forked from mindspore-Ecosystem/mindspore
new version of ops
This commit is contained in:
parent
8e36a4451e
commit
1d0aef57d4
|
@ -1,126 +0,0 @@
|
||||||
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
# ============================================================================
|
|
||||||
"""learning rate generator"""
|
|
||||||
import math
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
|
|
||||||
def linear_warmup_lr(current_step, warmup_steps, base_lr, init_lr):
|
|
||||||
"""linear_warmup_lr"""
|
|
||||||
lr_inc = (float(base_lr) - float(init_lr)) / float(warmup_steps)
|
|
||||||
lr = float(init_lr) + lr_inc * current_step
|
|
||||||
return lr
|
|
||||||
|
|
||||||
|
|
||||||
def cosine_annealing_lr(lr, steps_per_epoch, warmup_epochs, max_epoch, T_max, eta_min=0, num_periods=0.5):
|
|
||||||
"""linear_warmup_lr"""
|
|
||||||
base_lr = lr
|
|
||||||
warmup_init_lr = 0
|
|
||||||
total_steps = int(max_epoch * steps_per_epoch)
|
|
||||||
warmup_steps = int(warmup_epochs * steps_per_epoch)
|
|
||||||
decay_steps = total_steps - warmup_steps
|
|
||||||
lr_each_step = []
|
|
||||||
for i in range(total_steps):
|
|
||||||
if i < warmup_steps:
|
|
||||||
lr = linear_warmup_lr(i + 1, warmup_steps, base_lr, warmup_init_lr)
|
|
||||||
else:
|
|
||||||
# linear_decay = (total_steps - i) / decay_steps
|
|
||||||
cosine_decay = 0.5 * (1 + math.cos(math.pi * i / decay_steps))
|
|
||||||
decayed = cosine_decay
|
|
||||||
lr = base_lr * decayed
|
|
||||||
lr_each_step.append(lr)
|
|
||||||
return np.array(lr_each_step).astype(np.float32)
|
|
||||||
|
|
||||||
|
|
||||||
def warmup_cosine_annealing_lr(lr, steps_per_epoch, warmup_epochs, max_epoch, T_max, eta_min=0, num_periods=0.5):
|
|
||||||
"""warmup_cosine_annealing_lr"""
|
|
||||||
base_lr = lr
|
|
||||||
warmup_init_lr = 0
|
|
||||||
total_steps = int(max_epoch * steps_per_epoch * 0.99)
|
|
||||||
warmup_steps = int(warmup_epochs * steps_per_epoch)
|
|
||||||
decay_steps = total_steps - warmup_steps
|
|
||||||
lr_each_step = []
|
|
||||||
for i in range(total_steps):
|
|
||||||
if i < warmup_steps:
|
|
||||||
lr = linear_warmup_lr(i + 1, warmup_steps, base_lr, warmup_init_lr)
|
|
||||||
else:
|
|
||||||
linear_decay = (total_steps - i) / decay_steps
|
|
||||||
cosine_decay = 0.5 * (1 + math.cos(math.pi * 2 * num_periods * i / decay_steps))
|
|
||||||
decayed = linear_decay * cosine_decay
|
|
||||||
lr = base_lr * decayed + 0.000005
|
|
||||||
lr_each_step.append(lr)
|
|
||||||
return np.array(lr_each_step).astype(np.float32)
|
|
||||||
|
|
||||||
|
|
||||||
def get_lr(global_step, lr_init, lr_end, lr_max, warmup_epochs, total_epochs, steps_per_epoch, lr_decay_mode):
|
|
||||||
"""
|
|
||||||
generate learning rate array
|
|
||||||
|
|
||||||
Args:
|
|
||||||
global_step(int): total steps of the training
|
|
||||||
lr_init(float): init learning rate
|
|
||||||
lr_end(float): end learning rate
|
|
||||||
lr_max(float): max learning rate
|
|
||||||
warmup_epochs(int): number of warmup epochs
|
|
||||||
total_epochs(int): total epoch of training
|
|
||||||
steps_per_epoch(int): steps of one epoch
|
|
||||||
lr_decay_mode(string): learning rate decay mode, including steps, poly or default
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
np.array, learning rate array
|
|
||||||
"""
|
|
||||||
lr_each_step = []
|
|
||||||
total_steps = steps_per_epoch * total_epochs
|
|
||||||
warmup_steps = steps_per_epoch * warmup_epochs
|
|
||||||
if lr_decay_mode == 'steps':
|
|
||||||
decay_epoch_index = [0.3 * total_steps, 0.6 * total_steps, 0.8 * total_steps]
|
|
||||||
for i in range(total_steps):
|
|
||||||
if i < decay_epoch_index[0]:
|
|
||||||
lr = lr_max
|
|
||||||
elif i < decay_epoch_index[1]:
|
|
||||||
lr = lr_max * 0.1
|
|
||||||
elif i < decay_epoch_index[2]:
|
|
||||||
lr = lr_max * 0.01
|
|
||||||
else:
|
|
||||||
lr = lr_max * 0.001
|
|
||||||
lr_each_step.append(lr)
|
|
||||||
elif lr_decay_mode == 'poly':
|
|
||||||
if warmup_steps != 0:
|
|
||||||
inc_each_step = (float(lr_max) - float(lr_init)) / float(warmup_steps)
|
|
||||||
else:
|
|
||||||
inc_each_step = 0
|
|
||||||
for i in range(total_steps):
|
|
||||||
if i < warmup_steps:
|
|
||||||
lr = float(lr_init) + inc_each_step * float(i)
|
|
||||||
else:
|
|
||||||
base = (1.0 - (float(i) - float(warmup_steps)) / (float(total_steps) - float(warmup_steps)))
|
|
||||||
lr = float(lr_max) * base * base
|
|
||||||
if lr < 0.0:
|
|
||||||
lr = 0.0
|
|
||||||
lr_each_step.append(lr)
|
|
||||||
else:
|
|
||||||
for i in range(total_steps):
|
|
||||||
if i < warmup_steps:
|
|
||||||
lr = lr_init + (lr_max - lr_init) * i / warmup_steps
|
|
||||||
else:
|
|
||||||
lr = lr_max - (lr_max - lr_end) * (i - warmup_steps) / (total_steps - warmup_steps)
|
|
||||||
lr_each_step.append(lr)
|
|
||||||
|
|
||||||
current_step = global_step
|
|
||||||
lr_each_step = np.array(lr_each_step).astype(np.float32)
|
|
||||||
learning_rate = lr_each_step[current_step:]
|
|
||||||
|
|
||||||
return learning_rate
|
|
|
@ -13,12 +13,10 @@
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
# ============================================================================
|
# ============================================================================
|
||||||
"""Dataset help for minddata dataset"""
|
"""Dataset help for minddata dataset"""
|
||||||
from mindspore import context
|
|
||||||
from mindspore._checkparam import check_bool
|
from mindspore._checkparam import check_bool
|
||||||
from mindspore.nn.wrap import GetNextSingleOp
|
from mindspore.parallel._utils import _get_device_num, _get_parallel_mode
|
||||||
from mindspore.parallel._utils import _get_device_num, _get_global_rank, _get_parallel_mode
|
from mindspore.train._utils import _exec_datagraph, _get_types_and_shapes, \
|
||||||
from mindspore.train._utils import _exec_datagraph, _get_types_and_shapes, _to_tensor, \
|
_to_full_shapes
|
||||||
_construct_tensor_list, _to_full_shapes, _to_full_tensor
|
|
||||||
from mindspore.train.parallel_utils import ParallelMode
|
from mindspore.train.parallel_utils import ParallelMode
|
||||||
|
|
||||||
|
|
||||||
|
@ -42,19 +40,9 @@ class DatasetHelper:
|
||||||
>>> outputs = network(*inputs)
|
>>> outputs = network(*inputs)
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, dataset, first_order_iter=0, dataset_sink_mode=True):
|
def __init__(self, dataset, dataset_sink_mode=True, iter_first_order=0):
|
||||||
check_bool(dataset_sink_mode)
|
check_bool(dataset_sink_mode)
|
||||||
|
self.iter = _DatasetIterMSLoopSink(dataset, iter_first_order)
|
||||||
iterclass = _DatasetIterGE
|
|
||||||
if not dataset_sink_mode:
|
|
||||||
iterclass = _DatasetIterFeed
|
|
||||||
elif not context.get_context("enable_ge"):
|
|
||||||
if context.get_context("enable_loop_sink"):
|
|
||||||
iterclass = _DatasetIterMSLoopSink
|
|
||||||
else:
|
|
||||||
iterclass = _DatasetIterMS
|
|
||||||
|
|
||||||
self.iter = iterclass(dataset, first_order_iter)
|
|
||||||
|
|
||||||
def __iter__(self):
|
def __iter__(self):
|
||||||
return self.iter.__iter__()
|
return self.iter.__iter__()
|
||||||
|
@ -85,12 +73,6 @@ class _DatasetIter:
|
||||||
self.dataset = dataset
|
self.dataset = dataset
|
||||||
dataset_types, dataset_shapes = _get_types_and_shapes(dataset)
|
dataset_types, dataset_shapes = _get_types_and_shapes(dataset)
|
||||||
self.dataset_types, self.dataset_shapes = dataset_types, dataset_shapes
|
self.dataset_types, self.dataset_shapes = dataset_types, dataset_shapes
|
||||||
# for self._parallel_mode equal to semi_auto_parallel or auto_parallel, use a complete tensor to
|
|
||||||
# compile, and slice tensor to run. The batch dimension of tensors for compile is device_number
|
|
||||||
# times the batch dimension of tensors for run
|
|
||||||
if _get_parallel_mode() in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL):
|
|
||||||
device_num = _get_device_num()
|
|
||||||
self.dataset_shapes = _to_full_shapes(dataset_shapes, device_num)
|
|
||||||
|
|
||||||
def __iter__(self):
|
def __iter__(self):
|
||||||
self.ind = 0
|
self.ind = 0
|
||||||
|
@ -109,83 +91,28 @@ class _DatasetIter:
|
||||||
loop_count = 1
|
loop_count = 1
|
||||||
if hasattr(dataset, '__loop_size__'):
|
if hasattr(dataset, '__loop_size__'):
|
||||||
loop_size = dataset.__loop_size__
|
loop_size = dataset.__loop_size__
|
||||||
|
if dataset.get_dataset_size() % loop_size != 0:
|
||||||
|
raise ValueError(f'Dataset size {dataset.get_dataset_size()} and '
|
||||||
|
f'loop_size {loop_size} are not matched.')
|
||||||
loop_count = int(dataset.get_dataset_size() / loop_size)
|
loop_count = int(dataset.get_dataset_size() / loop_size)
|
||||||
return loop_count
|
return loop_count
|
||||||
|
|
||||||
|
|
||||||
class _DatasetIterMSLoopSink(_DatasetIter):
|
class _DatasetIterMSLoopSink(_DatasetIter):
|
||||||
"""Iter for context (enable_loop_sink=True)"""
|
"""Iter for context (device_target=Ascend)"""
|
||||||
|
|
||||||
def __init__(self, dataset, first_order_iter):
|
def __init__(self, dataset, iter_first_order):
|
||||||
super(_DatasetIterMSLoopSink, self).__init__(dataset)
|
super(_DatasetIterMSLoopSink, self).__init__(dataset)
|
||||||
# self.loop_count = self.get_loop_count(dataset)
|
loop_size = dataset.__loop_size__ + iter_first_order
|
||||||
loop_size = dataset.__loop_size__ + first_order_iter
|
|
||||||
self.loop_count = int(dataset.get_dataset_size() / loop_size) * 2
|
self.loop_count = int(dataset.get_dataset_size() / loop_size) * 2
|
||||||
|
# for self._parallel_mode equal to semi_auto_parallel or auto_parallel, use a complete tensor to
|
||||||
|
# compile, and slice tensor to run. The batch dimension of tensors for compile is device_number
|
||||||
|
# times the batch dimension of tensors for run. Now only support LoopSink.
|
||||||
|
if _get_parallel_mode() in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL):
|
||||||
|
device_num = _get_device_num()
|
||||||
|
self.dataset_shapes = _to_full_shapes(self.dataset_shapes, device_num)
|
||||||
|
|
||||||
def op():
|
def op():
|
||||||
return tuple()
|
return tuple()
|
||||||
|
|
||||||
self.op = op
|
self.op = op
|
||||||
|
|
||||||
|
|
||||||
class _DatasetIterMS(_DatasetIter):
|
|
||||||
"""Iter for context (enable_loop_sink=False)"""
|
|
||||||
|
|
||||||
def __init__(self, dataset, first_order_order):
|
|
||||||
super(_DatasetIterMS, self).__init__(dataset)
|
|
||||||
self.loop_count = dataset.get_dataset_size()
|
|
||||||
self.loop_size = 1
|
|
||||||
queue_name = dataset.__ME_INITED__
|
|
||||||
self.op = GetNextSingleOp(self.dataset_types, self.dataset_shapes, queue_name)
|
|
||||||
|
|
||||||
|
|
||||||
class _DatasetIterGE(_DatasetIter):
|
|
||||||
"""Iter for ge"""
|
|
||||||
|
|
||||||
def __init__(self, dataset):
|
|
||||||
super(_DatasetIterGE, self).__init__(dataset)
|
|
||||||
self.loop_count = self.get_loop_count(dataset)
|
|
||||||
parallel_mode = _get_parallel_mode()
|
|
||||||
self.need_to_full = parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL)
|
|
||||||
batch_expand_num = 1
|
|
||||||
if self.need_to_full:
|
|
||||||
batch_expand_num = _get_device_num()
|
|
||||||
tensor_list_run = _construct_tensor_list(self.dataset_types, self.dataset_shapes, batch_expand_num)
|
|
||||||
|
|
||||||
def op():
|
|
||||||
return tensor_list_run
|
|
||||||
|
|
||||||
self.op = op
|
|
||||||
|
|
||||||
|
|
||||||
class _DatasetIterFeed:
|
|
||||||
"""Iter for feed data"""
|
|
||||||
|
|
||||||
def __init__(self, dataset, first_order_order):
|
|
||||||
self.dataset = dataset
|
|
||||||
self.device_num = _get_device_num()
|
|
||||||
self.global_rank = _get_global_rank()
|
|
||||||
self.repeat_count = dataset.get_repeat_count()
|
|
||||||
self.repeat_ind = 0
|
|
||||||
self.loop_count = dataset.get_dataset_size()
|
|
||||||
self.ind = 0
|
|
||||||
|
|
||||||
parallel_mode = context.get_auto_parallel_context("parallel_mode")
|
|
||||||
self.need_to_full = parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL)
|
|
||||||
|
|
||||||
def __iter__(self):
|
|
||||||
if self.repeat_ind % self.repeat_count == 0:
|
|
||||||
self.iter = self.dataset.__iter__()
|
|
||||||
|
|
||||||
self.repeat_ind += 1
|
|
||||||
self.ind = 0
|
|
||||||
return self
|
|
||||||
|
|
||||||
def __next__(self):
|
|
||||||
if self.ind >= self.loop_count:
|
|
||||||
raise StopIteration()
|
|
||||||
self.ind += 1
|
|
||||||
data = self.iter.__next__()
|
|
||||||
if self.need_to_full:
|
|
||||||
return _to_full_tensor(data, self.device_num, self.global_rank)
|
|
||||||
return _to_tensor(data)
|
|
||||||
|
|
|
@ -13,8 +13,11 @@
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
# ============================================================================
|
# ============================================================================
|
||||||
"""Model."""
|
"""Model."""
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
from mindspore import context
|
from mindspore import context
|
||||||
from mindspore import log as logger
|
from mindspore import log as logger
|
||||||
|
from mindspore import nn
|
||||||
from mindspore._c_expression import init_exec_dataset
|
from mindspore._c_expression import init_exec_dataset
|
||||||
from mindspore._checkparam import check_input_data, check_output_data, check_int_positive, check_bool
|
from mindspore._checkparam import check_input_data, check_output_data, check_int_positive, check_bool
|
||||||
from mindspore.common import dtype as mstype
|
from mindspore.common import dtype as mstype
|
||||||
|
@ -28,9 +31,9 @@ from mindspore.parallel._utils import _get_parallel_mode, _get_device_num, _get_
|
||||||
from mindspore.train import amp
|
from mindspore.train import amp
|
||||||
from mindspore.train.callback import _InternalCallbackParam, RunContext, _build_callbacks
|
from mindspore.train.callback import _InternalCallbackParam, RunContext, _build_callbacks
|
||||||
from mindspore.train.parallel_utils import ParallelMode
|
from mindspore.train.parallel_utils import ParallelMode
|
||||||
import mindspore.nn as nn
|
|
||||||
from second_order.dataset_helper import DatasetHelper
|
from model.dataset_helper import DatasetHelper
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
def _convert_type(types):
|
def _convert_type(types):
|
||||||
"""
|
"""
|
||||||
|
@ -69,7 +72,8 @@ def _exec_datagraph(exec_dataset, dataset_size, phase='dataset'):
|
||||||
dataset_types,
|
dataset_types,
|
||||||
dataset_shapes,
|
dataset_shapes,
|
||||||
input_indexs,
|
input_indexs,
|
||||||
phase=phase)
|
phase=phase,
|
||||||
|
need_run=False)
|
||||||
|
|
||||||
|
|
||||||
class Model:
|
class Model:
|
||||||
|
@ -123,7 +127,7 @@ class Model:
|
||||||
>>> return out
|
>>> return out
|
||||||
>>>
|
>>>
|
||||||
>>> net = Net()
|
>>> net = Net()
|
||||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
|
>>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||||
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||||
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None)
|
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None)
|
||||||
>>> dataset = get_dataset()
|
>>> dataset = get_dataset()
|
||||||
|
@ -131,29 +135,35 @@ class Model:
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, network, loss_fn=None, optimizer=None, metrics=None, eval_network=None,
|
def __init__(self, network, loss_fn=None, optimizer=None, metrics=None, eval_network=None,
|
||||||
eval_indexes=None, amp_level="O0", frequency=278, **kwargs):
|
eval_indexes=None, amp_level="O0", frequency=278, stop_epoch=100, **kwargs):
|
||||||
self._network = network
|
self._network = network
|
||||||
self._loss_fn = loss_fn
|
self._loss_fn = loss_fn
|
||||||
self._optimizer = optimizer
|
self._optimizer = optimizer
|
||||||
self._loss_scale_manager = None
|
self._loss_scale_manager = None
|
||||||
self._loss_scale_manager_set = False
|
self._loss_scale_manager_set = False
|
||||||
self._keep_bn_fp32 = True
|
self._keep_bn_fp32 = True
|
||||||
self._frequency = frequency
|
|
||||||
self._check_kwargs(kwargs)
|
self._check_kwargs(kwargs)
|
||||||
|
self._amp_level = amp_level
|
||||||
|
self._process_amp_args(kwargs)
|
||||||
|
self._parallel_mode = _get_parallel_mode()
|
||||||
|
self._device_number = _get_device_num()
|
||||||
|
self._global_rank = _get_global_rank()
|
||||||
|
self._parameter_broadcast = _get_parameter_broadcast()
|
||||||
|
self._frequency = frequency
|
||||||
|
self._stop_epoch = stop_epoch
|
||||||
|
|
||||||
|
self._train_network = self._build_train_network()
|
||||||
|
self._build_eval_network(metrics, eval_network, eval_indexes)
|
||||||
|
self._build_predict_network()
|
||||||
|
|
||||||
|
def _process_amp_args(self, kwargs):
|
||||||
|
if self._amp_level == "O0":
|
||||||
|
self._keep_bn_fp32 = False
|
||||||
if 'keep_batchnorm_fp32' in kwargs:
|
if 'keep_batchnorm_fp32' in kwargs:
|
||||||
self._keep_bn_fp32 = kwargs['keep_batchnorm_fp32']
|
self._keep_bn_fp32 = kwargs['keep_batchnorm_fp32']
|
||||||
if 'loss_scale_manager' in kwargs:
|
if 'loss_scale_manager' in kwargs:
|
||||||
self._loss_scale_manager = kwargs['loss_scale_manager']
|
self._loss_scale_manager = kwargs['loss_scale_manager']
|
||||||
self._loss_scale_manager_set = True
|
self._loss_scale_manager_set = True
|
||||||
self._amp_level = amp_level
|
|
||||||
self._parallel_mode = _get_parallel_mode()
|
|
||||||
self._device_number = _get_device_num()
|
|
||||||
self._global_rank = _get_global_rank()
|
|
||||||
self._parameter_broadcast = _get_parameter_broadcast()
|
|
||||||
|
|
||||||
self._train_network = self._build_train_network()
|
|
||||||
self._build_eval_network(metrics, eval_network, eval_indexes)
|
|
||||||
self._build_predict_network()
|
|
||||||
|
|
||||||
def _check_kwargs(self, kwargs):
|
def _check_kwargs(self, kwargs):
|
||||||
for arg in kwargs:
|
for arg in kwargs:
|
||||||
|
@ -180,6 +190,9 @@ class Model:
|
||||||
elif self._loss_fn:
|
elif self._loss_fn:
|
||||||
network = nn.WithLossCell(network, self._loss_fn)
|
network = nn.WithLossCell(network, self._loss_fn)
|
||||||
# If need to check if loss_fn is not None, but optimizer is None
|
# If need to check if loss_fn is not None, but optimizer is None
|
||||||
|
|
||||||
|
if self._parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL):
|
||||||
|
network.set_auto_parallel()
|
||||||
return network
|
return network
|
||||||
|
|
||||||
def _build_eval_network(self, metrics, eval_network, eval_indexes):
|
def _build_eval_network(self, metrics, eval_network, eval_indexes):
|
||||||
|
@ -198,14 +211,18 @@ class Model:
|
||||||
else:
|
else:
|
||||||
if self._loss_fn is None:
|
if self._loss_fn is None:
|
||||||
raise ValueError("loss_fn can not be None.")
|
raise ValueError("loss_fn can not be None.")
|
||||||
self._eval_network = nn.WithEvalCell(self._network, self._loss_fn)
|
self._eval_network = nn.WithEvalCell(self._network, self._loss_fn, self._amp_level == "O2")
|
||||||
self._eval_indexes = [0, 1, 2]
|
self._eval_indexes = [0, 1, 2]
|
||||||
|
|
||||||
|
if self._parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL):
|
||||||
|
self._eval_network.set_auto_parallel()
|
||||||
|
|
||||||
def _build_predict_network(self):
|
def _build_predict_network(self):
|
||||||
"""Build the network for prediction."""
|
"""Build the network for prediction."""
|
||||||
self._predict_network = self._network
|
self._predict_network = self._network
|
||||||
if self._parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL):
|
if self._parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL):
|
||||||
self._predict_network = _VirtualDatasetCell(self._network)
|
self._predict_network = _VirtualDatasetCell(self._network)
|
||||||
|
self._predict_network.set_auto_parallel()
|
||||||
|
|
||||||
def _clear_metrics(self):
|
def _clear_metrics(self):
|
||||||
"""Clear metrics local values."""
|
"""Clear metrics local values."""
|
||||||
|
@ -246,6 +263,94 @@ class Model:
|
||||||
scaling_sens /= self._device_number
|
scaling_sens /= self._device_number
|
||||||
return scaling_sens
|
return scaling_sens
|
||||||
|
|
||||||
|
def _exec_preprocess(self, network, is_train, phase, dataset, dataset_sink_mode, iter_first_order):
|
||||||
|
"""Initializes dataset."""
|
||||||
|
need_wrap = False
|
||||||
|
if dataset_sink_mode:
|
||||||
|
# remove later to deal with loop sink
|
||||||
|
if not hasattr(dataset, '__ME_INITED__') and context.get_context("device_target") == "Ascend" \
|
||||||
|
and not context.get_context("enable_ge"):
|
||||||
|
need_wrap = True
|
||||||
|
|
||||||
|
if not is_train:
|
||||||
|
dataset.__loop_size__ = 1
|
||||||
|
|
||||||
|
dataset_helper = DatasetHelper(dataset, dataset_sink_mode, iter_first_order)
|
||||||
|
|
||||||
|
# remove later to deal with loop sink
|
||||||
|
if need_wrap:
|
||||||
|
network = nn.DataWrapper(network, *(dataset_helper.types_shapes()), dataset.__ME_INITED__)
|
||||||
|
network.set_train(is_train)
|
||||||
|
network.phase = phase
|
||||||
|
|
||||||
|
return dataset_helper, network
|
||||||
|
|
||||||
|
def init(self, train_dataset=None, valid_dataset=None):
|
||||||
|
"""
|
||||||
|
Initializes compute graphs and data graphs with sink mode.
|
||||||
|
|
||||||
|
Note:
|
||||||
|
Pre-init process only supports `GRAPH_MODE` and `Ascend` target currently.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
train_dataset (Dataset): A training dataset iterator. If define `train_dataset`, training graphs will be
|
||||||
|
initialized. Default: None.
|
||||||
|
valid_dataset (Dataset): A evaluating dataset iterator. If define `valid_dataset`, evaluation graphs will
|
||||||
|
be initialized, and `metrics` in `Model` can not be None. Default: None.
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
>>> train_dataset = get_train_dataset()
|
||||||
|
>>> valid_dataset = get_valid_dataset()
|
||||||
|
>>> net = Net()
|
||||||
|
>>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||||
|
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||||
|
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics={'acc'})
|
||||||
|
>>> model.init(train_dataset, valid_dataset)
|
||||||
|
>>> model.train(2, train_dataset)
|
||||||
|
>>> model.eval(valid_dataset)
|
||||||
|
"""
|
||||||
|
if context.get_context("mode") != context.GRAPH_MODE or context.get_context("device_target") != "Ascend":
|
||||||
|
raise RuntimeError('Pre-init process only supports GRAPH MODE and Ascend target currently.')
|
||||||
|
|
||||||
|
if not train_dataset and not valid_dataset:
|
||||||
|
raise ValueError('Both train_dataset and valid_dataset can not be None or empty.')
|
||||||
|
|
||||||
|
_device_number_check(self._parallel_mode, self._device_number)
|
||||||
|
|
||||||
|
if train_dataset:
|
||||||
|
_parameter_broadcast_check(self._parallel_mode, self._parameter_broadcast)
|
||||||
|
self._train_network.set_train()
|
||||||
|
self._train_network.phase = 'train'
|
||||||
|
|
||||||
|
if self._parameter_broadcast:
|
||||||
|
self._train_network.set_broadcast_flag()
|
||||||
|
|
||||||
|
train_dataset_helper, train_network = self._exec_preprocess(self._train_network,
|
||||||
|
is_train=True,
|
||||||
|
phase='train',
|
||||||
|
dataset=train_dataset,
|
||||||
|
dataset_sink_mode=True)
|
||||||
|
self._train_network = train_network
|
||||||
|
for inputs in train_dataset_helper:
|
||||||
|
self._train_network.compile(*inputs)
|
||||||
|
break
|
||||||
|
|
||||||
|
if valid_dataset:
|
||||||
|
if not self._metric_fns:
|
||||||
|
raise RuntimeError('If define `valid_dataset`, metric fn can not be None or empty.')
|
||||||
|
|
||||||
|
self._eval_network.set_train(False)
|
||||||
|
self._eval_network.phase = 'eval'
|
||||||
|
valid_dataset_helper, eval_network = self._exec_preprocess(self._eval_network,
|
||||||
|
is_train=False,
|
||||||
|
phase='eval',
|
||||||
|
dataset=valid_dataset,
|
||||||
|
dataset_sink_mode=True)
|
||||||
|
self._eval_network = eval_network
|
||||||
|
for inputs in valid_dataset_helper:
|
||||||
|
self._eval_network.compile(*inputs)
|
||||||
|
break
|
||||||
|
|
||||||
def _train(self, epoch, train_dataset, callbacks=None, dataset_sink_mode=True):
|
def _train(self, epoch, train_dataset, callbacks=None, dataset_sink_mode=True):
|
||||||
"""
|
"""
|
||||||
Training.
|
Training.
|
||||||
|
@ -306,32 +411,27 @@ class Model:
|
||||||
list_callback (_ListCallback): Executor of callback list. Default: None.
|
list_callback (_ListCallback): Executor of callback list. Default: None.
|
||||||
cb_params (_InternalCallbackParam): Callback parameters. Default: None.
|
cb_params (_InternalCallbackParam): Callback parameters. Default: None.
|
||||||
"""
|
"""
|
||||||
# remove later to deal with loop sink
|
iter_first_order = self._frequency - 1
|
||||||
iter_first_order = 277
|
|
||||||
iter_second_order = 1
|
iter_second_order = 1
|
||||||
train_dataset.__loop_size__ = iter_second_order
|
train_dataset.__loop_size__ = iter_second_order
|
||||||
need_wrap = False
|
dataset_helper, train_network = self._exec_preprocess(self._train_network,
|
||||||
if not hasattr(train_dataset, '__ME_INITED__') and context.get_context("enable_loop_sink") \
|
is_train=True,
|
||||||
and not context.get_context("enable_ge"):
|
phase='train',
|
||||||
need_wrap = True
|
dataset=train_dataset,
|
||||||
|
dataset_sink_mode=True,
|
||||||
dataset_helper = DatasetHelper(train_dataset, iter_first_order)
|
iter_first_order=iter_first_order)
|
||||||
# remove later to deal with loop sink
|
self._train_network = train_network
|
||||||
if need_wrap:
|
|
||||||
self._train_network = nn.DataWrapper(self._train_network, *(dataset_helper.types_shapes()),
|
|
||||||
train_dataset.__ME_INITED__)
|
|
||||||
cb_params.train_network = self._train_network
|
cb_params.train_network = self._train_network
|
||||||
self._train_network.set_train()
|
|
||||||
|
|
||||||
cb_params.cur_step_num = 0
|
cb_params.cur_step_num = 0
|
||||||
|
|
||||||
loop_size = dataset_helper.loop_size()
|
loop_size = dataset_helper.loop_size()
|
||||||
run_context = RunContext(cb_params)
|
run_context = RunContext(cb_params)
|
||||||
list_callback.begin(run_context)
|
list_callback.begin(run_context)
|
||||||
|
|
||||||
# used to stop training for early stop, such as stopAtTIme or stopATStep
|
# used to stop training for early stop, such as stopAtTIme or stopATStep
|
||||||
should_stop = False
|
should_stop = False
|
||||||
has_do_train1_dataset = False
|
has_do_dataset_init = False
|
||||||
checkpoint_branch_one = True
|
switch_branch_one = True
|
||||||
for i in range(epoch):
|
for i in range(epoch):
|
||||||
cb_params.cur_epoch_num = i + 1
|
cb_params.cur_epoch_num = i + 1
|
||||||
list_callback.epoch_begin(run_context)
|
list_callback.epoch_begin(run_context)
|
||||||
|
@ -339,18 +439,18 @@ class Model:
|
||||||
# for data sink dataset_helper only iter once, other wise iter epoch_size times.
|
# for data sink dataset_helper only iter once, other wise iter epoch_size times.
|
||||||
for inputs in dataset_helper:
|
for inputs in dataset_helper:
|
||||||
list_callback.step_begin(run_context)
|
list_callback.step_begin(run_context)
|
||||||
if checkpoint_branch_one:
|
if switch_branch_one:
|
||||||
cb_params.cur_step_num += loop_size
|
cb_params.cur_step_num += loop_size
|
||||||
self._train_network.set_second_order(True)
|
self._train_network.add_flags_recursive(thor=True)
|
||||||
self._train_network.phase = 'train0'
|
self._train_network.phase = 'train0'
|
||||||
else:
|
else:
|
||||||
cb_params.cur_step_num += iter_first_order
|
cb_params.cur_step_num += iter_first_order
|
||||||
self._train_network.set_second_order(False)
|
self._train_network.add_flags_recursive(thor=False)
|
||||||
self._train_network.phase = 'train1'
|
self._train_network.phase = 'train1'
|
||||||
if not has_do_train1_dataset:
|
if not has_do_dataset_init:
|
||||||
_exec_datagraph(train_dataset, iter_first_order, phase='train1_dataset')
|
_exec_datagraph(train_dataset, iter_first_order, phase='train1_dataset')
|
||||||
has_do_train1_dataset = True
|
has_do_dataset_init = True
|
||||||
checkpoint_branch_one = not checkpoint_branch_one
|
switch_branch_one = not switch_branch_one
|
||||||
outputs = self._train_network(*inputs)
|
outputs = self._train_network(*inputs)
|
||||||
cb_params.net_outputs = outputs
|
cb_params.net_outputs = outputs
|
||||||
list_callback.step_end(run_context)
|
list_callback.step_end(run_context)
|
||||||
|
@ -376,17 +476,21 @@ class Model:
|
||||||
list_callback (_ListCallback): Executor of callback list. Default: None.
|
list_callback (_ListCallback): Executor of callback list. Default: None.
|
||||||
cb_params (_InternalCallbackParam): Callback parameters. Default: None.
|
cb_params (_InternalCallbackParam): Callback parameters. Default: None.
|
||||||
"""
|
"""
|
||||||
dataset_helper = DatasetHelper(train_dataset, dataset_sink_mode=False)
|
dataset_helper, _ = self._exec_preprocess(self._train_network,
|
||||||
|
is_train=True,
|
||||||
|
phase='train',
|
||||||
|
dataset=train_dataset,
|
||||||
|
dataset_sink_mode=False)
|
||||||
cb_params.cur_step_num = 0
|
cb_params.cur_step_num = 0
|
||||||
run_context = RunContext(cb_params)
|
run_context = RunContext(cb_params)
|
||||||
_callback_wrapper(list_callback, run_context, "begin")
|
list_callback.begin(run_context)
|
||||||
# used to stop training for early stop, such as stopAtTIme or stopATStep
|
# used to stop training for early stop, such as stopAtTIme or stopATStep
|
||||||
should_stop = False
|
should_stop = False
|
||||||
|
|
||||||
for i in range(epoch):
|
for i in range(epoch):
|
||||||
cb_params.cur_epoch_num = i + 1
|
cb_params.cur_epoch_num = i + 1
|
||||||
|
|
||||||
_callback_wrapper(list_callback, run_context, "epoch_begin")
|
list_callback.epoch_begin(run_context)
|
||||||
|
|
||||||
for next_element in dataset_helper:
|
for next_element in dataset_helper:
|
||||||
len_element = len(next_element)
|
len_element = len(next_element)
|
||||||
|
@ -394,7 +498,7 @@ class Model:
|
||||||
raise ValueError("when loss_fn is not None, train_dataset should"
|
raise ValueError("when loss_fn is not None, train_dataset should"
|
||||||
"return two elements, but got {}".format(len_element))
|
"return two elements, but got {}".format(len_element))
|
||||||
cb_params.cur_step_num += 1
|
cb_params.cur_step_num += 1
|
||||||
_callback_wrapper(list_callback, run_context, "step_begin")
|
list_callback.step_begin(run_context)
|
||||||
|
|
||||||
overflow = False
|
overflow = False
|
||||||
if self._loss_scale_manager and self._loss_scale_manager.get_drop_overflow_update():
|
if self._loss_scale_manager and self._loss_scale_manager.get_drop_overflow_update():
|
||||||
|
@ -408,19 +512,19 @@ class Model:
|
||||||
overflow = np.all(overflow.asnumpy())
|
overflow = np.all(overflow.asnumpy())
|
||||||
self._loss_scale_manager.update_loss_scale(overflow)
|
self._loss_scale_manager.update_loss_scale(overflow)
|
||||||
|
|
||||||
_callback_wrapper(list_callback, run_context, "step_end")
|
list_callback.step_end(run_context)
|
||||||
should_stop = should_stop or run_context.get_stop_requested()
|
should_stop = should_stop or run_context.get_stop_requested()
|
||||||
if should_stop:
|
if should_stop:
|
||||||
break
|
break
|
||||||
|
|
||||||
train_dataset.reset()
|
train_dataset.reset()
|
||||||
|
|
||||||
_callback_wrapper(list_callback, run_context, "epoch_end")
|
list_callback.epoch_end(run_context)
|
||||||
should_stop = should_stop or run_context.get_stop_requested()
|
should_stop = should_stop or run_context.get_stop_requested()
|
||||||
if should_stop:
|
if should_stop:
|
||||||
break
|
break
|
||||||
|
|
||||||
_callback_wrapper(list_callback, run_context, "end")
|
list_callback.end(run_context)
|
||||||
|
|
||||||
def train(self, epoch, train_dataset, callbacks=None, dataset_sink_mode=True):
|
def train(self, epoch, train_dataset, callbacks=None, dataset_sink_mode=True):
|
||||||
"""
|
"""
|
||||||
|
@ -452,7 +556,7 @@ class Model:
|
||||||
Examples:
|
Examples:
|
||||||
>>> dataset = get_dataset()
|
>>> dataset = get_dataset()
|
||||||
>>> net = Net()
|
>>> net = Net()
|
||||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
|
>>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||||
>>> loss_scale_manager = FixedLossScaleManager()
|
>>> loss_scale_manager = FixedLossScaleManager()
|
||||||
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
|
||||||
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None, loss_scale_manager=loss_scale_manager)
|
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None, loss_scale_manager=loss_scale_manager)
|
||||||
|
@ -465,9 +569,6 @@ class Model:
|
||||||
_device_number_check(self._parallel_mode, self._device_number)
|
_device_number_check(self._parallel_mode, self._device_number)
|
||||||
_parameter_broadcast_check(self._parallel_mode, self._parameter_broadcast)
|
_parameter_broadcast_check(self._parallel_mode, self._parameter_broadcast)
|
||||||
|
|
||||||
if context.get_context("device_target") in ["CPU", "GPU"] and context.get_context("enable_loop_sink"):
|
|
||||||
raise ValueError("CPU and GPU can't support loop sink, please set enable_loop_sink=False.")
|
|
||||||
|
|
||||||
self._train(epoch,
|
self._train(epoch,
|
||||||
train_dataset,
|
train_dataset,
|
||||||
callbacks=callbacks,
|
callbacks=callbacks,
|
||||||
|
@ -485,25 +586,15 @@ class Model:
|
||||||
Returns:
|
Returns:
|
||||||
Dict, returns the loss value & metrics values for the model in test mode.
|
Dict, returns the loss value & metrics values for the model in test mode.
|
||||||
"""
|
"""
|
||||||
_device_number_check(self._parallel_mode, self._device_number)
|
|
||||||
|
|
||||||
run_context = RunContext(cb_params)
|
run_context = RunContext(cb_params)
|
||||||
|
|
||||||
# remove later to deal with loop sink
|
dataset_helper, eval_network = self._exec_preprocess(self._eval_network,
|
||||||
need_wrap = False
|
is_train=False,
|
||||||
if not hasattr(valid_dataset, '__ME_INITED__') and context.get_context("enable_loop_sink") \
|
phase='eval',
|
||||||
and not context.get_context("enable_ge"):
|
dataset=valid_dataset,
|
||||||
need_wrap = True
|
dataset_sink_mode=True)
|
||||||
|
self._eval_network = eval_network
|
||||||
valid_dataset.__loop_size__ = 1
|
cb_params.eval_network = self._eval_network
|
||||||
dataset_helper = DatasetHelper(valid_dataset)
|
|
||||||
|
|
||||||
# remove later to deal with loop sink
|
|
||||||
if need_wrap:
|
|
||||||
self._eval_network = nn.DataWrapper(self._eval_network, *(dataset_helper.types_shapes()),
|
|
||||||
valid_dataset.__ME_INITED__)
|
|
||||||
self._eval_network.set_train(mode=False)
|
|
||||||
self._eval_network.phase = 'eval'
|
|
||||||
list_callback.begin(run_context)
|
list_callback.begin(run_context)
|
||||||
|
|
||||||
for inputs in dataset_helper:
|
for inputs in dataset_helper:
|
||||||
|
@ -537,7 +628,11 @@ class Model:
|
||||||
run_context = RunContext(cb_params)
|
run_context = RunContext(cb_params)
|
||||||
list_callback.begin(run_context)
|
list_callback.begin(run_context)
|
||||||
|
|
||||||
dataset_helper = DatasetHelper(valid_dataset, dataset_sink_mode=False)
|
dataset_helper, _ = self._exec_preprocess(self._eval_network,
|
||||||
|
is_train=False,
|
||||||
|
phase='eval',
|
||||||
|
dataset=valid_dataset,
|
||||||
|
dataset_sink_mode=False)
|
||||||
for next_element in dataset_helper:
|
for next_element in dataset_helper:
|
||||||
cb_params.cur_step_num += 1
|
cb_params.cur_step_num += 1
|
||||||
list_callback.step_begin(run_context)
|
list_callback.step_begin(run_context)
|
||||||
|
@ -574,11 +669,12 @@ class Model:
|
||||||
Examples:
|
Examples:
|
||||||
>>> dataset = get_dataset()
|
>>> dataset = get_dataset()
|
||||||
>>> net = Net()
|
>>> net = Net()
|
||||||
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
|
>>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
|
||||||
>>> model = Model(net, loss_fn=loss, optimizer=None, metrics={'acc'})
|
>>> model = Model(net, loss_fn=loss, optimizer=None, metrics={'acc'})
|
||||||
>>> model.eval(dataset)
|
>>> model.eval(dataset)
|
||||||
"""
|
"""
|
||||||
check_bool(dataset_sink_mode)
|
check_bool(dataset_sink_mode)
|
||||||
|
_device_number_check(self._parallel_mode, self._device_number)
|
||||||
if not self._metric_fns:
|
if not self._metric_fns:
|
||||||
raise ValueError("metric fn can not be None or empty.")
|
raise ValueError("metric fn can not be None or empty.")
|
||||||
|
|
||||||
|
|
|
@ -14,22 +14,24 @@
|
||||||
# ============================================================================
|
# ============================================================================
|
||||||
"""ResNet."""
|
"""ResNet."""
|
||||||
import math
|
import math
|
||||||
|
|
||||||
import mindspore.nn as nn
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import mindspore.nn as nn
|
||||||
from mindspore.common.tensor import Tensor
|
from mindspore.common.tensor import Tensor
|
||||||
from mindspore.ops import operations as P
|
from mindspore.ops import operations as P
|
||||||
from second_order.thor_layer import Conv2d_Thor, Dense_Thor
|
|
||||||
|
from model.thor_layer import Conv2d_Thor, Dense_Thor
|
||||||
|
|
||||||
|
|
||||||
def calculate_gain(nonlinearity, param=None):
|
def calculate_gain(nonlinearity, param=None):
|
||||||
|
"""calculate_gain"""
|
||||||
linear_fns = ['linear', 'conv1d', 'conv2d', 'conv3d', 'conv_transpose1d', 'conv_transpose2d', 'conv_transpose3d']
|
linear_fns = ['linear', 'conv1d', 'conv2d', 'conv3d', 'conv_transpose1d', 'conv_transpose2d', 'conv_transpose3d']
|
||||||
|
res = 0
|
||||||
if nonlinearity in linear_fns or nonlinearity == 'sigmoid':
|
if nonlinearity in linear_fns or nonlinearity == 'sigmoid':
|
||||||
return 1
|
res = 1
|
||||||
elif nonlinearity == 'tanh':
|
elif nonlinearity == 'tanh':
|
||||||
return 5.0 / 3
|
res = 5.0 / 3
|
||||||
elif nonlinearity == 'relu':
|
elif nonlinearity == 'relu':
|
||||||
return math.sqrt(2.0)
|
res = math.sqrt(2.0)
|
||||||
elif nonlinearity == 'leaky_relu':
|
elif nonlinearity == 'leaky_relu':
|
||||||
if param is None:
|
if param is None:
|
||||||
negative_slope = 0.01
|
negative_slope = 0.01
|
||||||
|
@ -38,16 +40,17 @@ def calculate_gain(nonlinearity, param=None):
|
||||||
negative_slope = param
|
negative_slope = param
|
||||||
else:
|
else:
|
||||||
raise ValueError("negative_slope {} not a valid number".format(param))
|
raise ValueError("negative_slope {} not a valid number".format(param))
|
||||||
return math.sqrt(2.0 / (1 + negative_slope ** 2))
|
res = math.sqrt(2.0 / (1 + negative_slope ** 2))
|
||||||
else:
|
else:
|
||||||
raise ValueError("Unsupported nonlinearity {}".format(nonlinearity))
|
raise ValueError("Unsupported nonlinearity {}".format(nonlinearity))
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
def _calculate_fan_in_and_fan_out(tensor):
|
def _calculate_fan_in_and_fan_out(tensor):
|
||||||
|
"""_calculate_fan_in_and_fan_out"""
|
||||||
dimensions = len(tensor)
|
dimensions = len(tensor)
|
||||||
if dimensions < 2:
|
if dimensions < 2:
|
||||||
raise ValueError("Fan in and fan out can not be computed for tensor with fewer than 2 dimensions")
|
raise ValueError("Fan in and fan out can not be computed for tensor with fewer than 2 dimensions")
|
||||||
|
|
||||||
if dimensions == 2: # Linear
|
if dimensions == 2: # Linear
|
||||||
fan_in = tensor[1]
|
fan_in = tensor[1]
|
||||||
fan_out = tensor[0]
|
fan_out = tensor[0]
|
||||||
|
@ -67,7 +70,6 @@ def _calculate_correct_fan(tensor, mode):
|
||||||
valid_modes = ['fan_in', 'fan_out']
|
valid_modes = ['fan_in', 'fan_out']
|
||||||
if mode not in valid_modes:
|
if mode not in valid_modes:
|
||||||
raise ValueError("Mode {} not supported, please use one of {}".format(mode, valid_modes))
|
raise ValueError("Mode {} not supported, please use one of {}".format(mode, valid_modes))
|
||||||
|
|
||||||
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
|
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
|
||||||
return fan_in if mode == 'fan_in' else fan_out
|
return fan_in if mode == 'fan_in' else fan_out
|
||||||
|
|
||||||
|
@ -93,8 +95,6 @@ def _conv3x3(in_channel, out_channel, stride=1, damping=0.03, loss_scale=1, freq
|
||||||
return Conv2d_Thor(in_channel, out_channel,
|
return Conv2d_Thor(in_channel, out_channel,
|
||||||
kernel_size=3, stride=stride, padding=0, pad_mode='same', weight_init=weight,
|
kernel_size=3, stride=stride, padding=0, pad_mode='same', weight_init=weight,
|
||||||
damping=damping, loss_scale=loss_scale, frequency=frequency)
|
damping=damping, loss_scale=loss_scale, frequency=frequency)
|
||||||
# return nn.Conv2d(in_channel, out_channel,
|
|
||||||
# kernel_size=3, stride=stride, padding=0, pad_mode='same', weight_init=weight)
|
|
||||||
|
|
||||||
|
|
||||||
def _conv1x1(in_channel, out_channel, stride=1, damping=0.03, loss_scale=1, frequency=278):
|
def _conv1x1(in_channel, out_channel, stride=1, damping=0.03, loss_scale=1, frequency=278):
|
||||||
|
@ -125,7 +125,7 @@ def _bn_last(channel):
|
||||||
|
|
||||||
def _fc(in_channel, out_channel, damping, loss_scale, frequency):
|
def _fc(in_channel, out_channel, damping, loss_scale, frequency):
|
||||||
weight_shape = (out_channel, in_channel)
|
weight_shape = (out_channel, in_channel)
|
||||||
weight = Tensor(kaiming_uniform(weight_shape, a=math.sqrt(5))
|
weight = Tensor(kaiming_uniform(weight_shape, a=math.sqrt(5)))
|
||||||
return Dense_Thor(in_channel, out_channel, has_bias=False, weight_init=weight,
|
return Dense_Thor(in_channel, out_channel, has_bias=False, weight_init=weight,
|
||||||
bias_init=0, damping=damping, loss_scale=loss_scale, frequency=frequency)
|
bias_init=0, damping=damping, loss_scale=loss_scale, frequency=frequency)
|
||||||
|
|
||||||
|
@ -321,7 +321,7 @@ class ResNet(nn.Cell):
|
||||||
x = self.conv1(x)
|
x = self.conv1(x)
|
||||||
x = self.bn1(x)
|
x = self.bn1(x)
|
||||||
x = self.relu(x)
|
x = self.relu(x)
|
||||||
c1, argmax = self.maxpool(x)
|
c1, _ = self.maxpool(x)
|
||||||
|
|
||||||
c2 = self.layer1(c1)
|
c2 = self.layer1(c1)
|
||||||
c3 = self.layer2(c2)
|
c3 = self.layer2(c2)
|
||||||
|
|
|
@ -51,6 +51,6 @@ do
|
||||||
echo "start training for rank $RANK_ID, device $DEVICE_ID"
|
echo "start training for rank $RANK_ID, device $DEVICE_ID"
|
||||||
|
|
||||||
env > env.log
|
env > env.log
|
||||||
python train_0517_1.py --do_train=True --run_distribute=True --device_num=$DEVICE_NUM --dataset_path=$2 > log 2>&1 &
|
python train.py --do_train=True --run_distribute=True --device_num=$DEVICE_NUM --dataset_path=$2 > log 2>&1 &
|
||||||
cd ..
|
cd ..
|
||||||
done
|
done
|
|
@ -17,7 +17,6 @@ import argparse
|
||||||
import os
|
import os
|
||||||
import random
|
import random
|
||||||
|
|
||||||
import mindspore.dataset.engine as de
|
|
||||||
from mindspore import Tensor
|
from mindspore import Tensor
|
||||||
from mindspore import context
|
from mindspore import context
|
||||||
from mindspore.communication.management import init
|
from mindspore.communication.management import init
|
||||||
|
@ -25,19 +24,17 @@ from mindspore.parallel._auto_parallel_context import auto_parallel_context
|
||||||
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
|
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
|
||||||
from mindspore.train.loss_scale_manager import FixedLossScaleManager
|
from mindspore.train.loss_scale_manager import FixedLossScaleManager
|
||||||
from mindspore.train.model import ParallelMode
|
from mindspore.train.model import ParallelMode
|
||||||
from second_order.model_second_order import Model
|
from model.model_thor import Model
|
||||||
from second_order.resnet import resnet50
|
from model.resnet import resnet50
|
||||||
from second_order.thor import THOR
|
from model.thor import THOR
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from config_imagenet import config
|
from config import config
|
||||||
from crossentropy import CrossEntropy
|
from crossentropy import CrossEntropy
|
||||||
from dataset_imagenet import create_dataset
|
from dataset_imagenet import create_dataset
|
||||||
from lr_generator import warmup_cosine_annealing_lr
|
|
||||||
|
|
||||||
random.seed(1)
|
random.seed(1)
|
||||||
np.random.seed(1)
|
np.random.seed(1)
|
||||||
de.config.set_seed(1)
|
|
||||||
|
|
||||||
parser = argparse.ArgumentParser(description='Image classification')
|
parser = argparse.ArgumentParser(description='Image classification')
|
||||||
parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
|
parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
|
||||||
|
@ -50,29 +47,29 @@ args_opt = parser.parse_args()
|
||||||
device_id = int(os.getenv('DEVICE_ID'))
|
device_id = int(os.getenv('DEVICE_ID'))
|
||||||
|
|
||||||
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True, device_id=device_id)
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True, device_id=device_id)
|
||||||
context.set_context(enable_task_sink=True)
|
|
||||||
context.set_context(enable_loop_sink=True)
|
|
||||||
context.set_context(enable_mem_reuse=True)
|
|
||||||
|
|
||||||
|
|
||||||
def get_second_order_lr(global_step, lr_init, decay, total_epochs, steps_per_epoch):
|
def get_model_lr(global_step, lr_init, decay, total_epochs, steps_per_epoch):
|
||||||
"""get_second_order_lr"""
|
"""get_model_lr"""
|
||||||
lr_each_step = []
|
lr_each_step = []
|
||||||
total_steps = steps_per_epoch * total_epochs
|
total_steps = steps_per_epoch * total_epochs
|
||||||
for i in range(total_steps):
|
for i in range(total_steps):
|
||||||
epoch = (i + 1) / steps_per_epoch
|
epoch = (i + 1) / steps_per_epoch
|
||||||
base = (1.0 - float(epoch) / total_epochs) ** decay
|
base = (1.0 - float(epoch) / total_epochs) ** decay
|
||||||
lr_local = lr_init * base
|
lr_local = lr_init * base
|
||||||
|
if epoch >= 39:
|
||||||
|
lr_local = lr_local * 0.5
|
||||||
|
if epoch >= 40:
|
||||||
|
lr_local = lr_local * 0.5
|
||||||
lr_each_step.append(lr_local)
|
lr_each_step.append(lr_local)
|
||||||
current_step = global_step
|
current_step = global_step
|
||||||
lr_each_step = np.array(lr_each_step).astype(np.float32)
|
lr_each_step = np.array(lr_each_step).astype(np.float32)
|
||||||
print("learning_rate_is=====", lr_each_step)
|
|
||||||
learning_rate = lr_each_step[current_step:]
|
learning_rate = lr_each_step[current_step:]
|
||||||
return learning_rate
|
return learning_rate
|
||||||
|
|
||||||
|
|
||||||
def get_second_order_damping(global_step, damping_init, decay_rate, total_epochs, steps_per_epoch):
|
def get_model_damping(global_step, damping_init, decay_rate, total_epochs, steps_per_epoch):
|
||||||
"""get_second_order_damping"""
|
"""get_model_damping"""
|
||||||
damping_each_step = []
|
damping_each_step = []
|
||||||
total_steps = steps_per_epoch * total_epochs
|
total_steps = steps_per_epoch * total_epochs
|
||||||
for step in range(total_steps):
|
for step in range(total_steps):
|
||||||
|
@ -83,26 +80,23 @@ def get_second_order_damping(global_step, damping_init, decay_rate, total_epochs
|
||||||
current_step = global_step
|
current_step = global_step
|
||||||
damping_each_step = np.array(damping_each_step).astype(np.float32)
|
damping_each_step = np.array(damping_each_step).astype(np.float32)
|
||||||
damping_now = damping_each_step[current_step:]
|
damping_now = damping_each_step[current_step:]
|
||||||
print("damping_is=========", damping_now)
|
|
||||||
return damping_now
|
return damping_now
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
if args_opt.do_eval:
|
if not args_opt.do_eval and args_opt.run_distribute:
|
||||||
print("eval")
|
|
||||||
else:
|
|
||||||
if args_opt.run_distribute:
|
|
||||||
context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
|
context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
|
||||||
mirror_mean=True, parameter_broadcast=True)
|
mirror_mean=True, parameter_broadcast=True)
|
||||||
auto_parallel_context().set_all_reduce_fusion_split_indices([80], "hccl_world_groupsum1")
|
auto_parallel_context().set_all_reduce_fusion_split_indices([107], "hccl_world_groupsum1")
|
||||||
|
auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum2")
|
||||||
auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum3")
|
auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum3")
|
||||||
auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum4")
|
auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum4")
|
||||||
|
auto_parallel_context().set_all_reduce_fusion_split_indices([27], "hccl_world_groupsum5")
|
||||||
|
|
||||||
init()
|
init()
|
||||||
else:
|
|
||||||
print(" ")
|
|
||||||
|
|
||||||
epoch_size = config.epoch_size
|
epoch_size = config.epoch_size
|
||||||
damping = get_second_order_damping(0, 0.03, 0.87, 50, 5004)
|
damping = get_model_damping(0, 0.03, 0.87, 50, 5004)
|
||||||
net = resnet50(class_num=config.class_num, damping=damping, loss_scale=config.loss_scale,
|
net = resnet50(class_num=config.class_num, damping=damping, loss_scale=config.loss_scale,
|
||||||
frequency=config.frequency)
|
frequency=config.frequency)
|
||||||
|
|
||||||
|
@ -115,17 +109,12 @@ if __name__ == '__main__':
|
||||||
step_size = dataset.get_dataset_size()
|
step_size = dataset.get_dataset_size()
|
||||||
|
|
||||||
loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
|
loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
|
||||||
lr = Tensor(warmup_cosine_annealing_lr(0.035,
|
lr = Tensor(get_model_lr(0, 0.05, 6, 70, 5004))
|
||||||
step_size,
|
opt = THOR(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum,
|
||||||
config.warmup_epochs,
|
|
||||||
50,
|
|
||||||
config.T_max,
|
|
||||||
config.eta_min))
|
|
||||||
opt = THOR(filter(lambda x: x.requires_grad, net.get_parameters()), lr,
|
|
||||||
config.momentum, damping, config.frequency,
|
|
||||||
filter(lambda x: 'matrix_A' in x.name, net.get_parameters()),
|
filter(lambda x: 'matrix_A' in x.name, net.get_parameters()),
|
||||||
filter(lambda x: 'matrix_G' in x.name, net.get_parameters()),
|
filter(lambda x: 'matrix_G' in x.name, net.get_parameters()),
|
||||||
filter(lambda x: 'spatial_norm' in x.name, net.get_parameters()),
|
filter(lambda x: 'A_inv_max' in x.name, net.get_parameters()),
|
||||||
|
filter(lambda x: 'G_inv_max' in x.name, net.get_parameters()),
|
||||||
config.weight_decay, config.loss_scale)
|
config.weight_decay, config.loss_scale)
|
||||||
|
|
||||||
model = Model(net, loss_fn=loss, optimizer=opt, amp_level='O2', loss_scale_manager=loss_scale,
|
model = Model(net, loss_fn=loss, optimizer=opt, amp_level='O2', loss_scale_manager=loss_scale,
|
||||||
|
|
|
@ -0,0 +1,76 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""batch_matmul_impl"""
|
||||||
|
from mindspore.ops.op_info_register import op_info_register
|
||||||
|
|
||||||
|
|
||||||
|
@op_info_register("""{
|
||||||
|
"op_name": "CusBatchMatMul",
|
||||||
|
"imply_type": "TBE",
|
||||||
|
"fusion_type": "OPAQUE",
|
||||||
|
"async_flag": false,
|
||||||
|
"binfile_name": "batchmatmul.so",
|
||||||
|
"compute_cost": 10,
|
||||||
|
"kernel_name": "CusBatchMatMul",
|
||||||
|
"partial_flag": true,
|
||||||
|
"attr": [
|
||||||
|
],
|
||||||
|
"inputs": [
|
||||||
|
{
|
||||||
|
"index": 0,
|
||||||
|
"dtype": [
|
||||||
|
"float32"
|
||||||
|
],
|
||||||
|
"format": [
|
||||||
|
"DefaultFormat"
|
||||||
|
],
|
||||||
|
"name": "x1",
|
||||||
|
"need_compile": false,
|
||||||
|
"param_type": "required",
|
||||||
|
"shape": "all"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"index": 1,
|
||||||
|
"dtype": [
|
||||||
|
"float32"
|
||||||
|
],
|
||||||
|
"format": [
|
||||||
|
"DefaultFormat"
|
||||||
|
],
|
||||||
|
"name": "x2",
|
||||||
|
"need_compile": false,
|
||||||
|
"param_type": "required",
|
||||||
|
"shape": "all"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"index": 0,
|
||||||
|
"dtype": [
|
||||||
|
"float32"
|
||||||
|
],
|
||||||
|
"format": [
|
||||||
|
"DefaultFormat"
|
||||||
|
],
|
||||||
|
"name": "y",
|
||||||
|
"need_compile": false,
|
||||||
|
"param_type": "required",
|
||||||
|
"shape": "all"
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}""")
|
||||||
|
def CusBatchMatMul(input_x1, input_x2, output, transpose_a=False, transpose_b=True, kernel_name="batchmatmul"):
|
||||||
|
"""CusBatchMatMul"""
|
||||||
|
return
|
|
@ -0,0 +1,64 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""CusCholeskyTrsm"""
|
||||||
|
from mindspore.ops.op_info_register import op_info_register
|
||||||
|
|
||||||
|
|
||||||
|
@op_info_register("""{
|
||||||
|
"op_name": "CusCholeskyTrsm",
|
||||||
|
"imply_type": "TBE",
|
||||||
|
"fusion_type": "OPAQUE",
|
||||||
|
"async_flag": false,
|
||||||
|
"binfile_name": "choleskytrsm.so",
|
||||||
|
"compute_cost": 10,
|
||||||
|
"kernel_name": "CusCholeskyTrsm",
|
||||||
|
"partial_flag": true,
|
||||||
|
"attr": [
|
||||||
|
|
||||||
|
],
|
||||||
|
"inputs": [
|
||||||
|
{
|
||||||
|
"index": 0,
|
||||||
|
"dtype": [
|
||||||
|
"float32"
|
||||||
|
],
|
||||||
|
"format": [
|
||||||
|
"DefaultFormat"
|
||||||
|
],
|
||||||
|
"name": "x1",
|
||||||
|
"need_compile": false,
|
||||||
|
"param_type": "required",
|
||||||
|
"shape": "all"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"index": 0,
|
||||||
|
"dtype": [
|
||||||
|
"float32"
|
||||||
|
],
|
||||||
|
"format": [
|
||||||
|
"DefaultFormat"
|
||||||
|
],
|
||||||
|
"name": "y",
|
||||||
|
"need_compile": false,
|
||||||
|
"param_type": "required",
|
||||||
|
"shape": "all"
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}""")
|
||||||
|
def CusCholeskyTrsm(input_x, output, kernel_name):
|
||||||
|
"""CusCholeskyTrsm"""
|
||||||
|
return
|
|
@ -0,0 +1,69 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""CusFusedAbsMax1"""
|
||||||
|
from mindspore.ops.op_info_register import op_info_register
|
||||||
|
|
||||||
|
|
||||||
|
@op_info_register("""{
|
||||||
|
"op_name": "CusFusedAbsMax1",
|
||||||
|
"imply_type": "TBE",
|
||||||
|
"fusion_type": "OPAQUE",
|
||||||
|
"async_flag": false,
|
||||||
|
"binfile_name": "fusedabsmax1.so",
|
||||||
|
"compute_cost": 10,
|
||||||
|
"kernel_name": "CusFusedAbsMax1",
|
||||||
|
"partial_flag": true,
|
||||||
|
"attr": [
|
||||||
|
{
|
||||||
|
"name": "origin_shape",
|
||||||
|
"param_type": "required",
|
||||||
|
"type": "listInt",
|
||||||
|
"value": "all"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"inputs": [
|
||||||
|
{
|
||||||
|
"index": 0,
|
||||||
|
"dtype": [
|
||||||
|
"float32"
|
||||||
|
],
|
||||||
|
"format": [
|
||||||
|
"DefaultFormat"
|
||||||
|
],
|
||||||
|
"name": "x1",
|
||||||
|
"need_compile": false,
|
||||||
|
"param_type": "required",
|
||||||
|
"shape": "all"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"index": 0,
|
||||||
|
"dtype": [
|
||||||
|
"float32"
|
||||||
|
],
|
||||||
|
"format": [
|
||||||
|
"DefaultFormat"
|
||||||
|
],
|
||||||
|
"name": "y",
|
||||||
|
"need_compile": false,
|
||||||
|
"param_type": "required",
|
||||||
|
"shape": "all"
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}""")
|
||||||
|
def CusFusedAbsMax1(input_x, output, origin_shape=None, kernel_name="fused_abs_max1"):
|
||||||
|
"""CusFusedAbsMax1"""
|
||||||
|
return
|
|
@ -0,0 +1,87 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""CusImg2ColNC1HWC0"""
|
||||||
|
from mindspore.ops.op_info_register import op_info_register
|
||||||
|
|
||||||
|
|
||||||
|
@op_info_register("""{
|
||||||
|
"op_name": "CusImg2ColNC1HWC0",
|
||||||
|
"imply_type": "TBE",
|
||||||
|
"fusion_type": "OPAQUE",
|
||||||
|
"async_flag": false,
|
||||||
|
"binfile_name": "img2colnc1hwc0.so",
|
||||||
|
"compute_cost": 10,
|
||||||
|
"kernel_name": "CusImg2ColNC1HWC0",
|
||||||
|
"partial_flag": true,
|
||||||
|
"attr": [
|
||||||
|
{
|
||||||
|
"name": "ksizes",
|
||||||
|
"param_type": "required",
|
||||||
|
"type": "listInt",
|
||||||
|
"value": "all"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "strides",
|
||||||
|
"param_type": "required",
|
||||||
|
"type": "listInt",
|
||||||
|
"value": "all"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "dilates",
|
||||||
|
"param_type": "required",
|
||||||
|
"type": "listInt",
|
||||||
|
"value": "all"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "padding",
|
||||||
|
"param_type": "required",
|
||||||
|
"type": "str",
|
||||||
|
"value": "all"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"inputs": [
|
||||||
|
{
|
||||||
|
"index": 0,
|
||||||
|
"dtype": [
|
||||||
|
"float16"
|
||||||
|
],
|
||||||
|
"format": [
|
||||||
|
"NC1HWC0"
|
||||||
|
],
|
||||||
|
"name": "x1",
|
||||||
|
"need_compile": false,
|
||||||
|
"param_type": "required",
|
||||||
|
"shape": "all"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"index": 0,
|
||||||
|
"dtype": [
|
||||||
|
"float16"
|
||||||
|
],
|
||||||
|
"format": [
|
||||||
|
"FRACTAL_NZ"
|
||||||
|
],
|
||||||
|
"name": "y",
|
||||||
|
"need_compile": false,
|
||||||
|
"param_type": "required",
|
||||||
|
"shape": "all"
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}""")
|
||||||
|
def CusImg2ColNC1HWC0(input_x, output, ksizes, strides, dilates, padding, kernel_name="img2col"):
|
||||||
|
"""CusImg2ColNC1HWC0"""
|
||||||
|
return
|
|
@ -0,0 +1,101 @@
|
||||||
|
# -*- coding:utf-8 -*-
|
||||||
|
"""
|
||||||
|
copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License == distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
||||||
|
|
||||||
|
matmul
|
||||||
|
"""
|
||||||
|
from __future__ import absolute_import
|
||||||
|
|
||||||
|
from mindspore.ops.op_info_register import op_info_register
|
||||||
|
from topi.cce import util
|
||||||
|
|
||||||
|
# General limitation of the size for input shape: 2**31
|
||||||
|
SHAPE_SIZE_LIMIT = 2147483648
|
||||||
|
NoneType = type(None)
|
||||||
|
|
||||||
|
|
||||||
|
@op_info_register("""{
|
||||||
|
"op_name": "CusMatMulCubeDenseLeft",
|
||||||
|
"imply_type": "TBE",
|
||||||
|
"fusion_type": "OPAQUE",
|
||||||
|
"async_flag": false,
|
||||||
|
"binfile_name": "matmulcubedenseleft.so",
|
||||||
|
"compute_cost": 10,
|
||||||
|
"kernel_name": "CusMatMulCubeDenseLeft",
|
||||||
|
"partial_flag": true,
|
||||||
|
"attr": [
|
||||||
|
],
|
||||||
|
"inputs": [
|
||||||
|
{
|
||||||
|
"index": 0,
|
||||||
|
"dtype": [
|
||||||
|
"float16"
|
||||||
|
],
|
||||||
|
"format": [
|
||||||
|
"DefaultFormat"
|
||||||
|
],
|
||||||
|
"name": "x1",
|
||||||
|
"need_compile": false,
|
||||||
|
"param_type": "required",
|
||||||
|
"shape": "all"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"index": 1,
|
||||||
|
"dtype": [
|
||||||
|
"float16"
|
||||||
|
],
|
||||||
|
"format": [
|
||||||
|
"FRACTAL_NZ"
|
||||||
|
],
|
||||||
|
"name": "x2",
|
||||||
|
"need_compile": false,
|
||||||
|
"param_type": "required",
|
||||||
|
"shape": "all"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"index": 2,
|
||||||
|
"dtype": [
|
||||||
|
"float16"
|
||||||
|
],
|
||||||
|
"format": [
|
||||||
|
"DefaultFormat"
|
||||||
|
],
|
||||||
|
"name": "x3",
|
||||||
|
"need_compile": false,
|
||||||
|
"param_type": "optional",
|
||||||
|
"shape": "all"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"index": 0,
|
||||||
|
"dtype": [
|
||||||
|
"float16"
|
||||||
|
],
|
||||||
|
"format": [
|
||||||
|
"FRACTAL_NZ"
|
||||||
|
],
|
||||||
|
"name": "y",
|
||||||
|
"need_compile": false,
|
||||||
|
"param_type": "required",
|
||||||
|
"shape": "all"
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}""")
|
||||||
|
@util.check_input_type(dict, dict, (dict, NoneType), dict, bool, bool, str)
|
||||||
|
def CusMatMulCubeDenseLeft(input_x1, input_x2, bias=None, output_y={}, trans_a=False, trans_b=False,
|
||||||
|
kernel_name="matmulcube"):
|
||||||
|
"""CusMatMulCubeDenseLeft"""
|
||||||
|
return
|
|
@ -0,0 +1,102 @@
|
||||||
|
# -*- coding:utf-8 -*-
|
||||||
|
"""
|
||||||
|
copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License == distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
||||||
|
|
||||||
|
matmul
|
||||||
|
"""
|
||||||
|
from __future__ import absolute_import
|
||||||
|
|
||||||
|
from mindspore.ops.op_info_register import op_info_register
|
||||||
|
from topi.cce import util
|
||||||
|
|
||||||
|
# General limitation of the size for input shape: 2**31
|
||||||
|
SHAPE_SIZE_LIMIT = 2147483648
|
||||||
|
NoneType = type(None)
|
||||||
|
|
||||||
|
|
||||||
|
@op_info_register("""{
|
||||||
|
"op_name": "CusMatMulCubeFraczLeftCast",
|
||||||
|
"imply_type": "TBE",
|
||||||
|
"fusion_type": "OPAQUE",
|
||||||
|
"async_flag": false,
|
||||||
|
"binfile_name": "matmulcubefraczleftcast.so",
|
||||||
|
"compute_cost": 10,
|
||||||
|
"kernel_name": "CusMatMulCubeFraczLeftCast",
|
||||||
|
"partial_flag": true,
|
||||||
|
"attr": [
|
||||||
|
],
|
||||||
|
"inputs": [
|
||||||
|
{
|
||||||
|
"index": 0,
|
||||||
|
"dtype": [
|
||||||
|
"float16"
|
||||||
|
],
|
||||||
|
"format": [
|
||||||
|
"DefaultFormat"
|
||||||
|
],
|
||||||
|
"name": "x1",
|
||||||
|
"need_compile": false,
|
||||||
|
"param_type": "required",
|
||||||
|
"shape": "all"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"index": 1,
|
||||||
|
"dtype": [
|
||||||
|
"float32"
|
||||||
|
],
|
||||||
|
"format": [
|
||||||
|
"FracZ"
|
||||||
|
],
|
||||||
|
"name": "x2",
|
||||||
|
"need_compile": false,
|
||||||
|
"param_type": "required",
|
||||||
|
"shape": "all"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"index": 2,
|
||||||
|
"dtype": [
|
||||||
|
"float16"
|
||||||
|
],
|
||||||
|
"format": [
|
||||||
|
"DefaultFormat"
|
||||||
|
],
|
||||||
|
"name": "x3",
|
||||||
|
"need_compile": false,
|
||||||
|
"param_type": "optional",
|
||||||
|
"shape": "all"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"index": 0,
|
||||||
|
"dtype": [
|
||||||
|
"float16"
|
||||||
|
],
|
||||||
|
"format": [
|
||||||
|
"FracZ"
|
||||||
|
],
|
||||||
|
"name": "y",
|
||||||
|
"need_compile": false,
|
||||||
|
"param_type": "required",
|
||||||
|
"shape": "all"
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}""")
|
||||||
|
# pylint: disable=locally-disabled,too-many-arguments, too-many-locals, too-many-statements
|
||||||
|
@util.check_input_type(dict, dict, (dict, NoneType), dict, bool, bool, str)
|
||||||
|
def CusMatMulCubeFraczLeftCast(input_x1, input_x2, bias=None, output_y={}, trans_a=False, trans_b=False,
|
||||||
|
kernel_name="CusMatMulCubeFraczLeftCast"):
|
||||||
|
"""CusMatMulCubeFraczLeftCast"""
|
||||||
|
return
|
|
@ -0,0 +1,113 @@
|
||||||
|
#!/usr/bin/env python
|
||||||
|
# -*- coding:utf-8 -*-
|
||||||
|
"""
|
||||||
|
copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License == distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
||||||
|
|
||||||
|
matmul
|
||||||
|
"""
|
||||||
|
from __future__ import absolute_import
|
||||||
|
|
||||||
|
from mindspore.ops.op_info_register import op_info_register
|
||||||
|
|
||||||
|
# General limitation of the size for input shape: 2**31
|
||||||
|
SHAPE_SIZE_LIMIT = 2147483648
|
||||||
|
NoneType = type(None)
|
||||||
|
|
||||||
|
|
||||||
|
@op_info_register("""{
|
||||||
|
"op_name": "CusMatMulCubeFraczRightMul",
|
||||||
|
"imply_type": "TBE",
|
||||||
|
"fusion_type": "OPAQUE",
|
||||||
|
"async_flag": false,
|
||||||
|
"binfile_name": "matmulcubefraczrightmul.so",
|
||||||
|
"compute_cost": 10,
|
||||||
|
"kernel_name": "CusMatMulCubeFraczRightMul",
|
||||||
|
"partial_flag": true,
|
||||||
|
"attr": [
|
||||||
|
],
|
||||||
|
"inputs": [
|
||||||
|
{
|
||||||
|
"index": 0,
|
||||||
|
"dtype": [
|
||||||
|
"float16"
|
||||||
|
],
|
||||||
|
"format": [
|
||||||
|
"FracZ"
|
||||||
|
],
|
||||||
|
"name": "x1",
|
||||||
|
"need_compile": false,
|
||||||
|
"param_type": "required",
|
||||||
|
"shape": "all"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"index": 1,
|
||||||
|
"dtype": [
|
||||||
|
"float16"
|
||||||
|
],
|
||||||
|
"format": [
|
||||||
|
"DefaultFormat"
|
||||||
|
],
|
||||||
|
"name": "x2",
|
||||||
|
"need_compile": false,
|
||||||
|
"param_type": "required",
|
||||||
|
"shape": "all"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"index": 2,
|
||||||
|
"dtype": [
|
||||||
|
"float32"
|
||||||
|
],
|
||||||
|
"format": [
|
||||||
|
"DefaultFormat"
|
||||||
|
],
|
||||||
|
"name": "x3",
|
||||||
|
"need_compile": false,
|
||||||
|
"param_type": "required",
|
||||||
|
"shape": "all"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"index": 3,
|
||||||
|
"dtype": [
|
||||||
|
"float16"
|
||||||
|
],
|
||||||
|
"format": [
|
||||||
|
"DefaultFormat"
|
||||||
|
],
|
||||||
|
"name": "x4",
|
||||||
|
"need_compile": false,
|
||||||
|
"param_type": "optional",
|
||||||
|
"shape": "all"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"index": 0,
|
||||||
|
"dtype": [
|
||||||
|
"float32"
|
||||||
|
],
|
||||||
|
"format": [
|
||||||
|
"FracZ"
|
||||||
|
],
|
||||||
|
"name": "y",
|
||||||
|
"need_compile": false,
|
||||||
|
"param_type": "required",
|
||||||
|
"shape": "all"
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}""")
|
||||||
|
def CusMatMulCubeFraczRightMul(input_x1, input_x2, input_x3, bias=None, output_y={}, trans_a=False, trans_b=False,
|
||||||
|
kernel_name="matmulcube"):
|
||||||
|
"""CusMatMulCubeFraczRightMul"""
|
||||||
|
return
|
|
@ -0,0 +1,114 @@
|
||||||
|
#!/usr/bin/env python
|
||||||
|
# -*- coding:utf-8 -*-
|
||||||
|
"""
|
||||||
|
copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License == distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License.
|
||||||
|
|
||||||
|
matmul
|
||||||
|
"""
|
||||||
|
from __future__ import absolute_import
|
||||||
|
|
||||||
|
from mindspore.ops.op_info_register import op_info_register
|
||||||
|
from topi.cce import util
|
||||||
|
|
||||||
|
# General limitation of the size for input shape: 2**31
|
||||||
|
SHAPE_SIZE_LIMIT = 2147483648
|
||||||
|
NoneType = type(None)
|
||||||
|
|
||||||
|
|
||||||
|
@op_info_register("""{
|
||||||
|
"op_name": "CusMatMulCube",
|
||||||
|
"imply_type": "TBE",
|
||||||
|
"fusion_type": "OPAQUE",
|
||||||
|
"async_flag": false,
|
||||||
|
"binfile_name": "matmulcube.so",
|
||||||
|
"compute_cost": 10,
|
||||||
|
"kernel_name": "CusMatMulCube",
|
||||||
|
"partial_flag": true,
|
||||||
|
"attr": [
|
||||||
|
{
|
||||||
|
"name": "transpose_a",
|
||||||
|
"param_type": "required",
|
||||||
|
"type": "bool",
|
||||||
|
"value": "all"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "transpose_b",
|
||||||
|
"param_type": "required",
|
||||||
|
"type": "bool",
|
||||||
|
"value": "all"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"inputs": [
|
||||||
|
{
|
||||||
|
"index": 0,
|
||||||
|
"dtype": [
|
||||||
|
"float16"
|
||||||
|
],
|
||||||
|
"format": [
|
||||||
|
"FRACTAL_NZ"
|
||||||
|
],
|
||||||
|
"name": "x1",
|
||||||
|
"need_compile": false,
|
||||||
|
"param_type": "required",
|
||||||
|
"shape": "all"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"index": 1,
|
||||||
|
"dtype": [
|
||||||
|
"float16"
|
||||||
|
],
|
||||||
|
"format": [
|
||||||
|
"FRACTAL_NZ"
|
||||||
|
],
|
||||||
|
"name": "x2",
|
||||||
|
"need_compile": false,
|
||||||
|
"param_type": "required",
|
||||||
|
"shape": "all"
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"index": 2,
|
||||||
|
"dtype": [
|
||||||
|
"float16"
|
||||||
|
],
|
||||||
|
"format": [
|
||||||
|
"DefaultFormat"
|
||||||
|
],
|
||||||
|
"name": "x3",
|
||||||
|
"need_compile": false,
|
||||||
|
"param_type": "optional",
|
||||||
|
"shape": "all"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"index": 0,
|
||||||
|
"dtype": [
|
||||||
|
"float32"
|
||||||
|
],
|
||||||
|
"format": [
|
||||||
|
"FRACTAL_NZ"
|
||||||
|
],
|
||||||
|
"name": "y",
|
||||||
|
"need_compile": false,
|
||||||
|
"param_type": "required",
|
||||||
|
"shape": "all"
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}""")
|
||||||
|
# pylint: disable=locally-disabled,too-many-arguments, too-many-locals, too-many-statements
|
||||||
|
@util.check_input_type(dict, dict, (dict, NoneType), dict, bool, bool, str)
|
||||||
|
def CusMatMulCube(input_x1, input_x2, bias=None, output_y={}, trans_a=False, trans_b=False, kernel_name="matmulcube"):
|
||||||
|
"""CusMatMulCube"""
|
||||||
|
return
|
|
@ -0,0 +1,63 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""CusMatrixCombine"""
|
||||||
|
from mindspore.ops.op_info_register import op_info_register
|
||||||
|
|
||||||
|
|
||||||
|
@op_info_register("""{
|
||||||
|
"op_name": "CusMatrixCombine",
|
||||||
|
"imply_type": "TBE",
|
||||||
|
"fusion_type": "OPAQUE",
|
||||||
|
"async_flag": false,
|
||||||
|
"binfile_name": "matrixcombine.so",
|
||||||
|
"compute_cost": 10,
|
||||||
|
"kernel_name": "CusMatrixCombine",
|
||||||
|
"partial_flag": true,
|
||||||
|
"attr": [
|
||||||
|
],
|
||||||
|
"inputs": [
|
||||||
|
{
|
||||||
|
"index": 0,
|
||||||
|
"dtype": [
|
||||||
|
"float32"
|
||||||
|
],
|
||||||
|
"format": [
|
||||||
|
"DefaultFormat"
|
||||||
|
],
|
||||||
|
"name": "x1",
|
||||||
|
"need_compile": false,
|
||||||
|
"param_type": "required",
|
||||||
|
"shape": "all"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"index": 0,
|
||||||
|
"dtype": [
|
||||||
|
"float32"
|
||||||
|
],
|
||||||
|
"format": [
|
||||||
|
"DefaultFormat"
|
||||||
|
],
|
||||||
|
"name": "y",
|
||||||
|
"need_compile": false,
|
||||||
|
"param_type": "required",
|
||||||
|
"shape": "all"
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}""")
|
||||||
|
def CusMatrixCombine(input_x, output, kernel_name="matrix_combine"):
|
||||||
|
"""CusMatrixCombine"""
|
||||||
|
return
|
|
@ -0,0 +1,63 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""CusTranspose02314"""
|
||||||
|
from mindspore.ops.op_info_register import op_info_register
|
||||||
|
|
||||||
|
|
||||||
|
@op_info_register("""{
|
||||||
|
"op_name": "CusTranspose02314",
|
||||||
|
"imply_type": "TBE",
|
||||||
|
"fusion_type": "OPAQUE",
|
||||||
|
"async_flag": false,
|
||||||
|
"binfile_name": "transpose02314.so",
|
||||||
|
"compute_cost": 10,
|
||||||
|
"kernel_name": "CusTranspose02314",
|
||||||
|
"partial_flag": true,
|
||||||
|
"attr": [
|
||||||
|
],
|
||||||
|
"inputs": [
|
||||||
|
{
|
||||||
|
"index": 0,
|
||||||
|
"dtype": [
|
||||||
|
"float16"
|
||||||
|
],
|
||||||
|
"format": [
|
||||||
|
"NC1HWC0"
|
||||||
|
],
|
||||||
|
"name": "x1",
|
||||||
|
"need_compile": false,
|
||||||
|
"param_type": "required",
|
||||||
|
"shape": "all"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"index": 0,
|
||||||
|
"dtype": [
|
||||||
|
"float16"
|
||||||
|
],
|
||||||
|
"format": [
|
||||||
|
"DefaultFormat"
|
||||||
|
],
|
||||||
|
"name": "y",
|
||||||
|
"need_compile": false,
|
||||||
|
"param_type": "required",
|
||||||
|
"shape": "all"
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}""")
|
||||||
|
def CusTranspose02314(input_x, output, kernel_name="transpose021354"):
|
||||||
|
"""CusTranspose02314"""
|
||||||
|
return
|
|
@ -0,0 +1,248 @@
|
||||||
|
# Copyright 2020 Huawei Technologies Co., Ltd
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# ============================================================================
|
||||||
|
"""thor_ops"""
|
||||||
|
import mindspore as ms
|
||||||
|
from mindspore.ops import prim_attr_register, PrimitiveWithInfer
|
||||||
|
from mindspore.ops.composite import multitype_ops as C
|
||||||
|
|
||||||
|
|
||||||
|
class CusBatchMatMul(PrimitiveWithInfer):
|
||||||
|
"""CusMatMulCube definition"""
|
||||||
|
|
||||||
|
@prim_attr_register
|
||||||
|
def __init__(self):
|
||||||
|
"""init CusMatMulCube"""
|
||||||
|
self.init_prim_io_names(inputs=['x1', 'x2'], outputs=['y'])
|
||||||
|
|
||||||
|
def get_bprop(self):
|
||||||
|
def bprop(x1, x2, out, dout):
|
||||||
|
return (C.zeros_like(x1), C.zeros_like(x2))
|
||||||
|
|
||||||
|
return bprop
|
||||||
|
|
||||||
|
def infer_shape(self, data1_shape, data2_shape):
|
||||||
|
return data1_shape
|
||||||
|
|
||||||
|
def infer_dtype(self, data1_dtype, data2_dtype):
|
||||||
|
return data1_dtype
|
||||||
|
|
||||||
|
|
||||||
|
class CusCholeskyTrsm(PrimitiveWithInfer):
|
||||||
|
"""CusCholeskyTrsm definition"""
|
||||||
|
|
||||||
|
@prim_attr_register
|
||||||
|
def __init__(self):
|
||||||
|
"""init CusCholeskyTrsm"""
|
||||||
|
self.init_prim_io_names(inputs=['x1'], outputs=['y'])
|
||||||
|
|
||||||
|
def infer_shape(self, data1_shape):
|
||||||
|
ll = []
|
||||||
|
m, _ = data1_shape
|
||||||
|
if m >= 128:
|
||||||
|
ll = [m // 128, 128, 128]
|
||||||
|
else:
|
||||||
|
ll = [1, 64, 64]
|
||||||
|
return ll
|
||||||
|
|
||||||
|
def infer_dtype(self, data1_dtype):
|
||||||
|
return data1_dtype
|
||||||
|
|
||||||
|
|
||||||
|
class CusFusedAbsMax1(PrimitiveWithInfer):
|
||||||
|
"""CusCholeskyTrsm definition"""
|
||||||
|
|
||||||
|
@prim_attr_register
|
||||||
|
def __init__(self, origin_shape=[-1, -1]):
|
||||||
|
"""init CusCholeskyTrsm"""
|
||||||
|
self.init_prim_io_names(inputs=['x1'], outputs=['y'])
|
||||||
|
self.origin_shape = origin_shape
|
||||||
|
|
||||||
|
def get_bprop(self):
|
||||||
|
def bprop(x, out, dout):
|
||||||
|
return (C.zeros_like(x),)
|
||||||
|
|
||||||
|
return bprop
|
||||||
|
|
||||||
|
def infer_shape(self, data1_shape):
|
||||||
|
ll = []
|
||||||
|
if len(data1_shape) == 2:
|
||||||
|
ll = [1,]
|
||||||
|
else:
|
||||||
|
ll = [32, 64]
|
||||||
|
return ll
|
||||||
|
|
||||||
|
def infer_dtype(self, data1_dtype):
|
||||||
|
return data1_dtype
|
||||||
|
|
||||||
|
|
||||||
|
class CusImg2Col(PrimitiveWithInfer):
|
||||||
|
"""CusImg2Col definition"""
|
||||||
|
|
||||||
|
@prim_attr_register
|
||||||
|
def __init__(self, ksizes, strides, dilates=(1, 1, 1, 1), mode="NC1HWC0"):
|
||||||
|
"""init CusImg2Col"""
|
||||||
|
self.init_prim_io_names(inputs=['x1'], outputs=['y'])
|
||||||
|
self.ksizes = ksizes
|
||||||
|
self.strides = strides
|
||||||
|
self.dilates = dilates
|
||||||
|
self.mode = mode
|
||||||
|
|
||||||
|
def get_bprop(self):
|
||||||
|
def bprop(x, out, dout):
|
||||||
|
return (C.zeros_like(x),)
|
||||||
|
|
||||||
|
return bprop
|
||||||
|
|
||||||
|
def infer_shape(self, data1_shape):
|
||||||
|
bs, c, h, w = data1_shape
|
||||||
|
_, stride_h, stride_w, _ = self.strides
|
||||||
|
_, k_w, k_h, _ = self.ksizes
|
||||||
|
# assert m == n
|
||||||
|
c0 = 16
|
||||||
|
c1 = c // 16
|
||||||
|
if c1 == 0:
|
||||||
|
c1 = 1
|
||||||
|
shape = [bs * int(h // stride_h) * int(w // stride_w), k_w * k_h * c1 * c0]
|
||||||
|
return shape
|
||||||
|
|
||||||
|
def infer_dtype(self, data1_dtype):
|
||||||
|
return data1_dtype
|
||||||
|
|
||||||
|
|
||||||
|
class CusMatMulCubeDenseLeft(PrimitiveWithInfer):
|
||||||
|
"""CusMatMulCube definition"""
|
||||||
|
|
||||||
|
@prim_attr_register
|
||||||
|
def __init__(self):
|
||||||
|
"""init CusMatMulCube"""
|
||||||
|
self.init_prim_io_names(inputs=['x1', 'x2'], outputs=['y'])
|
||||||
|
|
||||||
|
def get_bprop(self):
|
||||||
|
def bprop(x1, x2, out, dout):
|
||||||
|
return (C.zeros_like(x1), C.zeros_like(x2))
|
||||||
|
|
||||||
|
return bprop
|
||||||
|
|
||||||
|
def infer_shape(self, data1_shape, data2_shape):
|
||||||
|
return data2_shape
|
||||||
|
|
||||||
|
def infer_dtype(self, data1_dtype, data2_dtype):
|
||||||
|
return ms.common.dtype.tensor_type(getattr(ms, "float16"))
|
||||||
|
|
||||||
|
|
||||||
|
class CusMatMulCubeFraczRightMul(PrimitiveWithInfer):
|
||||||
|
"""CusMatMulCubeFraczRightMul definition"""
|
||||||
|
|
||||||
|
@prim_attr_register
|
||||||
|
def __init__(self):
|
||||||
|
"""init CusMatMulCubeFraczRightMul"""
|
||||||
|
self.init_prim_io_names(inputs=['x1', 'x2', 'x3'], outputs=['y'])
|
||||||
|
|
||||||
|
def get_bprop(self):
|
||||||
|
def bprop(x1, x2, x3, out, dout):
|
||||||
|
return (C.zeros_like(x1), C.zeros_like(x2), C.zeros_like(x3))
|
||||||
|
|
||||||
|
return bprop
|
||||||
|
|
||||||
|
def infer_shape(self, data1_shape, data2_shape, data3_shape):
|
||||||
|
return data1_shape
|
||||||
|
|
||||||
|
def infer_dtype(self, data1_dtype, data2_dtype, data3_dtype):
|
||||||
|
return ms.common.dtype.tensor_type(getattr(ms, "float32"))
|
||||||
|
|
||||||
|
|
||||||
|
class CusMatMulCube(PrimitiveWithInfer):
|
||||||
|
"""CusMatMulCube definition"""
|
||||||
|
|
||||||
|
@prim_attr_register
|
||||||
|
def __init__(self, transpose_a=False, transpose_b=False):
|
||||||
|
"""init CusMatMulCube"""
|
||||||
|
self.init_prim_io_names(inputs=['x1', 'x2'], outputs=['y'])
|
||||||
|
self.transpose_a = transpose_a
|
||||||
|
self.transpose_b = transpose_b
|
||||||
|
|
||||||
|
def get_bprop(self):
|
||||||
|
def bprop(x1, x2, out, dout):
|
||||||
|
return (C.zeros_like(x1), C.zeros_like(x2))
|
||||||
|
|
||||||
|
return bprop
|
||||||
|
|
||||||
|
def infer_shape(self, data1_shape, data2_shape):
|
||||||
|
# shape = [1, data1_shape[1], data2_shape[2], 16, 16]
|
||||||
|
# return shape
|
||||||
|
if self.transpose_a:
|
||||||
|
k1, m = data1_shape
|
||||||
|
else:
|
||||||
|
m, k1 = data1_shape
|
||||||
|
if self.transpose_b:
|
||||||
|
n, k2 = data2_shape
|
||||||
|
else:
|
||||||
|
k2, n = data2_shape
|
||||||
|
assert k1 == k2
|
||||||
|
shape = [m, n]
|
||||||
|
return shape
|
||||||
|
|
||||||
|
def infer_dtype(self, data1_dtype, data2_dtype):
|
||||||
|
return ms.common.dtype.tensor_type(getattr(ms, "float32"))
|
||||||
|
|
||||||
|
|
||||||
|
class CusMatrixCombine(PrimitiveWithInfer):
|
||||||
|
"""CusMatMulCube definition"""
|
||||||
|
|
||||||
|
@prim_attr_register
|
||||||
|
def __init__(self):
|
||||||
|
"""init CusMatMulCube"""
|
||||||
|
self.init_prim_io_names(inputs=['x'], outputs=['y'])
|
||||||
|
|
||||||
|
def get_bprop(self):
|
||||||
|
def bprop(x, out, dout):
|
||||||
|
return (C.zeros_like(x),)
|
||||||
|
|
||||||
|
return bprop
|
||||||
|
|
||||||
|
def infer_shape(self, data_shape):
|
||||||
|
a, b, c = data_shape
|
||||||
|
shape = [a * b, a * c]
|
||||||
|
|
||||||
|
return shape
|
||||||
|
|
||||||
|
def infer_dtype(self, data_dtype):
|
||||||
|
return data_dtype
|
||||||
|
|
||||||
|
|
||||||
|
class CusTranspose02314(PrimitiveWithInfer):
|
||||||
|
"""CusTranspose02314 definition"""
|
||||||
|
|
||||||
|
@prim_attr_register
|
||||||
|
def __init__(self):
|
||||||
|
"""init CusTranspose02314"""
|
||||||
|
self.init_prim_io_names(inputs=['x1'], outputs=['y'])
|
||||||
|
|
||||||
|
def get_bprop(self):
|
||||||
|
def bprop(x, out, dout):
|
||||||
|
return (C.zeros_like(x),)
|
||||||
|
|
||||||
|
return bprop
|
||||||
|
|
||||||
|
def infer_shape(self, data1_shape):
|
||||||
|
assert len(data1_shape) == 4
|
||||||
|
n, c, h, w = data1_shape
|
||||||
|
c0 = 16
|
||||||
|
c1 = c // 16
|
||||||
|
shape = (n * h * w, c1 * c0)
|
||||||
|
return shape
|
||||||
|
|
||||||
|
def infer_dtype(self, data1_dtype):
|
||||||
|
return data1_dtype
|
Loading…
Reference in New Issue