!15822 Modify FaceRecognition network for clould

From: @zhanghuiyao
Reviewed-by: @oacjiewen,@c_34
Signed-off-by: @c_34
This commit is contained in:
mindspore-ci-bot 2021-04-30 17:03:08 +08:00 committed by Gitee
commit 220c4f8ed5
17 changed files with 831 additions and 288 deletions

View File

@ -84,7 +84,6 @@ The entire code structure is as following:
│ │ ├── head.py // head unit
│ │ ├── resnet.py // resnet architecture
│ ├── callback_factory.py // callback logging
│ ├── config.py // parameter configuration
│ ├── custom_dataset.py // custom dataset and sampler
│ ├── custom_net.py // custom cell define
│ ├── dataset_factory.py // creating dataset
@ -94,6 +93,15 @@ The entire code structure is as following:
│ ├── lrsche_factory.py // learning rate schedule
│ ├── me_init.py // network parameter init method
│ ├── metric_factory.py // metric fc layer
── utils
│ ├── __init__.py // init file
│ ├── config.py // parameter analysis
│ ├── device_adapter.py // device adapter
│ ├── local_adapter.py // local adapter
│ ├── moxing_adapter.py // moxing adapter
├─ base_config.yaml // parameter configuration
├─ beta_config.yaml // parameter configuration
├─ inference_config.yaml // parameter configuration
├─ train.py // training scripts
├─ eval.py // evaluation scripts
└─ export.py // export air model
@ -163,6 +171,47 @@ The entire code structure is as following:
sh run_distribute_train_beta.sh ./rank_table_8p.json
```
- ModelArts (If you want to run in modelarts, please check the official documentation of [modelarts](https://support.huaweicloud.com/modelarts/), and you can start training as follows)
- base model
```python
# (1) Add "config_path='/path_to_code/base_config.yaml'" on the website UI interface.
# (2) Perform a or b.
# a. Set "enable_modelarts=True" on base_config.yaml file.
# Set "is_distributed=1" on base_config.yaml file.
# Set other parameters on base_config.yaml file you need.
# b. Add "enable_modelarts=True" on the website UI interface.
# Add "is_distributed=1" on the website UI interface.
# Add other parameters on the website UI interface.
# (3) Upload a zip dataset to S3 bucket. (you could also upload the origin dataset, but it can be so slow.)
# (4) Set the code directory to "/path/FaceRecognition" on the website UI interface.
# (5) Set the startup file to "train.py" on the website UI interface.
# (6) Set the "Dataset path" and "Output file path" and "Job log path" to your path on the website UI interface.
# (7) Create your job.
```
- beta model
```python
# (1) Copy or upload your trained model to S3 bucket.
# (2) Add "config_path='/path_to_code/beta_config.yaml'" on the website UI interface.
# (3) Perform a or b.
# a. Set "enable_modelarts=True" on beta_config.yaml file.
# Set "is_distributed=1" on base_config.yaml file.
# Set "pretrained='/cache/checkpoint_path/model.ckpt'" on beta_config.yaml file.
# Set "checkpoint_url=/The path of checkpoint in S3/" on beta_config.yaml file.
# b. Add "enable_modelarts=True" on the website UI interface.
# Add "is_distributed=1" on the website UI interface.
# Add "pretrained='/cache/checkpoint_path/model.ckpt'" on default_config.yaml file.
# Add "checkpoint_url=/The path of checkpoint in S3/" on default_config.yaml file.
# (4) Upload a zip dataset to S3 bucket. (you could also upload the origin dataset, but it can be so slow.)
# (5) Set the code directory to "/path/FaceRecognition" on the website UI interface.
# (6) Set the startup file to "train.py" on the website UI interface.
# (7) Set the "Dataset path" and "Output file path" and "Job log path" to your path on the website UI interface.
# (8) Create your job.
```
You will get the loss value of each epoch as following in "./scripts/data_parallel_log_[DEVICE_ID]/outputs/logs/[TIME].log" or "./scripts/log_parallel_graph/face_recognition_[DEVICE_ID].log":
```python
@ -188,6 +237,24 @@ sh run_eval.sh [USE_DEVICE_ID]
You will get the result as following in "./scripts/log_inference/outputs/models/logs/[TIME].log":
[test_dataset]: zj2jk=0.9495, jk2zj=0.9480, avg=0.9487
If you want to run in modelarts, please check the official documentation of [modelarts](https://support.huaweicloud.com/modelarts/), and you can start evaluation as follows:
```python
# run evaluation on modelarts example
# (1) Copy or upload your trained model to S3 bucket.
# (2) Add "config_path='/path_to_code/inference_config.yaml'" on the website UI interface.
# (3) Perform a or b.
# a. Set "weight='/cache/checkpoint_path/model.ckpt'" on default_config.yaml file.
# Set "checkpoint_url=/The path of checkpoint in S3/" on default_config.yaml file.
# b. Add "weight='/cache/checkpoint_path/model.ckpt'" on the website UI interface.
# Add "checkpoint_url=/The path of checkpoint in S3/" on the website UI interface.
# (4) Upload a zip dataset to S3 bucket. (you could also upload the origin dataset, but it can be so slow.)
# (5) Set the code directory to "/path/FaceRecognition" on the website UI interface.
# (6) Set the startup file to "eval.py" on the website UI interface.
# (7) Set the "Dataset path" and "Output file path" and "Job log path" to your path on the website UI interface.
# (8) Create your job.
```
### Convert model
If you want to infer the network on Ascend 310, you should convert the model to AIR:

View File

@ -0,0 +1,76 @@
# Builtin Configurations(DO NOT CHANGE THESE CONFIGURATIONS unless you know exactly what you are doing)
enable_modelarts: False
# Url for modelarts
data_url: ""
train_url: ""
checkpoint_url: ""
# Path for local
data_path: "/cache/data"
output_path: "/cache/train"
load_path: "/cache/checkpoint_path"
device_target: "Ascend"
enable_profiling: False
# ==============================================================================
# Training options
train_stage: "base"
is_distributed: 1
# dataset related
data_dir: "/cache/data/face_recognition_dataset/train_dataset/"
num_classes: 1
per_batch_size: 192
need_modelarts_dataset_unzip: True
# network structure related
backbone: "r100"
use_se: 1
emb_size: 512
act_type: "relu"
fp16: 1
pre_bn: 1
inference: 0
use_drop: 1
nc_16: 1
# loss related
margin_a: 1.0
margin_b: 0.2
margin_m: 0.3
margin_s: 64
# optimizer related
lr: 0.4
lr_scale: 1
lr_epochs: "8,14,18"
weight_decay: 0.0002
momentum: 0.9
max_epoch: 20
pretrained: ""
warmup_epochs: 2
# distributed parameter
local_rank: 0
world_size: 1
model_parallel: 0
# logging related
log_interval: 100
ckpt_path: "outputs"
max_ckpts: -1
dynamic_init_loss_scale: 65536
ckpt_steps: 1000
---
# Help description for each configuration
enable_modelarts: "Whether training on modelarts, default: False"
data_url: "Url for modelarts"
train_url: "Url for modelarts"
data_path: "The location of the input data."
output_path: "The location of the output file."
device_target: 'Target device type'
enable_profiling: 'Whether enable profiling while training, default: False'
train_stage: "Train stage, base or beta"
is_distributed: "If multi device"

View File

@ -0,0 +1,76 @@
# Builtin Configurations(DO NOT CHANGE THESE CONFIGURATIONS unless you know exactly what you are doing)
enable_modelarts: False
# Url for modelarts
data_url: ""
train_url: ""
checkpoint_url: ""
# Path for local
data_path: "/cache/data"
output_path: "/cache/train"
load_path: "/cache/checkpoint_path"
device_target: "Ascend"
enable_profiling: False
# ==============================================================================
# Training options
train_stage: "beta"
is_distributed: 1
# dataset related
data_dir: "/cache/data/face_recognition_dataset/train_dataset/"
num_classes: 1
per_batch_size: 192
need_modelarts_dataset_unzip: True
# network structure related
backbone: "r100"
use_se: 0
emb_size: 256
act_type: "relu"
fp16: 1
pre_bn: 0
inference: 0
use_drop: 1
nc_16: 1
# loss related
margin_a: 1.0
margin_b: 0.2
margin_m: 0.3
margin_s: 64
# optimizer related
lr: 0.04
lr_scale: 1
lr_epochs: "8,14,18"
weight_decay: 0.0002
momentum: 0.9
max_epoch: 20
pretrained: "your_pretrained_model"
warmup_epochs: 2
# distributed parameter
local_rank: 0
world_size: 1
model_parallel: 0
# logging related
log_interval: 100
ckpt_path: "outputs"
max_ckpts: -1
dynamic_init_loss_scale: 65536
ckpt_steps: 1000
---
# Help description for each configuration
enable_modelarts: "Whether training on modelarts, default: False"
data_url: "Url for modelarts"
train_url: "Url for modelarts"
data_path: "The location of the input data."
output_path: "The location of the output file."
device_target: 'Target device type'
enable_profiling: 'Whether enable profiling while training, default: False'
train_stage: "Train stage, base or beta"
is_distributed: "If multi device"

View File

@ -26,12 +26,14 @@ import mindspore.dataset as de
from mindspore import Tensor, context
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from src.config import config_inference
from src.backbone.resnet import get_backbone
from src.my_logging import get_logger
devid = int(os.getenv('DEVICE_ID'))
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=devid)
from utils.config import config
from utils.moxing_adapter import moxing_wrapper
from utils.device_adapter import get_device_id, get_device_num, get_rank_id
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=get_device_id())
class TxtDataset():
@ -198,7 +200,61 @@ def l2normalize(features):
l2norm[np.logical_and(l2norm >= 0, l2norm < epsilon)] = epsilon
return features/l2norm
def main(args):
def modelarts_pre_process():
'''modelarts pre process function.'''
def unzip(zip_file, save_dir):
import zipfile
s_time = time.time()
if not os.path.exists(os.path.join(save_dir, "face_recognition_dataset")):
zip_isexist = zipfile.is_zipfile(zip_file)
if zip_isexist:
fz = zipfile.ZipFile(zip_file, 'r')
data_num = len(fz.namelist())
print("Extract Start...")
print("unzip file num: {}".format(data_num))
i = 0
for file in fz.namelist():
if i % int(data_num / 100) == 0:
print("unzip percent: {}%".format(i / int(data_num / 100)), flush=True)
i += 1
fz.extract(file, save_dir)
print("cost time: {}min:{}s.".format(int((time.time() - s_time) / 60),
int(int(time.time() - s_time) % 60)))
print("Extract Done.")
else:
print("This is not zip.")
else:
print("Zip has been extracted.")
if config.need_modelarts_dataset_unzip:
zip_file_1 = os.path.join(config.data_path, "face_recognition_dataset.zip")
save_dir_1 = os.path.join(config.data_path)
sync_lock = "/tmp/unzip_sync.lock"
# Each server contains 8 devices as most.
if get_device_id() % min(get_device_num(), 8) == 0 and not os.path.exists(sync_lock):
print("Zip file path: ", zip_file_1)
print("Unzip file save dir: ", save_dir_1)
unzip(zip_file_1, save_dir_1)
print("===Finish extract data synchronization===")
try:
os.mknod(sync_lock)
except IOError:
pass
while True:
if os.path.exists(sync_lock):
break
time.sleep(1)
print("Device: {}, Finish sync unzip data from {} to {}.".format(get_device_id(), zip_file_1, save_dir_1))
config.ckpt_path = os.path.join(config.output_path, str(get_rank_id()), config.ckpt_path)
@moxing_wrapper(pre_process=modelarts_pre_process)
def run_eval(args):
'''run eval function.'''
if not os.path.exists(args.test_dir):
args.logger.info('ERROR, test_dir is not exists, please set test_dir in config.py.')
return 0
@ -317,17 +373,17 @@ def main(args):
return 0
if __name__ == '__main__':
arg = config_inference
arg.test_img_predix = [arg.test_dir, arg.test_dir]
config.test_img_predix = [os.path.join(config.test_dir, 'test_dataset/'),
os.path.join(config.test_dir, 'test_dataset/')]
arg.test_img_list = [os.path.join(arg.test_dir, 'lists/jk_list.txt'),
os.path.join(arg.test_dir, 'lists/zj_list.txt')]
arg.dis_img_predix = [arg.test_dir,]
arg.dis_img_list = [os.path.join(arg.test_dir, 'lists/dis_list.txt'),]
config.test_img_list = [os.path.join(config.test_dir, 'lists/jk_list.txt'),
os.path.join(config.test_dir, 'lists/zj_list.txt')]
config.dis_img_predix = [os.path.join(config.test_dir, 'dis_dataset/'),]
config.dis_img_list = [os.path.join(config.test_dir, 'lists/dis_list.txt'),]
log_path = os.path.join(arg.ckpt_path, 'logs')
arg.logger = get_logger(log_path, arg.local_rank)
log_path = os.path.join(config.ckpt_path, 'logs')
config.logger = get_logger(log_path, config.local_rank)
arg.logger.info('Config: %s', pformat(arg))
config.logger.info('Config %s', pformat(config))
main(arg)
run_eval(config)

View File

@ -0,0 +1,60 @@
# Builtin Configurations(DO NOT CHANGE THESE CONFIGURATIONS unless you know exactly what you are doing)
enable_modelarts: False
# Url for modelarts
data_url: ""
train_url: ""
checkpoint_url: ""
# Path for local
data_path: "/cache/data"
output_path: "/cache/train"
load_path: "/cache/checkpoint_path"
device_target: "Ascend"
enable_profiling: False
# ==============================================================================
# Training options
# distributed parameter
is_distributed: 0
local_rank: 0
world_size: 1
# test weight
weight: 'your_test_model'
test_dir: '/cache/data/face_recognition_dataset/'
need_modelarts_dataset_unzip: True
# model define
backbone: "r100"
use_se: 0
emb_size: 256
act_type: "relu"
fp16: 1
pre_bn: 0
inference: 1
use_drop: 0
# test and dis batch size
test_batch_size: 128
dis_batch_size: 512
# log
log_interval: 100
ckpt_path: "outputs/models"
# test and dis image list
test_img_predix: ""
test_img_list: ""
dis_img_predix: ""
dis_img_list: ""
---
# Help description for each configuration
enable_modelarts: "Whether training on modelarts, default: False"
data_url: "Url for modelarts"
train_url: "Url for modelarts"
data_path: "The location of the input data."
output_path: "The location of the output file."
device_target: 'Target device type'
enable_profiling: 'Whether enable profiling while training, default: False'

View File

@ -59,6 +59,7 @@ do
echo "start training for rank $RANK_ID, device $DEVICE_ID"
env > ${EXECUTE_PATH}/log_parallel_graph/face_recognition_$i.log
python ${EXECUTE_PATH}/../train.py \
--config_path=${EXECUTE_PATH}/../base_config.yaml \
--train_stage=base \
--is_distributed=1 &> ${EXECUTE_PATH}/log_parallel_graph/face_recognition_$i.log &
done

View File

@ -59,6 +59,7 @@ do
echo "start training for rank $RANK_ID, device $DEVICE_ID"
env > ${EXECUTE_PATH}/log_parallel_graph/face_recognition_$i.log
python ${EXECUTE_PATH}/../train.py \
--config_path=${EXECUTE_PATH}/../beta_config.yaml \
--train_stage=beta \
--is_distributed=1 &> ${EXECUTE_PATH}/log_parallel_graph/face_recognition_$i.log &
done

View File

@ -41,6 +41,6 @@ mkdir ${EXECUTE_PATH}/log_inference
cd ${EXECUTE_PATH}/log_inference || exit
env > ${EXECUTE_PATH}/log_inference/face_recognition.log
python ${EXECUTE_PATH}/../eval.py &> ${EXECUTE_PATH}/log_inference/face_recognition.log &
python ${EXECUTE_PATH}/../eval.py --config_path=${EXECUTE_PATH}/../inference_config.yaml &> ${EXECUTE_PATH}/log_inference/face_recognition.log &
echo "[INFO] Start inference..."

View File

@ -46,6 +46,7 @@ cd ${EXECUTE_PATH}/data_standalone_log_$USE_DEVICE_ID || exit
echo "start training for rank $RANK_ID, device $USE_DEVICE_ID"
env > ${EXECUTE_PATH}/log_standalone_graph/face_recognition_$USE_DEVICE_ID.log
python ${EXECUTE_PATH}/../train.py \
--config_path=${EXECUTE_PATH}/../base_config.yaml \
--train_stage=base \
--is_distributed=0 &> ${EXECUTE_PATH}/log_standalone_graph/face_recognition_$USE_DEVICE_ID.log &

View File

@ -46,6 +46,7 @@ cd ${EXECUTE_PATH}/data_standalone_log_$USE_DEVICE_ID || exit
echo "start training for rank $RANK_ID, device $USE_DEVICE_ID"
env > ${EXECUTE_PATH}/log_standalone_graph/face_recognition_$USE_DEVICE_ID.log
python ${EXECUTE_PATH}/../train.py \
--config_path=${EXECUTE_PATH}/../base_config.yaml \
--train_stage=beta \
--is_distributed=0 &> ${EXECUTE_PATH}/log_standalone_graph/face_recognition_$USE_DEVICE_ID.log &

View File

@ -1,148 +0,0 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#" :===========================================================================
"""network config setting, will be used in train.py and eval.py."""
from easydict import EasyDict as edict
config_base = edict({
# dataset related
'data_dir': "your_dataset_path",
'num_classes': 1,
'per_batch_size': 192,
# network structure related
'backbone': 'r100',
'use_se': 1,
'emb_size': 512,
'act_type': 'relu',
'fp16': 1,
'pre_bn': 1,
'inference': 0,
'use_drop': 1,
'nc_16': 1,
# loss related
'margin_a': 1.0,
'margin_b': 0.2,
'margin_m': 0.3,
'margin_s': 64,
# optimizer related
'lr': 0.4,
'lr_scale': 1,
'lr_epochs': '8,14,18',
'weight_decay': 0.0002,
'momentum': 0.9,
'max_epoch': 20,
'pretrained': '',
'warmup_epochs': 2,
# distributed parameter
'is_distributed': 1,
'local_rank': 0,
'world_size': 1,
'model_parallel': 0,
# logging related
'log_interval': 100,
'ckpt_path': 'outputs',
'max_ckpts': -1,
'dynamic_init_loss_scale': 65536,
'ckpt_steps': 1000
})
config_beta = edict({
# dataset related
'data_dir': "your_dataset_path",
'num_classes': 1,
'per_batch_size': 192,
# network structure related
'backbone': 'r100',
'use_se': 0,
'emb_size': 256,
'act_type': 'relu',
'fp16': 1,
'pre_bn': 0,
'inference': 0,
'use_drop': 1,
'nc_16': 1,
# loss related
'margin_a': 1.0,
'margin_b': 0.2,
'margin_m': 0.3,
'margin_s': 64,
# optimizer related
'lr': 0.04,
'lr_scale': 1,
'lr_epochs': '8,14,18',
'weight_decay': 0.0002,
'momentum': 0.9,
'max_epoch': 20,
'pretrained': 'your_pretrained_model',
'warmup_epochs': 2,
# distributed parameter
'is_distributed': 1,
'local_rank': 0,
'world_size': 1,
'model_parallel': 0,
# logging related
'log_interval': 100,
'ckpt_path': 'outputs',
'max_ckpts': -1,
'dynamic_init_loss_scale': 65536,
'ckpt_steps': 1000
})
config_inference = edict({
# distributed parameter
'is_distributed': 0,
'local_rank': 0,
'world_size': 1,
# test weight
'weight': 'your_test_model',
'test_dir': 'your_dataset_path',
# model define
'backbone': 'r100',
'use_se': 0,
'emb_size': 256,
'act_type': 'relu',
'fp16': 1,
'pre_bn': 0,
'inference': 1,
'use_drop': 0,
# test and dis batch size
'test_batch_size': 128,
'dis_batch_size': 512,
# log
'log_interval': 100,
'ckpt_path': 'outputs/models',
# test and dis image list
'test_img_predix': '',
'test_img_list': '',
'dis_img_predix': '',
'dis_img_list': ''
})

View File

@ -14,20 +14,19 @@
# ============================================================================
"""Face Recognition train."""
import os
import argparse
import time
import mindspore
from mindspore.nn import Cell
from mindspore import context
from mindspore.context import ParallelMode
from mindspore.communication.management import get_group_size, init, get_rank
from mindspore.communication.management import init
from mindspore.nn.optim import Momentum
from mindspore.train.model import Model
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
from mindspore.train.loss_scale_manager import DynamicLossScaleManager
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from src.config import config_base, config_beta
from src.my_logging import get_logger
from src.init_network import init_net
from src.dataset_factory import get_de_dataset
@ -37,10 +36,13 @@ from src.loss_factory import get_loss
from src.lrsche_factory import warmup_step_list, list_to_gen
from src.callback_factory import ProgressMonitor
from utils.moxing_adapter import moxing_wrapper
from utils.config import config
from utils.device_adapter import get_device_id, get_device_num, get_rank_id
mindspore.common.seed.set_seed(1)
devid = int(os.getenv('DEVICE_ID'))
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False,
device_id=devid, reserve_class_name_in_scope=False, enable_auto_mixed_precision=False)
device_id=get_device_id(), reserve_class_name_in_scope=False, enable_auto_mixed_precision=False)
class DistributedHelper(Cell):
'''DistributedHelper'''
@ -84,103 +86,13 @@ class BuildTrainNetwork(Cell):
return loss
def parse_args():
parser = argparse.ArgumentParser('MindSpore Face Recognition')
parser.add_argument('--train_stage', type=str, default='base', help='train stage, base or beta')
parser.add_argument('--is_distributed', type=int, default=1, help='if multi device')
args_opt_1, _ = parser.parse_known_args()
return args_opt_1
if __name__ == "__main__":
args_opt = parse_args()
support_train_stage = ['base', 'beta']
if args_opt.train_stage.lower() not in support_train_stage:
args.logger.info('support train stage is:{}, while yours is:{}'.
format(support_train_stage, args_opt.train_stage))
raise ValueError('train stage not support.')
args = config_base if args_opt.train_stage.lower() == 'base' else config_beta
args.is_distributed = args_opt.is_distributed
if args_opt.is_distributed:
init()
args.local_rank = get_rank()
args.world_size = get_group_size()
parallel_mode = ParallelMode.HYBRID_PARALLEL
else:
parallel_mode = ParallelMode.STAND_ALONE
context.set_auto_parallel_context(parallel_mode=parallel_mode,
device_num=args.world_size, gradients_mean=True)
if not os.path.exists(args.data_dir):
args.logger.info('ERROR, data_dir is not exists, please set data_dir in config.py')
raise ValueError('ERROR, data_dir is not exists, please set data_dir in config.py')
args.lr_epochs = list(map(int, args.lr_epochs.split(',')))
log_path = os.path.join(args.ckpt_path, 'logs')
args.logger = get_logger(log_path, args.local_rank)
if args.local_rank % 8 == 0:
if not os.path.exists(args.ckpt_path):
os.makedirs(args.ckpt_path)
args.logger.info('args.world_size:{}'.format(args.world_size))
args.logger.info('args.local_rank:{}'.format(args.local_rank))
args.logger.info('args.lr:{}'.format(args.lr))
momentum = args.momentum
weight_decay = args.weight_decay
de_dataset, steps_per_epoch, num_classes = get_de_dataset(args)
args.logger.info('de_dataset:{}'.format(de_dataset.get_dataset_size()))
args.steps_per_epoch = steps_per_epoch
args.num_classes = num_classes
args.logger.info('loaded, nums: {}'.format(args.num_classes))
if args.nc_16 == 1:
if args.model_parallel == 0:
if args.num_classes % 16 == 0:
args.logger.info('data parallel aleardy 16, nums: {}'.format(args.num_classes))
else:
args.num_classes = (args.num_classes // 16 + 1) * 16
else:
if args.num_classes % (args.world_size * 16) == 0:
args.logger.info('model parallel aleardy 16, nums: {}'.format(args.num_classes))
else:
args.num_classes = (args.num_classes // (args.world_size * 16) + 1) * args.world_size * 16
args.logger.info('for D, loaded, class nums: {}'.format(args.num_classes))
args.logger.info('steps_per_epoch:{}'.format(args.steps_per_epoch))
args.logger.info('img_total_num:{}'.format(args.steps_per_epoch * args.per_batch_size))
args.logger.info('get_backbone----in----')
_backbone = get_backbone(args)
args.logger.info('get_backbone----out----')
args.logger.info('get_metric_fc----in----')
margin_fc_1 = get_metric_fc(args)
args.logger.info('get_metric_fc----out----')
args.logger.info('DistributedHelper----in----')
network_1 = DistributedHelper(_backbone, margin_fc_1)
args.logger.info('DistributedHelper----out----')
args.logger.info('network fp16----in----')
if args.fp16 == 1:
network_1.add_flags_recursive(fp16=True)
args.logger.info('network fp16----out----')
criterion_1 = get_loss(args)
if args.fp16 == 1 and args.model_parallel == 0:
criterion_1.add_flags_recursive(fp32=True)
if os.path.isfile(args.pretrained):
param_dict = load_checkpoint(args.pretrained)
def load_pretrain(cfg, net):
'''load pretrain function.'''
if os.path.isfile(cfg.pretrained):
param_dict = load_checkpoint(cfg.pretrained)
param_dict_new = {}
if args_opt.train_stage.lower() == 'base':
if cfg.train_stage.lower() == 'base':
for key, value in param_dict.items():
if key.startswith('moments.'):
continue
@ -201,35 +113,169 @@ if __name__ == "__main__":
continue
else:
param_dict_new[key[8:]] = value
load_param_into_net(network_1, param_dict_new)
args.logger.info('load model {} success'.format(args.pretrained))
load_param_into_net(net, param_dict_new)
cfg.logger.info('load model {} success'.format(cfg.pretrained))
else:
init_net(args, network_1)
if cfg.train_stage.lower() == 'beta':
raise ValueError("Train beta mode load pretrain model fail from: {}".format(cfg.pretrained))
init_net(cfg, net)
cfg.logger.info('init model success')
return net
train_net = BuildTrainNetwork(network_1, criterion_1, args)
args.logger.info('args:{}'.format(args))
# call warmup_step should behind the args steps_per_epoch
args.lrs = warmup_step_list(args, gamma=0.1)
lrs_gen = list_to_gen(args.lrs)
opt = Momentum(params=train_net.trainable_params(), learning_rate=lrs_gen, momentum=momentum,
weight_decay=weight_decay)
scale_manager = DynamicLossScaleManager(init_loss_scale=args.dynamic_init_loss_scale, scale_factor=2,
def modelarts_pre_process():
'''modelarts pre process function.'''
def unzip(zip_file, save_dir):
import zipfile
s_time = time.time()
if not os.path.exists(os.path.join(save_dir, "face_recognition_dataset")):
zip_isexist = zipfile.is_zipfile(zip_file)
if zip_isexist:
fz = zipfile.ZipFile(zip_file, 'r')
data_num = len(fz.namelist())
print("Extract Start...")
print("unzip file num: {}".format(data_num))
i = 0
for file in fz.namelist():
if i % int(data_num / 100) == 0:
print("unzip percent: {}%".format(i / int(data_num / 100)), flush=True)
i += 1
fz.extract(file, save_dir)
print("cost time: {}min:{}s.".format(int((time.time() - s_time) / 60),
int(int(time.time() - s_time) % 60)))
print("Extract Done.")
else:
print("This is not zip.")
else:
print("Zip has been extracted.")
if config.need_modelarts_dataset_unzip:
zip_file_1 = os.path.join(config.data_path, "face_recognition_dataset.zip")
save_dir_1 = os.path.join(config.data_path)
sync_lock = "/tmp/unzip_sync.lock"
# Each server contains 8 devices as most.
if get_device_id() % min(get_device_num(), 8) == 0 and not os.path.exists(sync_lock):
print("Zip file path: ", zip_file_1)
print("Unzip file save dir: ", save_dir_1)
unzip(zip_file_1, save_dir_1)
print("===Finish extract data synchronization===")
try:
os.mknod(sync_lock)
except IOError:
pass
while True:
if os.path.exists(sync_lock):
break
time.sleep(1)
print("Device: {}, Finish sync unzip data from {} to {}.".format(get_device_id(), zip_file_1, save_dir_1))
config.ckpt_path = os.path.join(config.output_path, str(get_rank_id()), config.ckpt_path)
@moxing_wrapper(pre_process=modelarts_pre_process)
def run_train():
'''run train function.'''
config.local_rank = get_rank_id()
config.world_size = get_device_num()
log_path = os.path.join(config.ckpt_path, 'logs')
config.logger = get_logger(log_path, config.local_rank)
support_train_stage = ['base', 'beta']
if config.train_stage.lower() not in support_train_stage:
config.logger.info('your train stage is not support.')
raise ValueError('train stage not support.')
if not os.path.exists(config.data_dir):
config.logger.info('ERROR, data_dir is not exists, please set data_dir in config.py')
raise ValueError('ERROR, data_dir is not exists, please set data_dir in config.py')
parallel_mode = ParallelMode.HYBRID_PARALLEL if config.is_distributed else ParallelMode.STAND_ALONE
context.set_auto_parallel_context(parallel_mode=parallel_mode,
device_num=config.world_size, gradients_mean=True)
if config.is_distributed:
init()
if config.local_rank % 8 == 0:
if not os.path.exists(config.ckpt_path):
os.makedirs(config.ckpt_path)
de_dataset, steps_per_epoch, num_classes = get_de_dataset(config)
config.logger.info('de_dataset: %d', de_dataset.get_dataset_size())
config.steps_per_epoch = steps_per_epoch
config.num_classes = num_classes
config.lr_epochs = list(map(int, config.lr_epochs.split(',')))
config.logger.info('config.num_classes: %d', config.num_classes)
config.logger.info('config.world_size: %d', config.world_size)
config.logger.info('config.local_rank: %d', config.local_rank)
config.logger.info('config.lr: %f', config.lr)
if config.nc_16 == 1:
if config.model_parallel == 0:
if config.num_classes % 16 == 0:
config.logger.info('data parallel aleardy 16, nums: %d', config.num_classes)
else:
config.num_classes = (config.num_classes // 16 + 1) * 16
else:
if config.num_classes % (config.world_size * 16) == 0:
config.logger.info('model parallel aleardy 16, nums: %d', config.num_classes)
else:
config.num_classes = (config.num_classes // (config.world_size * 16) + 1) * config.world_size * 16
config.logger.info('for D, loaded, class nums: %d', config.num_classes)
config.logger.info('steps_per_epoch: %d', config.steps_per_epoch)
config.logger.info('img_total_num: %d', config.steps_per_epoch * config.per_batch_size)
config.logger.info('get_backbone----in----')
_backbone = get_backbone(config)
config.logger.info('get_backbone----out----')
config.logger.info('get_metric_fc----in----')
margin_fc_1 = get_metric_fc(config)
config.logger.info('get_metric_fc----out----')
config.logger.info('DistributedHelper----in----')
network_1 = DistributedHelper(_backbone, margin_fc_1)
config.logger.info('DistributedHelper----out----')
config.logger.info('network fp16----in----')
if config.fp16 == 1:
network_1.add_flags_recursive(fp16=True)
config.logger.info('network fp16----out----')
criterion_1 = get_loss(config)
if config.fp16 == 1 and config.model_parallel == 0:
criterion_1.add_flags_recursive(fp32=True)
network_1 = load_pretrain(config, network_1)
train_net = BuildTrainNetwork(network_1, criterion_1, config)
# call warmup_step should behind the config steps_per_epoch
config.lrs = warmup_step_list(config, gamma=0.1)
lrs_gen = list_to_gen(config.lrs)
opt = Momentum(params=train_net.trainable_params(), learning_rate=lrs_gen, momentum=config.momentum,
weight_decay=config.weight_decay)
scale_manager = DynamicLossScaleManager(init_loss_scale=config.dynamic_init_loss_scale, scale_factor=2,
scale_window=2000)
model = Model(train_net, optimizer=opt, metrics=None, loss_scale_manager=scale_manager)
save_checkpoint_steps = args.ckpt_steps
args.logger.info('save_checkpoint_steps:{}'.format(save_checkpoint_steps))
if args.max_ckpts == -1:
keep_checkpoint_max = int(args.steps_per_epoch * args.max_epoch / save_checkpoint_steps) + 5 # for more than 5
save_checkpoint_steps = config.ckpt_steps
config.logger.info('save_checkpoint_steps: %d', save_checkpoint_steps)
if config.max_ckpts == -1:
keep_checkpoint_max = int(config.steps_per_epoch * config.max_epoch / save_checkpoint_steps) + 5
else:
keep_checkpoint_max = args.max_ckpts
args.logger.info('keep_checkpoint_max:{}'.format(keep_checkpoint_max))
keep_checkpoint_max = config.max_ckpts
config.logger.info('keep_checkpoint_max: %d', keep_checkpoint_max)
ckpt_config = CheckpointConfig(save_checkpoint_steps=save_checkpoint_steps, keep_checkpoint_max=keep_checkpoint_max)
max_epoch_train = args.max_epoch
args.logger.info('max_epoch_train:{}'.format(max_epoch_train))
ckpt_cb = ModelCheckpoint(config=ckpt_config, directory=args.ckpt_path, prefix='{}'.format(args.local_rank))
args.epoch_cnt = 0
progress_cb = ProgressMonitor(args)
new_epoch_train = max_epoch_train * steps_per_epoch // args.log_interval
model.train(new_epoch_train, de_dataset, callbacks=[progress_cb, ckpt_cb], sink_size=args.log_interval)
config.logger.info('max_epoch_train: %d', config.max_epoch)
ckpt_cb = ModelCheckpoint(config=ckpt_config, directory=config.ckpt_path, prefix='{}'.format(config.local_rank))
config.epoch_cnt = 0
progress_cb = ProgressMonitor(config)
new_epoch_train = config.max_epoch * steps_per_epoch // config.log_interval
model.train(new_epoch_train, de_dataset, callbacks=[progress_cb, ckpt_cb], sink_size=config.log_interval)
if __name__ == "__main__":
run_train()

View File

@ -0,0 +1,127 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Parse arguments"""
import os
import ast
import argparse
from pprint import pprint, pformat
import yaml
class Config:
"""
Configuration namespace. Convert dictionary to members.
"""
def __init__(self, cfg_dict):
for k, v in cfg_dict.items():
if isinstance(v, (list, tuple)):
setattr(self, k, [Config(x) if isinstance(x, dict) else x for x in v])
else:
setattr(self, k, Config(v) if isinstance(v, dict) else v)
def __str__(self):
return pformat(self.__dict__)
def __repr__(self):
return self.__str__()
def parse_cli_to_yaml(parser, cfg, helper=None, choices=None, cfg_path="default_config.yaml"):
"""
Parse command line arguments to the configuration according to the default yaml.
Args:
parser: Parent parser.
cfg: Base configuration.
helper: Helper description.
cfg_path: Path to the default yaml config.
"""
parser = argparse.ArgumentParser(description="[REPLACE THIS at config.py]",
parents=[parser])
helper = {} if helper is None else helper
choices = {} if choices is None else choices
for item in cfg:
if not isinstance(cfg[item], list) and not isinstance(cfg[item], dict):
help_description = helper[item] if item in helper else "Please reference to {}".format(cfg_path)
choice = choices[item] if item in choices else None
if isinstance(cfg[item], bool):
parser.add_argument("--" + item, type=ast.literal_eval, default=cfg[item], choices=choice,
help=help_description)
else:
parser.add_argument("--" + item, type=type(cfg[item]), default=cfg[item], choices=choice,
help=help_description)
args = parser.parse_args()
return args
def parse_yaml(yaml_path):
"""
Parse the yaml config file.
Args:
yaml_path: Path to the yaml config.
"""
with open(yaml_path, 'r') as fin:
try:
cfgs = yaml.load_all(fin.read(), Loader=yaml.FullLoader)
cfgs = [x for x in cfgs]
if len(cfgs) == 1:
cfg_helper = {}
cfg = cfgs[0]
cfg_choices = {}
elif len(cfgs) == 2:
cfg, cfg_helper = cfgs
cfg_choices = {}
elif len(cfgs) == 3:
cfg, cfg_helper, cfg_choices = cfgs
else:
raise ValueError("At most 3 docs (config, description for help, choices) are supported in config yaml")
print(cfg_helper)
except:
raise ValueError("Failed to parse yaml")
return cfg, cfg_helper, cfg_choices
def merge(args, cfg):
"""
Merge the base config from yaml file and command line arguments.
Args:
args: Command line arguments.
cfg: Base configuration.
"""
args_var = vars(args)
for item in args_var:
cfg[item] = args_var[item]
return cfg
def get_config():
"""
Get Config according to the yaml file and cli arguments.
"""
parser = argparse.ArgumentParser(description="default name", add_help=False)
current_dir = os.path.dirname(os.path.abspath(__file__))
parser.add_argument("--config_path", type=str, default=os.path.join(current_dir, "../default_config.yaml"),
help="Config file path")
path_args, _ = parser.parse_known_args()
default, helper, choices = parse_yaml(path_args.config_path)
pprint(default)
args = parse_cli_to_yaml(parser=parser, cfg=default, helper=helper, choices=choices, cfg_path=path_args.config_path)
final_config = merge(args, default)
return Config(final_config)
config = get_config()

View File

@ -0,0 +1,27 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Device adapter for ModelArts"""
from utils.config import config
if config.enable_modelarts:
from utils.moxing_adapter import get_device_id, get_device_num, get_rank_id, get_job_id
else:
from utils.local_adapter import get_device_id, get_device_num, get_rank_id, get_job_id
__all__ = [
"get_device_id", "get_device_num", "get_rank_id", "get_job_id"
]

View File

@ -0,0 +1,36 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Local adapter"""
import os
def get_device_id():
device_id = os.getenv('DEVICE_ID', '0')
return int(device_id)
def get_device_num():
device_num = os.getenv('RANK_SIZE', '1')
return int(device_num)
def get_rank_id():
global_rank_id = os.getenv('RANK_ID', '0')
return int(global_rank_id)
def get_job_id():
return "Local Job"

View File

@ -0,0 +1,116 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Moxing adapter for ModelArts"""
import os
import functools
from mindspore import context
from utils.config import config
_global_sync_count = 0
def get_device_id():
device_id = os.getenv('DEVICE_ID', '0')
return int(device_id)
def get_device_num():
device_num = os.getenv('RANK_SIZE', '1')
return int(device_num)
def get_rank_id():
global_rank_id = os.getenv('RANK_ID', '0')
return int(global_rank_id)
def get_job_id():
job_id = os.getenv('JOB_ID')
job_id = job_id if job_id != "" else "default"
return job_id
def sync_data(from_path, to_path):
"""
Download data from remote obs to local directory if the first url is remote url and the second one is local path
Upload data from local directory to remote obs in contrast.
"""
import moxing as mox
import time
global _global_sync_count
sync_lock = "/tmp/copy_sync.lock" + str(_global_sync_count)
_global_sync_count += 1
# Each server contains 8 devices as most.
if get_device_id() % min(get_device_num(), 8) == 0 and not os.path.exists(sync_lock):
print("from path: ", from_path)
print("to path: ", to_path)
mox.file.copy_parallel(from_path, to_path)
print("===finish data synchronization===")
try:
os.mknod(sync_lock)
except IOError:
pass
print("===save flag===")
while True:
if os.path.exists(sync_lock):
break
time.sleep(1)
print("Finish sync data from {} to {}.".format(from_path, to_path))
def moxing_wrapper(pre_process=None, post_process=None):
"""
Moxing wrapper to download dataset and upload outputs.
"""
def wrapper(run_func):
@functools.wraps(run_func)
def wrapped_func(*args, **kwargs):
# Download data from data_url
if config.enable_modelarts:
if config.data_url:
sync_data(config.data_url, config.data_path)
print("Dataset downloaded: ", os.listdir(config.data_path))
if config.checkpoint_url:
sync_data(config.checkpoint_url, config.load_path)
print("Preload downloaded: ", os.listdir(config.load_path))
if config.train_url:
sync_data(config.train_url, config.output_path)
print("Workspace downloaded: ", os.listdir(config.output_path))
context.set_context(save_graphs_path=os.path.join(config.output_path, str(get_rank_id())))
config.device_num = get_device_num()
config.device_id = get_device_id()
if not os.path.exists(config.output_path):
os.makedirs(config.output_path)
if pre_process:
pre_process()
# Run the main function
run_func(*args, **kwargs)
# Upload data to train_url
if config.enable_modelarts:
if post_process:
post_process()
if config.train_url:
print("Start to copy output directory")
sync_data(config.output_path, config.train_url)
return wrapped_func
return wrapper