forked from mindspore-Ecosystem/mindspore
!57 Add parallel operators for Neg and BatchMatMul
Merge pull request !57 from yangzhenzhang/master
This commit is contained in:
commit
22a9c00bcd
|
@ -123,6 +123,8 @@ REGISTER(ReLUInfo);
|
|||
REGISTER(GatherV2Info);
|
||||
REGISTER(SqrtInfo);
|
||||
REGISTER(GetNextInfo);
|
||||
REGISTER(NegInfo);
|
||||
REGISTER(BatchMatMulInfo);
|
||||
} // namespace parallel
|
||||
} // namespace mindspore
|
||||
|
||||
|
|
|
@ -167,6 +167,13 @@ class SqrtInfo : public ActivationOther {
|
|||
: ActivationOther(name, inputs_shape, outputs_shape, attrs) {}
|
||||
~SqrtInfo() override = default;
|
||||
};
|
||||
|
||||
class NegInfo : public ActivationOther {
|
||||
public:
|
||||
NegInfo(const std::string& name, const Shapes& inputs_shape, const Shapes& outputs_shape, const PrimitiveAttrs& attrs)
|
||||
: ActivationOther(name, inputs_shape, outputs_shape, attrs) {}
|
||||
~NegInfo() override = default;
|
||||
};
|
||||
} // namespace parallel
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_OPTIMIZER_OPS_INFO_PARALLEL_ACTIVATION_INFO_H_
|
||||
|
|
|
@ -87,6 +87,14 @@ class MatMulInfo : public MatMul {
|
|||
: MatMul(name, inputs_shape, outputs_shape, attrs) {}
|
||||
~MatMulInfo() override = default;
|
||||
};
|
||||
|
||||
class BatchMatMulInfo : public MatMul {
|
||||
public:
|
||||
BatchMatMulInfo(const std::string& name, const Shapes& inputs_shape, const Shapes& outputs_shape,
|
||||
const PrimitiveAttrs& attrs)
|
||||
: MatMul(name, inputs_shape, outputs_shape, attrs) {}
|
||||
~BatchMatMulInfo() override = default;
|
||||
};
|
||||
} // namespace parallel
|
||||
} // namespace mindspore
|
||||
#endif // MINDSPORE_CCSRC_PARALLEL_OPS_INFO_MATMUL_INFO_H_
|
||||
|
|
|
@ -188,6 +188,8 @@ constexpr char SQRT[] = "Sqrt";
|
|||
constexpr char ASSIGN[] = "Assign";
|
||||
constexpr char GET_NEXT[] = "GetNext";
|
||||
constexpr char SQUEEZE[] = "Squeeze";
|
||||
constexpr char Neg[] = "Neg";
|
||||
constexpr char BATCH_MATMUL[] = "BatchMatMul";
|
||||
|
||||
// Parallel don't care
|
||||
constexpr char TUPLE_GETITEM[] = "tuple_getitem";
|
||||
|
|
|
@ -101,6 +101,8 @@ std::vector<std::string> splittable_op_ = {MATMUL,
|
|||
SQRT,
|
||||
GET_NEXT,
|
||||
CAST,
|
||||
Neg,
|
||||
BATCH_MATMUL,
|
||||
SQUEEZE};
|
||||
|
||||
std::vector<std::string> elementwise_op_ = {ACTIVATION, GELU, TANH, SOFTMAX, LOG_SOFTMAX, RELU, SQRT,
|
||||
|
|
|
@ -0,0 +1,93 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
import mindspore as ms
|
||||
from mindspore import context, Tensor, Parameter
|
||||
from mindspore.nn import Cell, TrainOneStepCell, Momentum
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common.api import _executor
|
||||
|
||||
|
||||
class Net(Cell):
|
||||
def __init__(self, mul_weight, batch_matmul_weight, transpose_b=False, strategy1=None, strategy2=None):
|
||||
super().__init__()
|
||||
self.mul = P.Mul().set_strategy(strategy1)
|
||||
self.batch_matmul = P.BatchMatMul(transpose_b=transpose_b).set_strategy(strategy2)
|
||||
self.mul_weight = Parameter(mul_weight, "w1")
|
||||
self.batch_matmul_weight = Parameter(batch_matmul_weight, "w2")
|
||||
|
||||
def construct(self, x, b):
|
||||
out = self.mul(x, self.mul_weight)
|
||||
out = self.batch_matmul(out, self.batch_matmul_weight)
|
||||
return out
|
||||
|
||||
|
||||
_x = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
|
||||
_w1 = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
|
||||
_w2 = Tensor(np.ones([128, 32, 32]), dtype=ms.float32)
|
||||
_b = Tensor(np.ones([128, 64, 16]), dtype=ms.float32)
|
||||
|
||||
|
||||
def compile(net):
|
||||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
_executor.compile(train_net, _x, _b)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
||||
def test_batch_matmul_data_parallel():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
||||
strategy1 = ((16, 1, 1), (16, 1, 1))
|
||||
strategy2 = ((16, 1, 1), (16, 1, 1))
|
||||
net = Net(_w1, _w2, False, strategy1, strategy2)
|
||||
compile(net)
|
||||
|
||||
|
||||
def test_batch_matmul_model_parallel():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
||||
strategy1 = ((1, 1, 1), (1, 1, 1))
|
||||
strategy2 = ((1, 1, 1), (1, 1, 16))
|
||||
net = Net(_w1, _w2, False, strategy1, strategy2)
|
||||
compile(net)
|
||||
|
||||
|
||||
def test_batch_matmul_hybrid_parallel():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
||||
strategy1 = ((2, 2, 2), (2, 2, 2))
|
||||
strategy2 = ((2, 2, 2), (2, 2, 2))
|
||||
net = Net(_w1, _w2, False, strategy1, strategy2)
|
||||
compile(net)
|
||||
|
||||
|
||||
def test_batch_matmul_auto_parallel():
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0)
|
||||
net = Net(_w1, _w2, False)
|
||||
compile(net)
|
||||
|
||||
|
||||
def test_batch_matmul_repeat_calc():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
||||
strategy1 = ((2, 2, 4), (2, 2, 4))
|
||||
strategy2 = ((1, 2, 2), (1, 2, 2))
|
||||
net = Net(_w1, _w2, False, strategy1, strategy2)
|
||||
compile(net)
|
||||
|
||||
|
||||
def test_batch_matmul_transpose_b():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
||||
strategy1 = ((2, 2, 4), (2, 2, 4))
|
||||
strategy2 = ((1, 2, 2), (1, 2, 2))
|
||||
net = Net(_w1, _w2, True, strategy1, strategy2)
|
||||
compile(net)
|
|
@ -0,0 +1,84 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
import mindspore as ms
|
||||
from mindspore import context, Tensor, Parameter
|
||||
from mindspore.nn import Cell, TrainOneStepCell, Momentum
|
||||
from mindspore.ops import operations as P
|
||||
from mindspore.common.api import _executor
|
||||
|
||||
|
||||
class Net(Cell):
|
||||
def __init__(self, mul_weight, strategy1=None, strategy2=None):
|
||||
super().__init__()
|
||||
self.mul = P.Mul().set_strategy(strategy1)
|
||||
self.neg = P.Neg().set_strategy(strategy2)
|
||||
self.mul_weight = Parameter(mul_weight, "w1")
|
||||
|
||||
def construct(self, x, b):
|
||||
out = self.mul(x, self.mul_weight)
|
||||
out = self.neg(out)
|
||||
return out
|
||||
|
||||
|
||||
_x = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
|
||||
_w1 = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
|
||||
_b = Tensor(np.ones([128, 64, 32]), dtype=ms.float32)
|
||||
|
||||
|
||||
def compile(net):
|
||||
optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||
train_net = TrainOneStepCell(net, optimizer)
|
||||
_executor.compile(train_net, _x, _b)
|
||||
context.reset_auto_parallel_context()
|
||||
|
||||
|
||||
def test_neg_data_parallel():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
||||
strategy1 = ((16, 1, 1), (16, 1, 1))
|
||||
strategy2 = ((16, 1, 1), )
|
||||
net = Net(_w1, strategy1, strategy2)
|
||||
compile(net)
|
||||
|
||||
|
||||
def test_neg_model_parallel():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
||||
strategy1 = ((1, 1, 16), (1, 1, 16))
|
||||
strategy2 = ((1, 1, 16), )
|
||||
net = Net(_w1, strategy1, strategy2)
|
||||
compile(net)
|
||||
|
||||
|
||||
def test_neg_hybrid_parallel():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
||||
strategy1 = ((2, 2, 4), (2, 2, 4))
|
||||
strategy2 = ((2, 2, 4), )
|
||||
net = Net(_w1, strategy1, strategy2)
|
||||
compile(net)
|
||||
|
||||
|
||||
def test_neg_auto_parallel():
|
||||
context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=16, global_rank=0)
|
||||
net = Net(_w1)
|
||||
compile(net)
|
||||
|
||||
|
||||
def test_neg_repeat_calc():
|
||||
context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=16, global_rank=0)
|
||||
strategy1 = ((2, 2, 4), (2, 2, 4))
|
||||
strategy2 = ((1, 2, 2), )
|
||||
net = Net(_w1, strategy1, strategy2)
|
||||
compile(net)
|
||||
|
Loading…
Reference in New Issue