forked from mindspore-Ecosystem/mindspore
!1302 Complete vm ops for BinaryCrossEntropy and BinaryCrossEntropyGrad
Merge pull request !1302 from lihongkang/master
This commit is contained in:
commit
2224fa093b
|
@ -189,3 +189,5 @@ from .pack import _pack_tbe
|
||||||
from .unpack import _unpack_tbe
|
from .unpack import _unpack_tbe
|
||||||
from .prelu import _prelu_tbe
|
from .prelu import _prelu_tbe
|
||||||
from .prelu_grad import _prelu_grad_tbe
|
from .prelu_grad import _prelu_grad_tbe
|
||||||
|
from .binary_cross_entropy import _binary_cross_entropy_tbe
|
||||||
|
from .binary_cross_entropy_grad import _binary_cross_entropy_grad_tbe
|
||||||
|
|
|
@ -0,0 +1,41 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
"""BinaryCrossEntropy op"""
|
||||||
|
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||||
|
|
||||||
|
binary_cross_entropy_op_info = TBERegOp("BinaryCrossEntropy") \
|
||||||
|
.fusion_type("OPAQUE") \
|
||||||
|
.async_flag(False) \
|
||||||
|
.binfile_name("binary_cross_entropy.so") \
|
||||||
|
.compute_cost(10) \
|
||||||
|
.kernel_name("binary_cross_entropy") \
|
||||||
|
.partial_flag(True) \
|
||||||
|
.attr("reduction", "optional", "str", "all") \
|
||||||
|
.input(0, "x", False, "required", "all") \
|
||||||
|
.input(1, "y", False, "required", "all") \
|
||||||
|
.input(2, "weight", False, "optional", "all") \
|
||||||
|
.output(0, "output", False, "required", "all") \
|
||||||
|
.dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.F16_Default, DataType.F16_Default) \
|
||||||
|
.dtype_format(DataType.F16_5HD, DataType.F16_5HD, DataType.F16_5HD, DataType.F16_5HD) \
|
||||||
|
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default) \
|
||||||
|
.dtype_format(DataType.F32_5HD, DataType.F32_5HD, DataType.F32_5HD, DataType.F32_5HD) \
|
||||||
|
.get_op_info()
|
||||||
|
|
||||||
|
|
||||||
|
@op_info_register(binary_cross_entropy_op_info)
|
||||||
|
def _binary_cross_entropy_tbe():
|
||||||
|
"""BinaryCrossEntropy TBE register"""
|
||||||
|
return
|
|
@ -0,0 +1,44 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
"""BinaryCrossEntropyGrad op"""
|
||||||
|
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType
|
||||||
|
|
||||||
|
binary_cross_entropy_grad_op_info = TBERegOp("BinaryCrossEntropyGrad") \
|
||||||
|
.fusion_type("OPAQUE") \
|
||||||
|
.async_flag(False) \
|
||||||
|
.binfile_name("binary_cross_entropy_grad.so") \
|
||||||
|
.compute_cost(10) \
|
||||||
|
.kernel_name("binary_cross_entropy_grad") \
|
||||||
|
.partial_flag(True) \
|
||||||
|
.attr("reduction", "optional", "str", "all") \
|
||||||
|
.input(0, "x", False, "required", "all") \
|
||||||
|
.input(1, "y", False, "required", "all") \
|
||||||
|
.input(2, "grad_output", False, "required", "all") \
|
||||||
|
.input(3, "weight", False, "optional", "all") \
|
||||||
|
.output(0, "output", False, "required", "all") \
|
||||||
|
.dtype_format(DataType.F16_Default, DataType.F16_Default, DataType.F16_Default, DataType.F16_Default,
|
||||||
|
DataType.F16_Default) \
|
||||||
|
.dtype_format(DataType.F16_5HD, DataType.F16_5HD, DataType.F16_5HD, DataType.F16_5HD, DataType.F16_5HD) \
|
||||||
|
.dtype_format(DataType.F32_Default, DataType.F32_Default, DataType.F32_Default, DataType.F32_Default,
|
||||||
|
DataType.F32_Default) \
|
||||||
|
.dtype_format(DataType.F32_5HD, DataType.F32_5HD, DataType.F32_5HD, DataType.F32_5HD, DataType.F32_5HD) \
|
||||||
|
.get_op_info()
|
||||||
|
|
||||||
|
|
||||||
|
@op_info_register(binary_cross_entropy_grad_op_info)
|
||||||
|
def _binary_cross_entropy_grad_tbe():
|
||||||
|
"""BinaryCrossEntropyGrad TBE register"""
|
||||||
|
return
|
|
@ -972,6 +972,19 @@ test_case_nn_ops = [
|
||||||
'desc_inputs': [[3, 3], [3, 3], Tensor(0.001, mstype.float32), [3, 3], Tensor(0.1, mstype.float32), [3, 3]],
|
'desc_inputs': [[3, 3], [3, 3], Tensor(0.001, mstype.float32), [3, 3], Tensor(0.1, mstype.float32), [3, 3]],
|
||||||
'desc_bprop': [3, 3],
|
'desc_bprop': [3, 3],
|
||||||
'skip': ['backward']}),
|
'skip': ['backward']}),
|
||||||
|
('BinaryCrossEntropy', {
|
||||||
|
'block': P.BinaryCrossEntropy(),
|
||||||
|
'desc_inputs': [Tensor([[0.3, 0.8], [0.4, 0.3]], mstype.float16),
|
||||||
|
Tensor([[0.4, 1.2], [-0.4, -0.9]], mstype.float16),
|
||||||
|
Tensor([[-1.4, -0.7], [0.9, 0.7]], mstype.float16)],
|
||||||
|
'desc_bprop': []}),
|
||||||
|
('BinaryCrossEntropyGrad', {
|
||||||
|
'block': G.BinaryCrossEntropyGrad(),
|
||||||
|
'desc_inputs': [Tensor([[0.3, 0.8], [0.4, 0.3]], mstype.float16),
|
||||||
|
Tensor([[0.4, 1.2], [-0.4, -0.9]], mstype.float16), Tensor(0.85, mstype.float16),
|
||||||
|
Tensor([[-1.4, -0.7], [0.9, 0.7]], mstype.float16)],
|
||||||
|
'desc_bprop': [],
|
||||||
|
'skip': ['backward']}),
|
||||||
]
|
]
|
||||||
|
|
||||||
test_case_array_ops = [
|
test_case_array_ops = [
|
||||||
|
|
Loading…
Reference in New Issue