forked from mindspore-Ecosystem/mindspore
!13874 cast maskrcnn weight from float16 to float32
From: @gengdongjie Reviewed-by: @wuxuejian,@c_34 Signed-off-by: @wuxuejian
This commit is contained in:
commit
2cc6d9cff1
|
@ -60,5 +60,5 @@ def load_weights(model_path, use_fp16_weight):
|
||||||
return param_list
|
return param_list
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
parameter_list = load_weights(args_opt.ckpt_file, use_fp16_weight=True)
|
parameter_list = load_weights(args_opt.ckpt_file, use_fp16_weight=False)
|
||||||
save_checkpoint(parameter_list, "resnet50_backbone.ckpt")
|
save_checkpoint(parameter_list, "resnet50_backbone.ckpt")
|
||||||
|
|
|
@ -19,11 +19,12 @@ import mindspore.nn as nn
|
||||||
from mindspore.ops import operations as P
|
from mindspore.ops import operations as P
|
||||||
from mindspore.common.tensor import Tensor
|
from mindspore.common.tensor import Tensor
|
||||||
from mindspore.ops import functional as F
|
from mindspore.ops import functional as F
|
||||||
|
import mindspore.common.dtype as mstype
|
||||||
|
|
||||||
|
|
||||||
def weight_init_ones(shape):
|
def weight_init_ones(shape):
|
||||||
"""Weight init."""
|
"""Weight init."""
|
||||||
return Tensor(np.array(np.ones(shape).astype(np.float32) * 0.01).astype(np.float16))
|
return Tensor(np.array(np.ones(shape).astype(np.float32) * 0.01).astype(np.float32))
|
||||||
|
|
||||||
|
|
||||||
def _conv(in_channels, out_channels, kernel_size=3, stride=1, padding=0, pad_mode='pad'):
|
def _conv(in_channels, out_channels, kernel_size=3, stride=1, padding=0, pad_mode='pad'):
|
||||||
|
@ -32,15 +33,15 @@ def _conv(in_channels, out_channels, kernel_size=3, stride=1, padding=0, pad_mod
|
||||||
weights = weight_init_ones(shape)
|
weights = weight_init_ones(shape)
|
||||||
return nn.Conv2d(in_channels, out_channels,
|
return nn.Conv2d(in_channels, out_channels,
|
||||||
kernel_size=kernel_size, stride=stride, padding=padding,
|
kernel_size=kernel_size, stride=stride, padding=padding,
|
||||||
pad_mode=pad_mode, weight_init=weights, has_bias=False)
|
pad_mode=pad_mode, weight_init=weights, has_bias=False).to_float(mstype.float16)
|
||||||
|
|
||||||
|
|
||||||
def _BatchNorm2dInit(out_chls, momentum=0.1, affine=True, use_batch_statistics=True):
|
def _BatchNorm2dInit(out_chls, momentum=0.1, affine=True, use_batch_statistics=True):
|
||||||
"""Batchnorm2D wrapper."""
|
"""Batchnorm2D wrapper."""
|
||||||
gamma_init = Tensor(np.array(np.ones(out_chls)).astype(np.float16))
|
gamma_init = Tensor(np.array(np.ones(out_chls)).astype(np.float32))
|
||||||
beta_init = Tensor(np.array(np.ones(out_chls) * 0).astype(np.float16))
|
beta_init = Tensor(np.array(np.ones(out_chls) * 0).astype(np.float32))
|
||||||
moving_mean_init = Tensor(np.array(np.ones(out_chls) * 0).astype(np.float16))
|
moving_mean_init = Tensor(np.array(np.ones(out_chls) * 0).astype(np.float32))
|
||||||
moving_var_init = Tensor(np.array(np.ones(out_chls)).astype(np.float16))
|
moving_var_init = Tensor(np.array(np.ones(out_chls)).astype(np.float32))
|
||||||
|
|
||||||
return nn.BatchNorm2d(out_chls, momentum=momentum, affine=affine, gamma_init=gamma_init,
|
return nn.BatchNorm2d(out_chls, momentum=momentum, affine=affine, gamma_init=gamma_init,
|
||||||
beta_init=beta_init, moving_mean_init=moving_mean_init,
|
beta_init=beta_init, moving_mean_init=moving_mean_init,
|
||||||
|
|
Loading…
Reference in New Issue