forked from mindspore-Ecosystem/mindspore
!1242 support vm for Argmax
Merge pull request !1242 from jiangjinsheng/vm_arg_max
This commit is contained in:
commit
2a1aad0f55
|
@ -77,6 +77,7 @@ static std::map<string, string> tbe_func_adapter_map = {
|
|||
{"resize_nearest_neighbor", "resize_nearest_neighbor_v2_d"},
|
||||
{"resize_nearest_neighbor_grad", "resize_nearest_neighbor_v2_grad_d"},
|
||||
{"pad", "pad_d"},
|
||||
{"argmax", "arg_max_d"},
|
||||
{"space_to_batch", "space_to_batch_d"},
|
||||
{"batch_to_space", "batch_to_space_d"},
|
||||
{"resize_bilinear", "resize_bilinear_v2_d"},
|
||||
|
|
|
@ -175,6 +175,7 @@ from .bounding_box_decode import _bounding_box_decode_tbe
|
|||
from .bounding_box_encode import _bounding_box_encode_tbe
|
||||
from .check_valid import _check_valid_tbe
|
||||
from .iou import _iou_tbe
|
||||
from .arg_max import _arg_max_tbe
|
||||
from .nms_with_mask import nms_with_mask_op_info
|
||||
from .random_choice_with_mask import random_choice_with_mask_op_info
|
||||
from .sgd import sgd_op_info
|
||||
|
|
|
@ -0,0 +1,38 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Argmax op"""
|
||||
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||
|
||||
arg_max_op_info = TBERegOp("Argmax") \
|
||||
.fusion_type("ELEMWISE") \
|
||||
.async_flag(False) \
|
||||
.binfile_name("arg_max_d.so") \
|
||||
.compute_cost(10) \
|
||||
.kernel_name("arg_max_d") \
|
||||
.partial_flag(True) \
|
||||
.attr("axis", "required", "int", "all") \
|
||||
.attr("output_dtype", "optional", "type", "all") \
|
||||
.input(0, "x", False, "required", "all") \
|
||||
.output(0, "y", False, "required", "all") \
|
||||
.dtype_format(DataType.F16_Default, DataType.I32_Default) \
|
||||
.dtype_format(DataType.F32_Default, DataType.I32_Default) \
|
||||
.get_op_info()
|
||||
|
||||
|
||||
@op_info_register(arg_max_op_info)
|
||||
def _arg_max_tbe():
|
||||
"""Argmax TBE register"""
|
||||
return
|
|
@ -951,8 +951,8 @@ class Argmax(PrimitiveWithInfer):
|
|||
|
||||
Args:
|
||||
axis (int): Axis on which Argmax operation applies. Default: -1.
|
||||
output_type (:class:`mindspore.dtype`): An optional data type of `mindspore.dtype.int32` and
|
||||
`mindspore.dtype.int64`. Default: `mindspore.dtype.int64`.
|
||||
output_type (:class:`mindspore.dtype`): An optional data type of `mindspore.dtype.int32`.
|
||||
Default: `mindspore.dtype.int32`.
|
||||
|
||||
Inputs:
|
||||
- **input_x** (Tensor) - Input tensor.
|
||||
|
@ -961,12 +961,12 @@ class Argmax(PrimitiveWithInfer):
|
|||
Tensor, indices of the max value of input tensor across the axis.
|
||||
|
||||
Examples:
|
||||
>>> input_x = Tensor(np.array([2.0, 3.1, 1.2]))
|
||||
>>> input_x = Tensor(np.array([2.0, 3.1, 1.2]), mindspore.float32)
|
||||
>>> index = P.Argmax(output_type=mindspore.int32)(input_x)
|
||||
"""
|
||||
|
||||
@prim_attr_register
|
||||
def __init__(self, axis=-1, output_type=mstype.int64):
|
||||
def __init__(self, axis=-1, output_type=mstype.int32):
|
||||
"""init Argmax"""
|
||||
self.init_prim_io_names(inputs=['x'], outputs=['output'])
|
||||
validator.check_value_type("axis", axis, [int], self.name)
|
||||
|
|
Loading…
Reference in New Issue