debug_for_new_interface_forwardvalueandgrad

This commit is contained in:
lvliang 2021-03-01 17:12:59 +08:00
parent a1232aa987
commit 26f6fea675
2 changed files with 25 additions and 51 deletions

View File

@ -18,7 +18,6 @@ from types import FunctionType, MethodType
from mindspore.parallel._utils import (_get_device_num, _get_gradients_mean,
_get_parallel_mode)
from mindspore.context import ParallelMode
from ...common.tensor import Tensor
from ...common import dtype as mstype
from ...common.parameter import Parameter, ParameterTuple
from ...ops import composite as C
@ -197,15 +196,16 @@ class ForwardValueAndGrad(Cell):
If sens_param is False, a 'ones_like(outputs)' sensitivity will be attached automatically.
Default: False.
If the sensor_param is True, a sensitivity (gradient with respect to output) needs to be transferred through
the location parameter or key-value pair parameter. If the value is transferred through the key-value pair
parameter, the key must be sens.
sens (Number): The scaling number to be filled as the input of backpropagation. Default value is 1.0.
the input parameter.
Inputs:
- **(\*inputs)** (Tuple(Tensor)) - Tuple of input tensors with shape :math:`(N, \ldots)`.
- **(\*sens)** - A sensitivity (gradient with respect to output) as the input of backpropagation.
If network has single output, the sens is a tensor.
If network has multiple outputs, the sens is the tuple(tensor).
Outputs:
- **forward value** (a scalar Tensor with shape :math:`()`) - The result of network forward running.
- **forward value** - The result of network forward running.
- **gradients** (tuple(tensor)) - The gradients of network parameters and inputs.
Supported Platforms:
@ -219,8 +219,8 @@ class ForwardValueAndGrad(Cell):
>>> loss_fn = nn.SoftmaxCrossEntropyWithLogits()
>>> #1) Using the WithLossCell existing provide
>>> loss_net = nn.WithLossCell(net, loss_fn)
>>> forward_value_and_grad = nn.ForwardValueAndGrad(loss_net, weights=weight, get_by_list=True, sens_param=True)
>>> loss, grads = forward_value_and_grad(inputs, labels, 1.0)
>>> forward_value_and_grad = nn.ForwardValueAndGrad(loss_net, weights=weights, get_by_list=True)
>>> loss, grads = forward_value_and_grad(inputs, labels)
>>>
>>> #2) Using user-defined WithLossCell
>>> class MyWithLossCell(Cell):
@ -238,40 +238,40 @@ class ForwardValueAndGrad(Cell):
... return self._backbone
...
>>> loss_net = MyWithLossCell(net, loss_fn)
>>> forward_value_and_grad = nn.ForwardValueAndGrad(loss_net, weights=weight, get_by_list=True, sens_param=True)
>>> loss, grads = forward_value_and_grad(inputs, labels, 1.0)
>>> forward_value_and_grad = nn.ForwardValueAndGrad(loss_net, weights=weights, get_by_list=True)
>>> loss, grads = forward_value_and_grad(inputs, labels)
"""
def __init__(self, network, weights=None, get_all=False, get_by_list=False, sens_param=False, sens=1.0):
def __init__(self, network, weights=None, get_all=False, get_by_list=False, sens_param=False):
super(ForwardValueAndGrad, self).__init__(auto_prefix=False)
if not isinstance(network, (Cell, FunctionType, MethodType)):
raise TypeError(f"The type of training network should be cell, function type or method type, "
f"but got '{type(network)}'")
if not isinstance(get_all, bool):
raise TypeError(f"The type of get_all should be bool, but got '{type(get_all)}'")
if not isinstance(get_by_list, bool):
raise TypeError(f"The type of get_by_list should be bool, but got '{type(get_by_list)}'")
if get_by_list and not isinstance(weights, ParameterTuple):
raise TypeError(f"When get_by_list is set to True, the parameters of training network should be "
f"ParameterTuple type, but got '{type(weights)}'")
if get_by_list is not True and weights is not None:
raise TypeError(f"When get_by_list is set to False, the parameters of training network should be "
f"NoneType, but got '{type(weights)}'")
self.network = network
self.network.set_grad()
if isinstance(network, Cell):
self.network.set_grad()
self.weights = weights
self.get_all = get_all
self.get_by_list = get_by_list
self.sens_param = sens_param
self.sens = sens
self.grad = C.GradOperation(get_all=self.get_all, get_by_list=self.get_by_list, sens_param=self.sens_param)
def construct(self, *inputs):
weights = self.weights
loss = self.network(*inputs)
grad_inputs = inputs
if self.sens_param:
sens = self.sens
if not isinstance(self.sens, Tensor):
sens = P.Fill()(P.DType()(loss), P.Shape()(loss), self.sens)
grads = self.grad(self.network, weights)(*inputs, sens)
inputs = inputs[:-1]
loss = self.network(*inputs)
if self.get_by_list:
grads = self.grad(self.network, self.weights)(*grad_inputs)
else:
grads = self.grad(self.network, weights)(*inputs)
grads = self.grad(self.network)(*grad_inputs)
return loss, grads

View File

@ -414,40 +414,14 @@ def test_trainTensor_with_new_interface(num_classes=10, epoch=8, batch_size=1):
weights = ParameterTuple(filter(lambda x: x.requires_grad, net.get_parameters()))
optimizer = Momentum(weights, 0.1, 0.9)
train_network = ForwardValueAndGrad(network=net_with_criterion, weights=weights, get_by_list=True, sens_param=True,
sens=1.0)
train_network = ForwardValueAndGrad(network=net_with_criterion, weights=weights, get_by_list=True, sens_param=True)
losses = []
for i in range(0, epoch):
data = Tensor(np.ones([batch_size, 3, 224, 224]
).astype(np.float32) * 0.01)
label = Tensor(np.ones([batch_size]).astype(np.int32))
loss, grads = train_network(data, label)
grads = F.identity(grads)
optimizer(grads)
losses.append(loss)
assert (losses[-1].asnumpy() < 0.8)
@pytest.mark.level0
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_big_batchSize_with_new_interface(num_classes=10, epoch=8, batch_size=338):
net = resnet50(num_classes)
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
net_with_criterion = WithLossCell(net, criterion)
net_with_criterion.set_train()
weights = ParameterTuple(filter(lambda x: x.requires_grad, net.get_parameters()))
optimizer = Momentum(weights, 0.1, 0.9)
train_network = ForwardValueAndGrad(network=net_with_criterion, weights=weights, get_by_list=True, sens_param=True,
sens=1.0)
losses = []
for i in range(0, epoch):
data = Tensor(np.ones([batch_size, 3, 224, 224]
).astype(np.float32) * 0.01)
label = Tensor(np.ones([batch_size]).astype(np.int32))
loss, grads = train_network(data, label)
sens = Tensor(np.ones([1]).astype(np.float32))
loss, grads = train_network(data, label, sens)
grads = F.identity(grads)
optimizer(grads)
losses.append(loss)