query = P.MatMul().shard(strategy1)
|
||||
|
||||
self.key_w = Parameter(initializer(
|
||||
"normal", [8, 16], ms.float32), name='key')
|
||||
self.key = P.MatMul().shard(strategy2)
|
||||
|
||||
self.value_w = Parameter(initializer(
|
||||
"normal", [8, 16], ms.float32), name='value')
|
||||
self.value = P.MatMul().shard(strategy3)
|
||||
|
||||
self.score = P.MatMul().shard(strategy4)
|
||||
self.context = P.MatMul().shard(strategy5)
|
||||
self.transpose1 = P.Transpose()
|
||||
self.transpose2 = P.Transpose()
|
||||
self.relu = P.ReLU()
|
||||
|
||||
def construct(self, x):
|
||||
q = self.query(x, self.query_w)
|
||||
k = self.key(x, self.key_w)
|
||||
v = self.value(x, self.value_w)
|
||||
|
||||
k = self.transpose1(k, (1, 0))
|
||||
s = self.score(q, k)
|
||||
|
||||
v = self.transpose2(v, (1, 0))
|
||||
c = self.context(v, s)
|
||||
out = self.relu(c)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def test_self_attention_standalone():
|
||||
set_auto_parallel_context(device_num=8, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="stand_alone")
|
||||
net = GradWrap(NetWithLoss(
|
||||
Net(None, None, None, None, None)))
|
||||
|
||||
x = Tensor(np.ones([32, 8]), dtype=ms.float32)
|
||||
|
||||
compile_net(net, x)
|
||||
|
||||
|
||||
def test_self_attention_semi():
|
||||
set_auto_parallel_context(device_num=8, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
strategy1 = ((2, 2), (2, 2))
|
||||
strategy2 = ((2, 2), (2, 2))
|
||||
strategy3 = ((2, 2), (2, 2))
|
||||
strategy4 = ((2, 4), (4, 1))
|
||||
strategy5 = ((2, 1), (1, 4))
|
||||
|
||||
net = GradWrap(NetWithLoss(
|
||||
Net(strategy1, strategy2, strategy3, strategy4, strategy5)))
|
||||
|
||||
x = Tensor(np.ones([32, 8]), dtype=ms.float32)
|
||||
|
||||
compile_net(net, x)
|
||||
|
||||
|
||||
def test_self_attention_dp():
|
||||
set_auto_parallel_context(device_num=8, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel")
|
||||
|
||||
strategy1 = ((8, 1), (1, 1))
|
||||
strategy2 = ((8, 1), (1, 1))
|
||||
strategy3 = ((8, 1), (1, 1))
|
||||
strategy4 = ((8, 1), (1, 1))
|
||||
strategy5 = ((8, 1), (1, 1))
|
||||
|
||||
net = GradWrap(NetWithLoss(
|
||||
Net(strategy1, strategy2, strategy3, strategy4, strategy5)))
|
||||
|
||||
x = Tensor(np.ones([32, 8]), dtype=ms.float32)
|
||||
|
||||
compile_net(net, x)
|
||||
|
||||
|
||||
def test_self_attention_auto():
|
||||
set_auto_parallel_context(device_num=8, global_rank=0)
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel")
|
||||
net = GradWrap(NetWithLoss(
|
||||
Net(None, None, None, None, None)))
|
||||
|
||||
x = Tensor(np.ones([32, 8]), dtype=ms.float32)
|
||||
|
||||
compile_net(net, x)
|
Loading…
Reference in New Issue