forked from mindspore-Ecosystem/mindspore
!15822 Modify FaceRecognition network for clould
From: @zhanghuiyao Reviewed-by: @oacjiewen,@c_34 Signed-off-by: @c_34
This commit is contained in:
commit
220c4f8ed5
|
@ -84,7 +84,6 @@ The entire code structure is as following:
|
|||
│ │ ├── head.py // head unit
|
||||
│ │ ├── resnet.py // resnet architecture
|
||||
│ ├── callback_factory.py // callback logging
|
||||
│ ├── config.py // parameter configuration
|
||||
│ ├── custom_dataset.py // custom dataset and sampler
|
||||
│ ├── custom_net.py // custom cell define
|
||||
│ ├── dataset_factory.py // creating dataset
|
||||
|
@ -94,6 +93,15 @@ The entire code structure is as following:
|
|||
│ ├── lrsche_factory.py // learning rate schedule
|
||||
│ ├── me_init.py // network parameter init method
|
||||
│ ├── metric_factory.py // metric fc layer
|
||||
── utils
|
||||
│ ├── __init__.py // init file
|
||||
│ ├── config.py // parameter analysis
|
||||
│ ├── device_adapter.py // device adapter
|
||||
│ ├── local_adapter.py // local adapter
|
||||
│ ├── moxing_adapter.py // moxing adapter
|
||||
├─ base_config.yaml // parameter configuration
|
||||
├─ beta_config.yaml // parameter configuration
|
||||
├─ inference_config.yaml // parameter configuration
|
||||
├─ train.py // training scripts
|
||||
├─ eval.py // evaluation scripts
|
||||
└─ export.py // export air model
|
||||
|
@ -163,6 +171,47 @@ The entire code structure is as following:
|
|||
sh run_distribute_train_beta.sh ./rank_table_8p.json
|
||||
```
|
||||
|
||||
- ModelArts (If you want to run in modelarts, please check the official documentation of [modelarts](https://support.huaweicloud.com/modelarts/), and you can start training as follows)
|
||||
|
||||
- base model
|
||||
|
||||
```python
|
||||
# (1) Add "config_path='/path_to_code/base_config.yaml'" on the website UI interface.
|
||||
# (2) Perform a or b.
|
||||
# a. Set "enable_modelarts=True" on base_config.yaml file.
|
||||
# Set "is_distributed=1" on base_config.yaml file.
|
||||
# Set other parameters on base_config.yaml file you need.
|
||||
# b. Add "enable_modelarts=True" on the website UI interface.
|
||||
# Add "is_distributed=1" on the website UI interface.
|
||||
# Add other parameters on the website UI interface.
|
||||
# (3) Upload a zip dataset to S3 bucket. (you could also upload the origin dataset, but it can be so slow.)
|
||||
# (4) Set the code directory to "/path/FaceRecognition" on the website UI interface.
|
||||
# (5) Set the startup file to "train.py" on the website UI interface.
|
||||
# (6) Set the "Dataset path" and "Output file path" and "Job log path" to your path on the website UI interface.
|
||||
# (7) Create your job.
|
||||
```
|
||||
|
||||
- beta model
|
||||
|
||||
```python
|
||||
# (1) Copy or upload your trained model to S3 bucket.
|
||||
# (2) Add "config_path='/path_to_code/beta_config.yaml'" on the website UI interface.
|
||||
# (3) Perform a or b.
|
||||
# a. Set "enable_modelarts=True" on beta_config.yaml file.
|
||||
# Set "is_distributed=1" on base_config.yaml file.
|
||||
# Set "pretrained='/cache/checkpoint_path/model.ckpt'" on beta_config.yaml file.
|
||||
# Set "checkpoint_url=/The path of checkpoint in S3/" on beta_config.yaml file.
|
||||
# b. Add "enable_modelarts=True" on the website UI interface.
|
||||
# Add "is_distributed=1" on the website UI interface.
|
||||
# Add "pretrained='/cache/checkpoint_path/model.ckpt'" on default_config.yaml file.
|
||||
# Add "checkpoint_url=/The path of checkpoint in S3/" on default_config.yaml file.
|
||||
# (4) Upload a zip dataset to S3 bucket. (you could also upload the origin dataset, but it can be so slow.)
|
||||
# (5) Set the code directory to "/path/FaceRecognition" on the website UI interface.
|
||||
# (6) Set the startup file to "train.py" on the website UI interface.
|
||||
# (7) Set the "Dataset path" and "Output file path" and "Job log path" to your path on the website UI interface.
|
||||
# (8) Create your job.
|
||||
```
|
||||
|
||||
You will get the loss value of each epoch as following in "./scripts/data_parallel_log_[DEVICE_ID]/outputs/logs/[TIME].log" or "./scripts/log_parallel_graph/face_recognition_[DEVICE_ID].log":
|
||||
|
||||
```python
|
||||
|
@ -188,6 +237,24 @@ sh run_eval.sh [USE_DEVICE_ID]
|
|||
You will get the result as following in "./scripts/log_inference/outputs/models/logs/[TIME].log":
|
||||
[test_dataset]: zj2jk=0.9495, jk2zj=0.9480, avg=0.9487
|
||||
|
||||
If you want to run in modelarts, please check the official documentation of [modelarts](https://support.huaweicloud.com/modelarts/), and you can start evaluation as follows:
|
||||
|
||||
```python
|
||||
# run evaluation on modelarts example
|
||||
# (1) Copy or upload your trained model to S3 bucket.
|
||||
# (2) Add "config_path='/path_to_code/inference_config.yaml'" on the website UI interface.
|
||||
# (3) Perform a or b.
|
||||
# a. Set "weight='/cache/checkpoint_path/model.ckpt'" on default_config.yaml file.
|
||||
# Set "checkpoint_url=/The path of checkpoint in S3/" on default_config.yaml file.
|
||||
# b. Add "weight='/cache/checkpoint_path/model.ckpt'" on the website UI interface.
|
||||
# Add "checkpoint_url=/The path of checkpoint in S3/" on the website UI interface.
|
||||
# (4) Upload a zip dataset to S3 bucket. (you could also upload the origin dataset, but it can be so slow.)
|
||||
# (5) Set the code directory to "/path/FaceRecognition" on the website UI interface.
|
||||
# (6) Set the startup file to "eval.py" on the website UI interface.
|
||||
# (7) Set the "Dataset path" and "Output file path" and "Job log path" to your path on the website UI interface.
|
||||
# (8) Create your job.
|
||||
```
|
||||
|
||||
### Convert model
|
||||
|
||||
If you want to infer the network on Ascend 310, you should convert the model to AIR:
|
||||
|
|
|
@ -0,0 +1,76 @@
|
|||
# Builtin Configurations(DO NOT CHANGE THESE CONFIGURATIONS unless you know exactly what you are doing)
|
||||
enable_modelarts: False
|
||||
# Url for modelarts
|
||||
data_url: ""
|
||||
train_url: ""
|
||||
checkpoint_url: ""
|
||||
# Path for local
|
||||
data_path: "/cache/data"
|
||||
output_path: "/cache/train"
|
||||
load_path: "/cache/checkpoint_path"
|
||||
device_target: "Ascend"
|
||||
enable_profiling: False
|
||||
|
||||
# ==============================================================================
|
||||
# Training options
|
||||
train_stage: "base"
|
||||
is_distributed: 1
|
||||
|
||||
# dataset related
|
||||
data_dir: "/cache/data/face_recognition_dataset/train_dataset/"
|
||||
num_classes: 1
|
||||
per_batch_size: 192
|
||||
need_modelarts_dataset_unzip: True
|
||||
|
||||
# network structure related
|
||||
backbone: "r100"
|
||||
use_se: 1
|
||||
emb_size: 512
|
||||
act_type: "relu"
|
||||
fp16: 1
|
||||
pre_bn: 1
|
||||
inference: 0
|
||||
use_drop: 1
|
||||
nc_16: 1
|
||||
|
||||
# loss related
|
||||
margin_a: 1.0
|
||||
margin_b: 0.2
|
||||
margin_m: 0.3
|
||||
margin_s: 64
|
||||
|
||||
# optimizer related
|
||||
lr: 0.4
|
||||
lr_scale: 1
|
||||
lr_epochs: "8,14,18"
|
||||
weight_decay: 0.0002
|
||||
momentum: 0.9
|
||||
max_epoch: 20
|
||||
pretrained: ""
|
||||
warmup_epochs: 2
|
||||
|
||||
# distributed parameter
|
||||
local_rank: 0
|
||||
world_size: 1
|
||||
model_parallel: 0
|
||||
|
||||
# logging related
|
||||
log_interval: 100
|
||||
ckpt_path: "outputs"
|
||||
max_ckpts: -1
|
||||
dynamic_init_loss_scale: 65536
|
||||
ckpt_steps: 1000
|
||||
|
||||
---
|
||||
|
||||
# Help description for each configuration
|
||||
enable_modelarts: "Whether training on modelarts, default: False"
|
||||
data_url: "Url for modelarts"
|
||||
train_url: "Url for modelarts"
|
||||
data_path: "The location of the input data."
|
||||
output_path: "The location of the output file."
|
||||
device_target: 'Target device type'
|
||||
enable_profiling: 'Whether enable profiling while training, default: False'
|
||||
|
||||
train_stage: "Train stage, base or beta"
|
||||
is_distributed: "If multi device"
|
|
@ -0,0 +1,76 @@
|
|||
# Builtin Configurations(DO NOT CHANGE THESE CONFIGURATIONS unless you know exactly what you are doing)
|
||||
enable_modelarts: False
|
||||
# Url for modelarts
|
||||
data_url: ""
|
||||
train_url: ""
|
||||
checkpoint_url: ""
|
||||
# Path for local
|
||||
data_path: "/cache/data"
|
||||
output_path: "/cache/train"
|
||||
load_path: "/cache/checkpoint_path"
|
||||
device_target: "Ascend"
|
||||
enable_profiling: False
|
||||
|
||||
# ==============================================================================
|
||||
# Training options
|
||||
train_stage: "beta"
|
||||
is_distributed: 1
|
||||
|
||||
# dataset related
|
||||
data_dir: "/cache/data/face_recognition_dataset/train_dataset/"
|
||||
num_classes: 1
|
||||
per_batch_size: 192
|
||||
need_modelarts_dataset_unzip: True
|
||||
|
||||
# network structure related
|
||||
backbone: "r100"
|
||||
use_se: 0
|
||||
emb_size: 256
|
||||
act_type: "relu"
|
||||
fp16: 1
|
||||
pre_bn: 0
|
||||
inference: 0
|
||||
use_drop: 1
|
||||
nc_16: 1
|
||||
|
||||
# loss related
|
||||
margin_a: 1.0
|
||||
margin_b: 0.2
|
||||
margin_m: 0.3
|
||||
margin_s: 64
|
||||
|
||||
# optimizer related
|
||||
lr: 0.04
|
||||
lr_scale: 1
|
||||
lr_epochs: "8,14,18"
|
||||
weight_decay: 0.0002
|
||||
momentum: 0.9
|
||||
max_epoch: 20
|
||||
pretrained: "your_pretrained_model"
|
||||
warmup_epochs: 2
|
||||
|
||||
# distributed parameter
|
||||
local_rank: 0
|
||||
world_size: 1
|
||||
model_parallel: 0
|
||||
|
||||
# logging related
|
||||
log_interval: 100
|
||||
ckpt_path: "outputs"
|
||||
max_ckpts: -1
|
||||
dynamic_init_loss_scale: 65536
|
||||
ckpt_steps: 1000
|
||||
|
||||
---
|
||||
|
||||
# Help description for each configuration
|
||||
enable_modelarts: "Whether training on modelarts, default: False"
|
||||
data_url: "Url for modelarts"
|
||||
train_url: "Url for modelarts"
|
||||
data_path: "The location of the input data."
|
||||
output_path: "The location of the output file."
|
||||
device_target: 'Target device type'
|
||||
enable_profiling: 'Whether enable profiling while training, default: False'
|
||||
|
||||
train_stage: "Train stage, base or beta"
|
||||
is_distributed: "If multi device"
|
|
@ -26,12 +26,14 @@ import mindspore.dataset as de
|
|||
from mindspore import Tensor, context
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
|
||||
from src.config import config_inference
|
||||
from src.backbone.resnet import get_backbone
|
||||
from src.my_logging import get_logger
|
||||
|
||||
devid = int(os.getenv('DEVICE_ID'))
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=devid)
|
||||
from utils.config import config
|
||||
from utils.moxing_adapter import moxing_wrapper
|
||||
from utils.device_adapter import get_device_id, get_device_num, get_rank_id
|
||||
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=get_device_id())
|
||||
|
||||
|
||||
class TxtDataset():
|
||||
|
@ -198,7 +200,61 @@ def l2normalize(features):
|
|||
l2norm[np.logical_and(l2norm >= 0, l2norm < epsilon)] = epsilon
|
||||
return features/l2norm
|
||||
|
||||
def main(args):
|
||||
def modelarts_pre_process():
|
||||
'''modelarts pre process function.'''
|
||||
def unzip(zip_file, save_dir):
|
||||
import zipfile
|
||||
s_time = time.time()
|
||||
if not os.path.exists(os.path.join(save_dir, "face_recognition_dataset")):
|
||||
zip_isexist = zipfile.is_zipfile(zip_file)
|
||||
if zip_isexist:
|
||||
fz = zipfile.ZipFile(zip_file, 'r')
|
||||
data_num = len(fz.namelist())
|
||||
print("Extract Start...")
|
||||
print("unzip file num: {}".format(data_num))
|
||||
i = 0
|
||||
for file in fz.namelist():
|
||||
if i % int(data_num / 100) == 0:
|
||||
print("unzip percent: {}%".format(i / int(data_num / 100)), flush=True)
|
||||
i += 1
|
||||
fz.extract(file, save_dir)
|
||||
print("cost time: {}min:{}s.".format(int((time.time() - s_time) / 60),
|
||||
int(int(time.time() - s_time) % 60)))
|
||||
print("Extract Done.")
|
||||
else:
|
||||
print("This is not zip.")
|
||||
else:
|
||||
print("Zip has been extracted.")
|
||||
|
||||
if config.need_modelarts_dataset_unzip:
|
||||
zip_file_1 = os.path.join(config.data_path, "face_recognition_dataset.zip")
|
||||
save_dir_1 = os.path.join(config.data_path)
|
||||
|
||||
sync_lock = "/tmp/unzip_sync.lock"
|
||||
|
||||
# Each server contains 8 devices as most.
|
||||
if get_device_id() % min(get_device_num(), 8) == 0 and not os.path.exists(sync_lock):
|
||||
print("Zip file path: ", zip_file_1)
|
||||
print("Unzip file save dir: ", save_dir_1)
|
||||
unzip(zip_file_1, save_dir_1)
|
||||
print("===Finish extract data synchronization===")
|
||||
try:
|
||||
os.mknod(sync_lock)
|
||||
except IOError:
|
||||
pass
|
||||
|
||||
while True:
|
||||
if os.path.exists(sync_lock):
|
||||
break
|
||||
time.sleep(1)
|
||||
|
||||
print("Device: {}, Finish sync unzip data from {} to {}.".format(get_device_id(), zip_file_1, save_dir_1))
|
||||
|
||||
config.ckpt_path = os.path.join(config.output_path, str(get_rank_id()), config.ckpt_path)
|
||||
|
||||
@moxing_wrapper(pre_process=modelarts_pre_process)
|
||||
def run_eval(args):
|
||||
'''run eval function.'''
|
||||
if not os.path.exists(args.test_dir):
|
||||
args.logger.info('ERROR, test_dir is not exists, please set test_dir in config.py.')
|
||||
return 0
|
||||
|
@ -317,17 +373,17 @@ def main(args):
|
|||
return 0
|
||||
|
||||
if __name__ == '__main__':
|
||||
arg = config_inference
|
||||
arg.test_img_predix = [arg.test_dir, arg.test_dir]
|
||||
config.test_img_predix = [os.path.join(config.test_dir, 'test_dataset/'),
|
||||
os.path.join(config.test_dir, 'test_dataset/')]
|
||||
|
||||
arg.test_img_list = [os.path.join(arg.test_dir, 'lists/jk_list.txt'),
|
||||
os.path.join(arg.test_dir, 'lists/zj_list.txt')]
|
||||
arg.dis_img_predix = [arg.test_dir,]
|
||||
arg.dis_img_list = [os.path.join(arg.test_dir, 'lists/dis_list.txt'),]
|
||||
config.test_img_list = [os.path.join(config.test_dir, 'lists/jk_list.txt'),
|
||||
os.path.join(config.test_dir, 'lists/zj_list.txt')]
|
||||
config.dis_img_predix = [os.path.join(config.test_dir, 'dis_dataset/'),]
|
||||
config.dis_img_list = [os.path.join(config.test_dir, 'lists/dis_list.txt'),]
|
||||
|
||||
log_path = os.path.join(arg.ckpt_path, 'logs')
|
||||
arg.logger = get_logger(log_path, arg.local_rank)
|
||||
log_path = os.path.join(config.ckpt_path, 'logs')
|
||||
config.logger = get_logger(log_path, config.local_rank)
|
||||
|
||||
arg.logger.info('Config: %s', pformat(arg))
|
||||
config.logger.info('Config %s', pformat(config))
|
||||
|
||||
main(arg)
|
||||
run_eval(config)
|
||||
|
|
|
@ -0,0 +1,60 @@
|
|||
# Builtin Configurations(DO NOT CHANGE THESE CONFIGURATIONS unless you know exactly what you are doing)
|
||||
enable_modelarts: False
|
||||
# Url for modelarts
|
||||
data_url: ""
|
||||
train_url: ""
|
||||
checkpoint_url: ""
|
||||
# Path for local
|
||||
data_path: "/cache/data"
|
||||
output_path: "/cache/train"
|
||||
load_path: "/cache/checkpoint_path"
|
||||
device_target: "Ascend"
|
||||
enable_profiling: False
|
||||
|
||||
# ==============================================================================
|
||||
# Training options
|
||||
|
||||
# distributed parameter
|
||||
is_distributed: 0
|
||||
local_rank: 0
|
||||
world_size: 1
|
||||
|
||||
# test weight
|
||||
weight: 'your_test_model'
|
||||
test_dir: '/cache/data/face_recognition_dataset/'
|
||||
need_modelarts_dataset_unzip: True
|
||||
|
||||
# model define
|
||||
backbone: "r100"
|
||||
use_se: 0
|
||||
emb_size: 256
|
||||
act_type: "relu"
|
||||
fp16: 1
|
||||
pre_bn: 0
|
||||
inference: 1
|
||||
use_drop: 0
|
||||
|
||||
# test and dis batch size
|
||||
test_batch_size: 128
|
||||
dis_batch_size: 512
|
||||
|
||||
# log
|
||||
log_interval: 100
|
||||
ckpt_path: "outputs/models"
|
||||
|
||||
# test and dis image list
|
||||
test_img_predix: ""
|
||||
test_img_list: ""
|
||||
dis_img_predix: ""
|
||||
dis_img_list: ""
|
||||
|
||||
---
|
||||
|
||||
# Help description for each configuration
|
||||
enable_modelarts: "Whether training on modelarts, default: False"
|
||||
data_url: "Url for modelarts"
|
||||
train_url: "Url for modelarts"
|
||||
data_path: "The location of the input data."
|
||||
output_path: "The location of the output file."
|
||||
device_target: 'Target device type'
|
||||
enable_profiling: 'Whether enable profiling while training, default: False'
|
|
@ -59,6 +59,7 @@ do
|
|||
echo "start training for rank $RANK_ID, device $DEVICE_ID"
|
||||
env > ${EXECUTE_PATH}/log_parallel_graph/face_recognition_$i.log
|
||||
python ${EXECUTE_PATH}/../train.py \
|
||||
--config_path=${EXECUTE_PATH}/../base_config.yaml \
|
||||
--train_stage=base \
|
||||
--is_distributed=1 &> ${EXECUTE_PATH}/log_parallel_graph/face_recognition_$i.log &
|
||||
done
|
||||
|
|
|
@ -59,6 +59,7 @@ do
|
|||
echo "start training for rank $RANK_ID, device $DEVICE_ID"
|
||||
env > ${EXECUTE_PATH}/log_parallel_graph/face_recognition_$i.log
|
||||
python ${EXECUTE_PATH}/../train.py \
|
||||
--config_path=${EXECUTE_PATH}/../beta_config.yaml \
|
||||
--train_stage=beta \
|
||||
--is_distributed=1 &> ${EXECUTE_PATH}/log_parallel_graph/face_recognition_$i.log &
|
||||
done
|
||||
|
|
|
@ -41,6 +41,6 @@ mkdir ${EXECUTE_PATH}/log_inference
|
|||
|
||||
cd ${EXECUTE_PATH}/log_inference || exit
|
||||
env > ${EXECUTE_PATH}/log_inference/face_recognition.log
|
||||
python ${EXECUTE_PATH}/../eval.py &> ${EXECUTE_PATH}/log_inference/face_recognition.log &
|
||||
python ${EXECUTE_PATH}/../eval.py --config_path=${EXECUTE_PATH}/../inference_config.yaml &> ${EXECUTE_PATH}/log_inference/face_recognition.log &
|
||||
|
||||
echo "[INFO] Start inference..."
|
|
@ -46,6 +46,7 @@ cd ${EXECUTE_PATH}/data_standalone_log_$USE_DEVICE_ID || exit
|
|||
echo "start training for rank $RANK_ID, device $USE_DEVICE_ID"
|
||||
env > ${EXECUTE_PATH}/log_standalone_graph/face_recognition_$USE_DEVICE_ID.log
|
||||
python ${EXECUTE_PATH}/../train.py \
|
||||
--config_path=${EXECUTE_PATH}/../base_config.yaml \
|
||||
--train_stage=base \
|
||||
--is_distributed=0 &> ${EXECUTE_PATH}/log_standalone_graph/face_recognition_$USE_DEVICE_ID.log &
|
||||
|
||||
|
|
|
@ -46,6 +46,7 @@ cd ${EXECUTE_PATH}/data_standalone_log_$USE_DEVICE_ID || exit
|
|||
echo "start training for rank $RANK_ID, device $USE_DEVICE_ID"
|
||||
env > ${EXECUTE_PATH}/log_standalone_graph/face_recognition_$USE_DEVICE_ID.log
|
||||
python ${EXECUTE_PATH}/../train.py \
|
||||
--config_path=${EXECUTE_PATH}/../base_config.yaml \
|
||||
--train_stage=beta \
|
||||
--is_distributed=0 &> ${EXECUTE_PATH}/log_standalone_graph/face_recognition_$USE_DEVICE_ID.log &
|
||||
|
||||
|
|
|
@ -1,148 +0,0 @@
|
|||
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#" :===========================================================================
|
||||
|
||||
"""network config setting, will be used in train.py and eval.py."""
|
||||
|
||||
from easydict import EasyDict as edict
|
||||
|
||||
config_base = edict({
|
||||
# dataset related
|
||||
'data_dir': "your_dataset_path",
|
||||
'num_classes': 1,
|
||||
'per_batch_size': 192,
|
||||
|
||||
# network structure related
|
||||
'backbone': 'r100',
|
||||
'use_se': 1,
|
||||
'emb_size': 512,
|
||||
'act_type': 'relu',
|
||||
'fp16': 1,
|
||||
'pre_bn': 1,
|
||||
'inference': 0,
|
||||
'use_drop': 1,
|
||||
'nc_16': 1,
|
||||
|
||||
# loss related
|
||||
'margin_a': 1.0,
|
||||
'margin_b': 0.2,
|
||||
'margin_m': 0.3,
|
||||
'margin_s': 64,
|
||||
|
||||
# optimizer related
|
||||
'lr': 0.4,
|
||||
'lr_scale': 1,
|
||||
'lr_epochs': '8,14,18',
|
||||
'weight_decay': 0.0002,
|
||||
'momentum': 0.9,
|
||||
'max_epoch': 20,
|
||||
'pretrained': '',
|
||||
'warmup_epochs': 2,
|
||||
|
||||
# distributed parameter
|
||||
'is_distributed': 1,
|
||||
'local_rank': 0,
|
||||
'world_size': 1,
|
||||
'model_parallel': 0,
|
||||
|
||||
# logging related
|
||||
'log_interval': 100,
|
||||
'ckpt_path': 'outputs',
|
||||
'max_ckpts': -1,
|
||||
'dynamic_init_loss_scale': 65536,
|
||||
'ckpt_steps': 1000
|
||||
})
|
||||
|
||||
config_beta = edict({
|
||||
# dataset related
|
||||
'data_dir': "your_dataset_path",
|
||||
'num_classes': 1,
|
||||
'per_batch_size': 192,
|
||||
|
||||
# network structure related
|
||||
'backbone': 'r100',
|
||||
'use_se': 0,
|
||||
'emb_size': 256,
|
||||
'act_type': 'relu',
|
||||
'fp16': 1,
|
||||
'pre_bn': 0,
|
||||
'inference': 0,
|
||||
'use_drop': 1,
|
||||
'nc_16': 1,
|
||||
|
||||
# loss related
|
||||
'margin_a': 1.0,
|
||||
'margin_b': 0.2,
|
||||
'margin_m': 0.3,
|
||||
'margin_s': 64,
|
||||
|
||||
# optimizer related
|
||||
'lr': 0.04,
|
||||
'lr_scale': 1,
|
||||
'lr_epochs': '8,14,18',
|
||||
'weight_decay': 0.0002,
|
||||
'momentum': 0.9,
|
||||
'max_epoch': 20,
|
||||
'pretrained': 'your_pretrained_model',
|
||||
'warmup_epochs': 2,
|
||||
|
||||
# distributed parameter
|
||||
'is_distributed': 1,
|
||||
'local_rank': 0,
|
||||
'world_size': 1,
|
||||
'model_parallel': 0,
|
||||
|
||||
# logging related
|
||||
'log_interval': 100,
|
||||
'ckpt_path': 'outputs',
|
||||
'max_ckpts': -1,
|
||||
'dynamic_init_loss_scale': 65536,
|
||||
'ckpt_steps': 1000
|
||||
})
|
||||
|
||||
|
||||
config_inference = edict({
|
||||
# distributed parameter
|
||||
'is_distributed': 0,
|
||||
'local_rank': 0,
|
||||
'world_size': 1,
|
||||
|
||||
# test weight
|
||||
'weight': 'your_test_model',
|
||||
'test_dir': 'your_dataset_path',
|
||||
|
||||
# model define
|
||||
'backbone': 'r100',
|
||||
'use_se': 0,
|
||||
'emb_size': 256,
|
||||
'act_type': 'relu',
|
||||
'fp16': 1,
|
||||
'pre_bn': 0,
|
||||
'inference': 1,
|
||||
'use_drop': 0,
|
||||
|
||||
# test and dis batch size
|
||||
'test_batch_size': 128,
|
||||
'dis_batch_size': 512,
|
||||
|
||||
# log
|
||||
'log_interval': 100,
|
||||
'ckpt_path': 'outputs/models',
|
||||
|
||||
# test and dis image list
|
||||
'test_img_predix': '',
|
||||
'test_img_list': '',
|
||||
'dis_img_predix': '',
|
||||
'dis_img_list': ''
|
||||
})
|
|
@ -14,20 +14,19 @@
|
|||
# ============================================================================
|
||||
"""Face Recognition train."""
|
||||
import os
|
||||
import argparse
|
||||
import time
|
||||
|
||||
import mindspore
|
||||
from mindspore.nn import Cell
|
||||
from mindspore import context
|
||||
from mindspore.context import ParallelMode
|
||||
from mindspore.communication.management import get_group_size, init, get_rank
|
||||
from mindspore.communication.management import init
|
||||
from mindspore.nn.optim import Momentum
|
||||
from mindspore.train.model import Model
|
||||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
|
||||
from mindspore.train.loss_scale_manager import DynamicLossScaleManager
|
||||
from mindspore.train.serialization import load_checkpoint, load_param_into_net
|
||||
|
||||
from src.config import config_base, config_beta
|
||||
from src.my_logging import get_logger
|
||||
from src.init_network import init_net
|
||||
from src.dataset_factory import get_de_dataset
|
||||
|
@ -37,10 +36,13 @@ from src.loss_factory import get_loss
|
|||
from src.lrsche_factory import warmup_step_list, list_to_gen
|
||||
from src.callback_factory import ProgressMonitor
|
||||
|
||||
from utils.moxing_adapter import moxing_wrapper
|
||||
from utils.config import config
|
||||
from utils.device_adapter import get_device_id, get_device_num, get_rank_id
|
||||
|
||||
mindspore.common.seed.set_seed(1)
|
||||
devid = int(os.getenv('DEVICE_ID'))
|
||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False,
|
||||
device_id=devid, reserve_class_name_in_scope=False, enable_auto_mixed_precision=False)
|
||||
device_id=get_device_id(), reserve_class_name_in_scope=False, enable_auto_mixed_precision=False)
|
||||
|
||||
class DistributedHelper(Cell):
|
||||
'''DistributedHelper'''
|
||||
|
@ -84,103 +86,13 @@ class BuildTrainNetwork(Cell):
|
|||
|
||||
return loss
|
||||
|
||||
def parse_args():
|
||||
parser = argparse.ArgumentParser('MindSpore Face Recognition')
|
||||
parser.add_argument('--train_stage', type=str, default='base', help='train stage, base or beta')
|
||||
parser.add_argument('--is_distributed', type=int, default=1, help='if multi device')
|
||||
|
||||
args_opt_1, _ = parser.parse_known_args()
|
||||
return args_opt_1
|
||||
|
||||
if __name__ == "__main__":
|
||||
args_opt = parse_args()
|
||||
|
||||
support_train_stage = ['base', 'beta']
|
||||
if args_opt.train_stage.lower() not in support_train_stage:
|
||||
args.logger.info('support train stage is:{}, while yours is:{}'.
|
||||
format(support_train_stage, args_opt.train_stage))
|
||||
raise ValueError('train stage not support.')
|
||||
args = config_base if args_opt.train_stage.lower() == 'base' else config_beta
|
||||
args.is_distributed = args_opt.is_distributed
|
||||
if args_opt.is_distributed:
|
||||
init()
|
||||
args.local_rank = get_rank()
|
||||
args.world_size = get_group_size()
|
||||
parallel_mode = ParallelMode.HYBRID_PARALLEL
|
||||
else:
|
||||
parallel_mode = ParallelMode.STAND_ALONE
|
||||
|
||||
context.set_auto_parallel_context(parallel_mode=parallel_mode,
|
||||
device_num=args.world_size, gradients_mean=True)
|
||||
|
||||
if not os.path.exists(args.data_dir):
|
||||
args.logger.info('ERROR, data_dir is not exists, please set data_dir in config.py')
|
||||
raise ValueError('ERROR, data_dir is not exists, please set data_dir in config.py')
|
||||
|
||||
args.lr_epochs = list(map(int, args.lr_epochs.split(',')))
|
||||
|
||||
|
||||
log_path = os.path.join(args.ckpt_path, 'logs')
|
||||
args.logger = get_logger(log_path, args.local_rank)
|
||||
|
||||
if args.local_rank % 8 == 0:
|
||||
if not os.path.exists(args.ckpt_path):
|
||||
os.makedirs(args.ckpt_path)
|
||||
|
||||
args.logger.info('args.world_size:{}'.format(args.world_size))
|
||||
args.logger.info('args.local_rank:{}'.format(args.local_rank))
|
||||
args.logger.info('args.lr:{}'.format(args.lr))
|
||||
|
||||
momentum = args.momentum
|
||||
weight_decay = args.weight_decay
|
||||
|
||||
de_dataset, steps_per_epoch, num_classes = get_de_dataset(args)
|
||||
args.logger.info('de_dataset:{}'.format(de_dataset.get_dataset_size()))
|
||||
args.steps_per_epoch = steps_per_epoch
|
||||
args.num_classes = num_classes
|
||||
|
||||
args.logger.info('loaded, nums: {}'.format(args.num_classes))
|
||||
if args.nc_16 == 1:
|
||||
if args.model_parallel == 0:
|
||||
if args.num_classes % 16 == 0:
|
||||
args.logger.info('data parallel aleardy 16, nums: {}'.format(args.num_classes))
|
||||
else:
|
||||
args.num_classes = (args.num_classes // 16 + 1) * 16
|
||||
else:
|
||||
if args.num_classes % (args.world_size * 16) == 0:
|
||||
args.logger.info('model parallel aleardy 16, nums: {}'.format(args.num_classes))
|
||||
else:
|
||||
args.num_classes = (args.num_classes // (args.world_size * 16) + 1) * args.world_size * 16
|
||||
|
||||
args.logger.info('for D, loaded, class nums: {}'.format(args.num_classes))
|
||||
args.logger.info('steps_per_epoch:{}'.format(args.steps_per_epoch))
|
||||
args.logger.info('img_total_num:{}'.format(args.steps_per_epoch * args.per_batch_size))
|
||||
|
||||
args.logger.info('get_backbone----in----')
|
||||
_backbone = get_backbone(args)
|
||||
args.logger.info('get_backbone----out----')
|
||||
|
||||
args.logger.info('get_metric_fc----in----')
|
||||
margin_fc_1 = get_metric_fc(args)
|
||||
args.logger.info('get_metric_fc----out----')
|
||||
|
||||
args.logger.info('DistributedHelper----in----')
|
||||
network_1 = DistributedHelper(_backbone, margin_fc_1)
|
||||
args.logger.info('DistributedHelper----out----')
|
||||
|
||||
args.logger.info('network fp16----in----')
|
||||
if args.fp16 == 1:
|
||||
network_1.add_flags_recursive(fp16=True)
|
||||
args.logger.info('network fp16----out----')
|
||||
|
||||
criterion_1 = get_loss(args)
|
||||
if args.fp16 == 1 and args.model_parallel == 0:
|
||||
criterion_1.add_flags_recursive(fp32=True)
|
||||
|
||||
if os.path.isfile(args.pretrained):
|
||||
param_dict = load_checkpoint(args.pretrained)
|
||||
def load_pretrain(cfg, net):
|
||||
'''load pretrain function.'''
|
||||
if os.path.isfile(cfg.pretrained):
|
||||
param_dict = load_checkpoint(cfg.pretrained)
|
||||
param_dict_new = {}
|
||||
if args_opt.train_stage.lower() == 'base':
|
||||
if cfg.train_stage.lower() == 'base':
|
||||
for key, value in param_dict.items():
|
||||
if key.startswith('moments.'):
|
||||
continue
|
||||
|
@ -201,35 +113,169 @@ if __name__ == "__main__":
|
|||
continue
|
||||
else:
|
||||
param_dict_new[key[8:]] = value
|
||||
load_param_into_net(network_1, param_dict_new)
|
||||
args.logger.info('load model {} success'.format(args.pretrained))
|
||||
load_param_into_net(net, param_dict_new)
|
||||
cfg.logger.info('load model {} success'.format(cfg.pretrained))
|
||||
else:
|
||||
init_net(args, network_1)
|
||||
if cfg.train_stage.lower() == 'beta':
|
||||
raise ValueError("Train beta mode load pretrain model fail from: {}".format(cfg.pretrained))
|
||||
init_net(cfg, net)
|
||||
cfg.logger.info('init model success')
|
||||
return net
|
||||
|
||||
train_net = BuildTrainNetwork(network_1, criterion_1, args)
|
||||
|
||||
args.logger.info('args:{}'.format(args))
|
||||
# call warmup_step should behind the args steps_per_epoch
|
||||
args.lrs = warmup_step_list(args, gamma=0.1)
|
||||
lrs_gen = list_to_gen(args.lrs)
|
||||
opt = Momentum(params=train_net.trainable_params(), learning_rate=lrs_gen, momentum=momentum,
|
||||
weight_decay=weight_decay)
|
||||
scale_manager = DynamicLossScaleManager(init_loss_scale=args.dynamic_init_loss_scale, scale_factor=2,
|
||||
def modelarts_pre_process():
|
||||
'''modelarts pre process function.'''
|
||||
def unzip(zip_file, save_dir):
|
||||
import zipfile
|
||||
s_time = time.time()
|
||||
if not os.path.exists(os.path.join(save_dir, "face_recognition_dataset")):
|
||||
zip_isexist = zipfile.is_zipfile(zip_file)
|
||||
if zip_isexist:
|
||||
fz = zipfile.ZipFile(zip_file, 'r')
|
||||
data_num = len(fz.namelist())
|
||||
print("Extract Start...")
|
||||
print("unzip file num: {}".format(data_num))
|
||||
i = 0
|
||||
for file in fz.namelist():
|
||||
if i % int(data_num / 100) == 0:
|
||||
print("unzip percent: {}%".format(i / int(data_num / 100)), flush=True)
|
||||
i += 1
|
||||
fz.extract(file, save_dir)
|
||||
print("cost time: {}min:{}s.".format(int((time.time() - s_time) / 60),
|
||||
int(int(time.time() - s_time) % 60)))
|
||||
print("Extract Done.")
|
||||
else:
|
||||
print("This is not zip.")
|
||||
else:
|
||||
print("Zip has been extracted.")
|
||||
|
||||
if config.need_modelarts_dataset_unzip:
|
||||
zip_file_1 = os.path.join(config.data_path, "face_recognition_dataset.zip")
|
||||
save_dir_1 = os.path.join(config.data_path)
|
||||
|
||||
sync_lock = "/tmp/unzip_sync.lock"
|
||||
|
||||
# Each server contains 8 devices as most.
|
||||
if get_device_id() % min(get_device_num(), 8) == 0 and not os.path.exists(sync_lock):
|
||||
print("Zip file path: ", zip_file_1)
|
||||
print("Unzip file save dir: ", save_dir_1)
|
||||
unzip(zip_file_1, save_dir_1)
|
||||
print("===Finish extract data synchronization===")
|
||||
try:
|
||||
os.mknod(sync_lock)
|
||||
except IOError:
|
||||
pass
|
||||
|
||||
while True:
|
||||
if os.path.exists(sync_lock):
|
||||
break
|
||||
time.sleep(1)
|
||||
|
||||
print("Device: {}, Finish sync unzip data from {} to {}.".format(get_device_id(), zip_file_1, save_dir_1))
|
||||
|
||||
config.ckpt_path = os.path.join(config.output_path, str(get_rank_id()), config.ckpt_path)
|
||||
|
||||
|
||||
@moxing_wrapper(pre_process=modelarts_pre_process)
|
||||
def run_train():
|
||||
'''run train function.'''
|
||||
config.local_rank = get_rank_id()
|
||||
config.world_size = get_device_num()
|
||||
log_path = os.path.join(config.ckpt_path, 'logs')
|
||||
config.logger = get_logger(log_path, config.local_rank)
|
||||
|
||||
support_train_stage = ['base', 'beta']
|
||||
if config.train_stage.lower() not in support_train_stage:
|
||||
config.logger.info('your train stage is not support.')
|
||||
raise ValueError('train stage not support.')
|
||||
|
||||
if not os.path.exists(config.data_dir):
|
||||
config.logger.info('ERROR, data_dir is not exists, please set data_dir in config.py')
|
||||
raise ValueError('ERROR, data_dir is not exists, please set data_dir in config.py')
|
||||
|
||||
parallel_mode = ParallelMode.HYBRID_PARALLEL if config.is_distributed else ParallelMode.STAND_ALONE
|
||||
context.set_auto_parallel_context(parallel_mode=parallel_mode,
|
||||
device_num=config.world_size, gradients_mean=True)
|
||||
if config.is_distributed:
|
||||
init()
|
||||
|
||||
if config.local_rank % 8 == 0:
|
||||
if not os.path.exists(config.ckpt_path):
|
||||
os.makedirs(config.ckpt_path)
|
||||
|
||||
de_dataset, steps_per_epoch, num_classes = get_de_dataset(config)
|
||||
config.logger.info('de_dataset: %d', de_dataset.get_dataset_size())
|
||||
|
||||
config.steps_per_epoch = steps_per_epoch
|
||||
config.num_classes = num_classes
|
||||
config.lr_epochs = list(map(int, config.lr_epochs.split(',')))
|
||||
config.logger.info('config.num_classes: %d', config.num_classes)
|
||||
config.logger.info('config.world_size: %d', config.world_size)
|
||||
config.logger.info('config.local_rank: %d', config.local_rank)
|
||||
config.logger.info('config.lr: %f', config.lr)
|
||||
|
||||
if config.nc_16 == 1:
|
||||
if config.model_parallel == 0:
|
||||
if config.num_classes % 16 == 0:
|
||||
config.logger.info('data parallel aleardy 16, nums: %d', config.num_classes)
|
||||
else:
|
||||
config.num_classes = (config.num_classes // 16 + 1) * 16
|
||||
else:
|
||||
if config.num_classes % (config.world_size * 16) == 0:
|
||||
config.logger.info('model parallel aleardy 16, nums: %d', config.num_classes)
|
||||
else:
|
||||
config.num_classes = (config.num_classes // (config.world_size * 16) + 1) * config.world_size * 16
|
||||
|
||||
config.logger.info('for D, loaded, class nums: %d', config.num_classes)
|
||||
config.logger.info('steps_per_epoch: %d', config.steps_per_epoch)
|
||||
config.logger.info('img_total_num: %d', config.steps_per_epoch * config.per_batch_size)
|
||||
|
||||
config.logger.info('get_backbone----in----')
|
||||
_backbone = get_backbone(config)
|
||||
config.logger.info('get_backbone----out----')
|
||||
config.logger.info('get_metric_fc----in----')
|
||||
margin_fc_1 = get_metric_fc(config)
|
||||
config.logger.info('get_metric_fc----out----')
|
||||
config.logger.info('DistributedHelper----in----')
|
||||
network_1 = DistributedHelper(_backbone, margin_fc_1)
|
||||
config.logger.info('DistributedHelper----out----')
|
||||
config.logger.info('network fp16----in----')
|
||||
if config.fp16 == 1:
|
||||
network_1.add_flags_recursive(fp16=True)
|
||||
config.logger.info('network fp16----out----')
|
||||
|
||||
criterion_1 = get_loss(config)
|
||||
if config.fp16 == 1 and config.model_parallel == 0:
|
||||
criterion_1.add_flags_recursive(fp32=True)
|
||||
|
||||
network_1 = load_pretrain(config, network_1)
|
||||
train_net = BuildTrainNetwork(network_1, criterion_1, config)
|
||||
|
||||
# call warmup_step should behind the config steps_per_epoch
|
||||
config.lrs = warmup_step_list(config, gamma=0.1)
|
||||
lrs_gen = list_to_gen(config.lrs)
|
||||
opt = Momentum(params=train_net.trainable_params(), learning_rate=lrs_gen, momentum=config.momentum,
|
||||
weight_decay=config.weight_decay)
|
||||
scale_manager = DynamicLossScaleManager(init_loss_scale=config.dynamic_init_loss_scale, scale_factor=2,
|
||||
scale_window=2000)
|
||||
model = Model(train_net, optimizer=opt, metrics=None, loss_scale_manager=scale_manager)
|
||||
save_checkpoint_steps = args.ckpt_steps
|
||||
args.logger.info('save_checkpoint_steps:{}'.format(save_checkpoint_steps))
|
||||
if args.max_ckpts == -1:
|
||||
keep_checkpoint_max = int(args.steps_per_epoch * args.max_epoch / save_checkpoint_steps) + 5 # for more than 5
|
||||
|
||||
save_checkpoint_steps = config.ckpt_steps
|
||||
config.logger.info('save_checkpoint_steps: %d', save_checkpoint_steps)
|
||||
if config.max_ckpts == -1:
|
||||
keep_checkpoint_max = int(config.steps_per_epoch * config.max_epoch / save_checkpoint_steps) + 5
|
||||
else:
|
||||
keep_checkpoint_max = args.max_ckpts
|
||||
args.logger.info('keep_checkpoint_max:{}'.format(keep_checkpoint_max))
|
||||
keep_checkpoint_max = config.max_ckpts
|
||||
config.logger.info('keep_checkpoint_max: %d', keep_checkpoint_max)
|
||||
|
||||
ckpt_config = CheckpointConfig(save_checkpoint_steps=save_checkpoint_steps, keep_checkpoint_max=keep_checkpoint_max)
|
||||
max_epoch_train = args.max_epoch
|
||||
args.logger.info('max_epoch_train:{}'.format(max_epoch_train))
|
||||
ckpt_cb = ModelCheckpoint(config=ckpt_config, directory=args.ckpt_path, prefix='{}'.format(args.local_rank))
|
||||
args.epoch_cnt = 0
|
||||
progress_cb = ProgressMonitor(args)
|
||||
new_epoch_train = max_epoch_train * steps_per_epoch // args.log_interval
|
||||
model.train(new_epoch_train, de_dataset, callbacks=[progress_cb, ckpt_cb], sink_size=args.log_interval)
|
||||
config.logger.info('max_epoch_train: %d', config.max_epoch)
|
||||
ckpt_cb = ModelCheckpoint(config=ckpt_config, directory=config.ckpt_path, prefix='{}'.format(config.local_rank))
|
||||
config.epoch_cnt = 0
|
||||
progress_cb = ProgressMonitor(config)
|
||||
new_epoch_train = config.max_epoch * steps_per_epoch // config.log_interval
|
||||
model.train(new_epoch_train, de_dataset, callbacks=[progress_cb, ckpt_cb], sink_size=config.log_interval)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_train()
|
||||
|
|
|
@ -0,0 +1,127 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Parse arguments"""
|
||||
|
||||
import os
|
||||
import ast
|
||||
import argparse
|
||||
from pprint import pprint, pformat
|
||||
import yaml
|
||||
|
||||
class Config:
|
||||
"""
|
||||
Configuration namespace. Convert dictionary to members.
|
||||
"""
|
||||
def __init__(self, cfg_dict):
|
||||
for k, v in cfg_dict.items():
|
||||
if isinstance(v, (list, tuple)):
|
||||
setattr(self, k, [Config(x) if isinstance(x, dict) else x for x in v])
|
||||
else:
|
||||
setattr(self, k, Config(v) if isinstance(v, dict) else v)
|
||||
|
||||
def __str__(self):
|
||||
return pformat(self.__dict__)
|
||||
|
||||
def __repr__(self):
|
||||
return self.__str__()
|
||||
|
||||
|
||||
def parse_cli_to_yaml(parser, cfg, helper=None, choices=None, cfg_path="default_config.yaml"):
|
||||
"""
|
||||
Parse command line arguments to the configuration according to the default yaml.
|
||||
|
||||
Args:
|
||||
parser: Parent parser.
|
||||
cfg: Base configuration.
|
||||
helper: Helper description.
|
||||
cfg_path: Path to the default yaml config.
|
||||
"""
|
||||
parser = argparse.ArgumentParser(description="[REPLACE THIS at config.py]",
|
||||
parents=[parser])
|
||||
helper = {} if helper is None else helper
|
||||
choices = {} if choices is None else choices
|
||||
for item in cfg:
|
||||
if not isinstance(cfg[item], list) and not isinstance(cfg[item], dict):
|
||||
help_description = helper[item] if item in helper else "Please reference to {}".format(cfg_path)
|
||||
choice = choices[item] if item in choices else None
|
||||
if isinstance(cfg[item], bool):
|
||||
parser.add_argument("--" + item, type=ast.literal_eval, default=cfg[item], choices=choice,
|
||||
help=help_description)
|
||||
else:
|
||||
parser.add_argument("--" + item, type=type(cfg[item]), default=cfg[item], choices=choice,
|
||||
help=help_description)
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
def parse_yaml(yaml_path):
|
||||
"""
|
||||
Parse the yaml config file.
|
||||
|
||||
Args:
|
||||
yaml_path: Path to the yaml config.
|
||||
"""
|
||||
with open(yaml_path, 'r') as fin:
|
||||
try:
|
||||
cfgs = yaml.load_all(fin.read(), Loader=yaml.FullLoader)
|
||||
cfgs = [x for x in cfgs]
|
||||
if len(cfgs) == 1:
|
||||
cfg_helper = {}
|
||||
cfg = cfgs[0]
|
||||
cfg_choices = {}
|
||||
elif len(cfgs) == 2:
|
||||
cfg, cfg_helper = cfgs
|
||||
cfg_choices = {}
|
||||
elif len(cfgs) == 3:
|
||||
cfg, cfg_helper, cfg_choices = cfgs
|
||||
else:
|
||||
raise ValueError("At most 3 docs (config, description for help, choices) are supported in config yaml")
|
||||
print(cfg_helper)
|
||||
except:
|
||||
raise ValueError("Failed to parse yaml")
|
||||
return cfg, cfg_helper, cfg_choices
|
||||
|
||||
|
||||
def merge(args, cfg):
|
||||
"""
|
||||
Merge the base config from yaml file and command line arguments.
|
||||
|
||||
Args:
|
||||
args: Command line arguments.
|
||||
cfg: Base configuration.
|
||||
"""
|
||||
args_var = vars(args)
|
||||
for item in args_var:
|
||||
cfg[item] = args_var[item]
|
||||
return cfg
|
||||
|
||||
|
||||
def get_config():
|
||||
"""
|
||||
Get Config according to the yaml file and cli arguments.
|
||||
"""
|
||||
parser = argparse.ArgumentParser(description="default name", add_help=False)
|
||||
current_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
parser.add_argument("--config_path", type=str, default=os.path.join(current_dir, "../default_config.yaml"),
|
||||
help="Config file path")
|
||||
path_args, _ = parser.parse_known_args()
|
||||
default, helper, choices = parse_yaml(path_args.config_path)
|
||||
pprint(default)
|
||||
args = parse_cli_to_yaml(parser=parser, cfg=default, helper=helper, choices=choices, cfg_path=path_args.config_path)
|
||||
final_config = merge(args, default)
|
||||
return Config(final_config)
|
||||
|
||||
config = get_config()
|
|
@ -0,0 +1,27 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Device adapter for ModelArts"""
|
||||
|
||||
from utils.config import config
|
||||
|
||||
if config.enable_modelarts:
|
||||
from utils.moxing_adapter import get_device_id, get_device_num, get_rank_id, get_job_id
|
||||
else:
|
||||
from utils.local_adapter import get_device_id, get_device_num, get_rank_id, get_job_id
|
||||
|
||||
__all__ = [
|
||||
"get_device_id", "get_device_num", "get_rank_id", "get_job_id"
|
||||
]
|
|
@ -0,0 +1,36 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Local adapter"""
|
||||
|
||||
import os
|
||||
|
||||
def get_device_id():
|
||||
device_id = os.getenv('DEVICE_ID', '0')
|
||||
return int(device_id)
|
||||
|
||||
|
||||
def get_device_num():
|
||||
device_num = os.getenv('RANK_SIZE', '1')
|
||||
return int(device_num)
|
||||
|
||||
|
||||
def get_rank_id():
|
||||
global_rank_id = os.getenv('RANK_ID', '0')
|
||||
return int(global_rank_id)
|
||||
|
||||
|
||||
def get_job_id():
|
||||
return "Local Job"
|
|
@ -0,0 +1,116 @@
|
|||
# Copyright 2021 Huawei Technologies Co., Ltd
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ============================================================================
|
||||
|
||||
"""Moxing adapter for ModelArts"""
|
||||
|
||||
import os
|
||||
import functools
|
||||
from mindspore import context
|
||||
from utils.config import config
|
||||
|
||||
_global_sync_count = 0
|
||||
|
||||
def get_device_id():
|
||||
device_id = os.getenv('DEVICE_ID', '0')
|
||||
return int(device_id)
|
||||
|
||||
|
||||
def get_device_num():
|
||||
device_num = os.getenv('RANK_SIZE', '1')
|
||||
return int(device_num)
|
||||
|
||||
|
||||
def get_rank_id():
|
||||
global_rank_id = os.getenv('RANK_ID', '0')
|
||||
return int(global_rank_id)
|
||||
|
||||
|
||||
def get_job_id():
|
||||
job_id = os.getenv('JOB_ID')
|
||||
job_id = job_id if job_id != "" else "default"
|
||||
return job_id
|
||||
|
||||
def sync_data(from_path, to_path):
|
||||
"""
|
||||
Download data from remote obs to local directory if the first url is remote url and the second one is local path
|
||||
Upload data from local directory to remote obs in contrast.
|
||||
"""
|
||||
import moxing as mox
|
||||
import time
|
||||
global _global_sync_count
|
||||
sync_lock = "/tmp/copy_sync.lock" + str(_global_sync_count)
|
||||
_global_sync_count += 1
|
||||
|
||||
# Each server contains 8 devices as most.
|
||||
if get_device_id() % min(get_device_num(), 8) == 0 and not os.path.exists(sync_lock):
|
||||
print("from path: ", from_path)
|
||||
print("to path: ", to_path)
|
||||
mox.file.copy_parallel(from_path, to_path)
|
||||
print("===finish data synchronization===")
|
||||
try:
|
||||
os.mknod(sync_lock)
|
||||
except IOError:
|
||||
pass
|
||||
print("===save flag===")
|
||||
|
||||
while True:
|
||||
if os.path.exists(sync_lock):
|
||||
break
|
||||
time.sleep(1)
|
||||
|
||||
print("Finish sync data from {} to {}.".format(from_path, to_path))
|
||||
|
||||
|
||||
def moxing_wrapper(pre_process=None, post_process=None):
|
||||
"""
|
||||
Moxing wrapper to download dataset and upload outputs.
|
||||
"""
|
||||
def wrapper(run_func):
|
||||
@functools.wraps(run_func)
|
||||
def wrapped_func(*args, **kwargs):
|
||||
# Download data from data_url
|
||||
if config.enable_modelarts:
|
||||
if config.data_url:
|
||||
sync_data(config.data_url, config.data_path)
|
||||
print("Dataset downloaded: ", os.listdir(config.data_path))
|
||||
if config.checkpoint_url:
|
||||
sync_data(config.checkpoint_url, config.load_path)
|
||||
print("Preload downloaded: ", os.listdir(config.load_path))
|
||||
if config.train_url:
|
||||
sync_data(config.train_url, config.output_path)
|
||||
print("Workspace downloaded: ", os.listdir(config.output_path))
|
||||
|
||||
context.set_context(save_graphs_path=os.path.join(config.output_path, str(get_rank_id())))
|
||||
config.device_num = get_device_num()
|
||||
config.device_id = get_device_id()
|
||||
if not os.path.exists(config.output_path):
|
||||
os.makedirs(config.output_path)
|
||||
|
||||
if pre_process:
|
||||
pre_process()
|
||||
|
||||
# Run the main function
|
||||
run_func(*args, **kwargs)
|
||||
|
||||
# Upload data to train_url
|
||||
if config.enable_modelarts:
|
||||
if post_process:
|
||||
post_process()
|
||||
|
||||
if config.train_url:
|
||||
print("Start to copy output directory")
|
||||
sync_data(config.output_path, config.train_url)
|
||||
return wrapped_func
|
||||
return wrapper
|
Loading…
Reference in New Issue