diff --git a/model_zoo/official/cv/ssd/README.md b/model_zoo/official/cv/ssd/README.md index 7c0084c00b9..f1e40c4e227 100644 --- a/model_zoo/official/cv/ssd/README.md +++ b/model_zoo/official/cv/ssd/README.md @@ -147,7 +147,7 @@ sh run_eval.sh [DATASET] [CHECKPOINT_PATH] [DEVICE_ID] ### Training on Ascend -To train the model, run `train.py`. If the `mindrecord_dir` is empty, it will generate [mindrecord](https://www.mindspore.cn/tutorial/training/zh-CN/master/advanced_use/converse_dataset.html) files by `coco_root`(coco dataset) or `iamge_dir` and `anno_path`(own dataset). **Note if mindrecord_dir isn't empty, it will use mindrecord_dir instead of raw images.** +To train the model, run `train.py`. If the `mindrecord_dir` is empty, it will generate [mindrecord](https://www.mindspore.cn/tutorial/training/zh-CN/master/advanced_use/convert_dataset.html) files by `coco_root`(coco dataset) or `iamge_dir` and `anno_path`(own dataset). **Note if mindrecord_dir isn't empty, it will use mindrecord_dir instead of raw images.** - Distribute mode diff --git a/model_zoo/official/cv/yolov3_resnet18/README.md b/model_zoo/official/cv/yolov3_resnet18/README.md index 7afb4beecd6..75175cc1139 100644 --- a/model_zoo/official/cv/yolov3_resnet18/README.md +++ b/model_zoo/official/cv/yolov3_resnet18/README.md @@ -135,7 +135,7 @@ After installing MindSpore via the official website, you can start training and ## [Training Process](#contents) ### Training on Ascend -To train the model, run `train.py` with the dataset `image_dir`, `anno_path` and `mindrecord_dir`. If the `mindrecord_dir` is empty, it wil generate [mindrecord](https://www.mindspore.cn/tutorial/training/zh-CN/master/advanced_use/converse_dataset.html) file by `image_dir` and `anno_path`(the absolute image path is joined by the `image_dir` and the relative path in `anno_path`). **Note if `mindrecord_dir` isn't empty, it will use `mindrecord_dir` rather than `image_dir` and `anno_path`.** +To train the model, run `train.py` with the dataset `image_dir`, `anno_path` and `mindrecord_dir`. If the `mindrecord_dir` is empty, it wil generate [mindrecord](https://www.mindspore.cn/tutorial/training/zh-CN/master/advanced_use/convert_dataset.html) file by `image_dir` and `anno_path`(the absolute image path is joined by the `image_dir` and the relative path in `anno_path`). **Note if `mindrecord_dir` isn't empty, it will use `mindrecord_dir` rather than `image_dir` and `anno_path`.** - Stand alone mode diff --git a/model_zoo/research/cv/ssd_ghostnet/README.md b/model_zoo/research/cv/ssd_ghostnet/README.md index c4aa26ef2b6..c5e6d462a9b 100644 --- a/model_zoo/research/cv/ssd_ghostnet/README.md +++ b/model_zoo/research/cv/ssd_ghostnet/README.md @@ -134,7 +134,7 @@ python eval.py --device_id 0 --dataset coco --checkpoint_path LOG4/ssd-500_458.c ### Training on Ascend -To train the model, run `train.py`. If the `mindrecord_dir` is empty, it will generate [mindrecord](https://www.mindspore.cn/tutorial/training/zh-CN/master/advanced_use/converse_dataset.html) files by `coco_root`(coco dataset) or `iamge_dir` and `anno_path`(own dataset). **Note if mindrecord_dir isn't empty, it will use mindrecord_dir instead of raw images.** +To train the model, run `train.py`. If the `mindrecord_dir` is empty, it will generate [mindrecord](https://www.mindspore.cn/tutorial/training/zh-CN/master/advanced_use/convert_dataset.html) files by `coco_root`(coco dataset) or `iamge_dir` and `anno_path`(own dataset). **Note if mindrecord_dir isn't empty, it will use mindrecord_dir instead of raw images.** - Distribute mode