forked from mindspore-Ecosystem/mindspore
add CPU IOU
This commit is contained in:
parent
70d4185c58
commit
2424ed7ee5
|
@ -0,0 +1,89 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#include "backend/kernel_compiler/cpu/iou_cpu_kernel.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <string>
|
||||
#include <algorithm>
|
||||
#include "backend/kernel_compiler/cpu/mkldnn/mkl_kernel_engine.h"
|
||||
#include "runtime/device/cpu/cpu_device_address.h"
|
||||
#include "utils/ms_utils.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
|
||||
template <typename T>
|
||||
void IOUCPUKernel<T>::InitKernel(const CNodePtr &kernel_node) {
|
||||
MS_EXCEPTION_IF_NULL(kernel_node);
|
||||
auto anchor_boxes_shape = AnfAlgo::GetInputDeviceShape(kernel_node, 0);
|
||||
if (anchor_boxes_shape.size() != 2 || anchor_boxes_shape[1] != 4) {
|
||||
MS_LOG(EXCEPTION) << "The anchor_boxes shape should be [N, 4].";
|
||||
}
|
||||
anchor_boxes_size_ = anchor_boxes_shape[0];
|
||||
auto gt_boxes_shape = AnfAlgo::GetInputDeviceShape(kernel_node, 1);
|
||||
if (gt_boxes_shape.size() != 2 || gt_boxes_shape[1] != 4) {
|
||||
MS_LOG(EXCEPTION) << "The gt_boxes shape should be [N, 4].";
|
||||
}
|
||||
gt_boxes_size_ = gt_boxes_shape[0];
|
||||
iou_size_ = anchor_boxes_size_ * gt_boxes_size_;
|
||||
std::string iou_mode = AnfAlgo::GetNodeAttr<std::string>(kernel_node, "mode");
|
||||
if (iou_mode != "iou" && iou_mode != "iof") {
|
||||
MS_LOG(EXCEPTION) << "IOU mode should be 'iou', 'iof'.";
|
||||
}
|
||||
if (iou_mode == "iof") {
|
||||
mode_ = 1;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool IOUCPUKernel<T>::Launch(const std::vector<kernel::AddressPtr> &inputs,
|
||||
const std::vector<kernel::AddressPtr> & /*workspace*/,
|
||||
const std::vector<kernel::AddressPtr> &outputs) {
|
||||
if (inputs.size() != 2) {
|
||||
MS_LOG(EXCEPTION) << "Input number is " << inputs.size() << ", but IOU needs 2 inputs.";
|
||||
}
|
||||
if (outputs.size() != 1) {
|
||||
MS_LOG(EXCEPTION) << "Output number is " << outputs.size() << ", but IOU needs 1 outputs.";
|
||||
}
|
||||
auto anchor_boxes = reinterpret_cast<T *>(inputs[0]->addr);
|
||||
auto gt_boxes = reinterpret_cast<T *>(inputs[1]->addr);
|
||||
auto iou_score = reinterpret_cast<T *>(outputs[0]->addr);
|
||||
|
||||
// multithreading
|
||||
auto task = [&](size_t start, size_t end) {
|
||||
for (size_t i = start; i < end; i++) {
|
||||
int idx1 = i % anchor_boxes_size_ * 4;
|
||||
int idx2 = i / anchor_boxes_size_ * 4;
|
||||
T I_x0 = std::max(anchor_boxes[idx1], gt_boxes[idx2]);
|
||||
T I_y0 = std::max(anchor_boxes[idx1 + 1], gt_boxes[idx2 + 1]);
|
||||
T I_x1 = std::min(anchor_boxes[idx1 + 2], gt_boxes[idx2 + 2]);
|
||||
T I_y1 = std::min(anchor_boxes[idx1 + 3], gt_boxes[idx2 + 3]);
|
||||
T overlaps = std::max(T(0), (I_x1 - I_x0 + T(1)) * (I_y1 - I_y0 + T(1)));
|
||||
T area1 =
|
||||
(anchor_boxes[idx1 + 2] - anchor_boxes[idx1] + T(1)) * (anchor_boxes[idx1 + 3] - anchor_boxes[idx1 + 1] + T(1));
|
||||
T area2 = (gt_boxes[idx2 + 2] - gt_boxes[idx2] + T(1)) * (gt_boxes[idx2 + 3] - gt_boxes[idx2 + 1] + T(1));
|
||||
if (mode_ == 0) {
|
||||
iou_score[i] = overlaps / (area1 + area2 - overlaps + T(1e-10));
|
||||
} else {
|
||||
iou_score[i] = overlaps / (area2 + T(1e-10));
|
||||
}
|
||||
}
|
||||
};
|
||||
CPUKernelUtils::ParallelFor(task, iou_size_);
|
||||
return true;
|
||||
}
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
|
@ -0,0 +1,52 @@
|
|||
/**
|
||||
* Copyright 2021 Huawei Technologies Co., Ltd
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_IOU_CPU_KERNEL_H_
|
||||
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_IOU_CPU_KERNEL_H_
|
||||
|
||||
#include <vector>
|
||||
#include <memory>
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel.h"
|
||||
#include "backend/kernel_compiler/cpu/cpu_kernel_factory.h"
|
||||
|
||||
namespace mindspore {
|
||||
namespace kernel {
|
||||
template <typename T>
|
||||
class IOUCPUKernel : public CPUKernel {
|
||||
public:
|
||||
IOUCPUKernel() = default;
|
||||
~IOUCPUKernel() override = default;
|
||||
void InitKernel(const CNodePtr &kernel_node) override;
|
||||
|
||||
bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace,
|
||||
const std::vector<AddressPtr> &outputs) override;
|
||||
|
||||
private:
|
||||
int mode_{0};
|
||||
size_t anchor_boxes_size_{0};
|
||||
size_t gt_boxes_size_{0};
|
||||
size_t iou_size_{0};
|
||||
};
|
||||
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
IOU, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32),
|
||||
IOUCPUKernel, float)
|
||||
MS_REG_CPU_KERNEL_T(
|
||||
IOU, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16),
|
||||
IOUCPUKernel, float16)
|
||||
} // namespace kernel
|
||||
} // namespace mindspore
|
||||
|
||||
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_IOU_CPU_KERNEL_H_
|
|
@ -359,7 +359,7 @@ class IOU(PrimitiveWithInfer):
|
|||
KeyError: When `mode` is not 'iou' or 'iof'.
|
||||
|
||||
Supported Platforms:
|
||||
``Ascend`` ``GPU``
|
||||
``Ascend`` ``GPU`` ``CPU``
|
||||
|
||||
Examples:
|
||||
>>> iou = ops.IOU()
|
||||
|
|
|
@ -0,0 +1,57 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
import mindspore
|
||||
import mindspore.context as context
|
||||
import mindspore.nn as nn
|
||||
from mindspore import Tensor
|
||||
from mindspore.ops import operations as P
|
||||
|
||||
|
||||
class NetIOU(nn.Cell):
|
||||
def __init__(self, mode):
|
||||
super(NetIOU, self).__init__()
|
||||
self.encode = P.IOU(mode=mode)
|
||||
|
||||
def construct(self, anchor, groundtruth):
|
||||
return self.encode(anchor, groundtruth)
|
||||
|
||||
@pytest.mark.level0
|
||||
@pytest.mark.platform_x86_cpu
|
||||
@pytest.mark.env_onecard
|
||||
def test_iou():
|
||||
pos1 = [[101, 169, 246, 429], [107, 150, 277, 400], [103, 130, 220, 400]]
|
||||
pos2 = [[121, 138, 304, 374], [97, 130, 250, 400]]
|
||||
mode = "iou"
|
||||
pos1_box = Tensor(np.array(pos1), mindspore.float32)
|
||||
pos2_box = Tensor(np.array(pos2), mindspore.float32)
|
||||
expect_result = np.array([[0.46551168, 0.6898875, 0.4567706], [0.73686045, 0.74506813, 0.76623374]], np.float32)
|
||||
|
||||
error = np.ones(shape=[1]) * 1.0e-6
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target='CPU')
|
||||
overlaps = NetIOU(mode)
|
||||
output = overlaps(pos1_box, pos2_box)
|
||||
diff = output.asnumpy() - expect_result
|
||||
assert np.all(abs(diff) < error)
|
||||
|
||||
context.set_context(mode=context.PYNATIVE_MODE, device_target='CPU')
|
||||
overlaps = NetIOU(mode)
|
||||
output = overlaps(pos1_box, pos2_box)
|
||||
diff = output.asnumpy() - expect_result
|
||||
assert np.all(abs(diff) < error)
|
Loading…
Reference in New Issue