Check whether the network args are tensors in the compile phase

This commit is contained in:
yujianfeng 2020-10-15 20:27:44 +08:00
parent fa37f8fde3
commit 18a76ff3c5
11 changed files with 110 additions and 86 deletions

View File

@ -88,6 +88,17 @@ std::string GetBaseNameForIR(int stage_idx, const std::string &action_name) {
oss << stage_idx << "_" << action_name;
return oss.str();
}
void CheckArgIsTensor(const ValuePtr &arg, std::size_t idx) {
MS_EXCEPTION_IF_NULL(arg);
auto tensor_arg = arg->cast<TensorPtr>();
if (tensor_arg == nullptr) {
MS_EXCEPTION(TypeError) << "For 'graph mode', the " << idx << "th arg: " << arg->ToString() << " is not a tensor.";
}
if (tensor_arg->is_parameter()) {
MS_EXCEPTION(TypeError) << "The inputs could not be Parameter.";
}
}
} // namespace
py::tuple GenerateKey(const std::string &name, const std::unordered_map<std::string, py::object> &defaults) {
@ -460,6 +471,9 @@ bool ExecutorPy::CompileInner(const py::object &obj, const py::tuple &args, cons
if (!succ) {
MS_LOG(EXCEPTION) << "Args convert error";
}
if (MsContext::GetInstance()->get_param<int>(MS_CTX_EXECUTION_MODE) == kGraphMode) {
CheckArgIsTensor(converted, i);
}
bool broaden = true;
args_spec.push_back(abstract::FromValue(converted, broaden));
}
@ -701,15 +715,6 @@ void ProcessVmArgInner(const py::tuple &args, const ResourcePtr &res, VectorRef
if (!succ) {
MS_LOG(EXCEPTION) << "The " << i << "th arg convert failed.";
}
if (MsContext::GetInstance()->get_param<int>(MS_CTX_EXECUTION_MODE) == 0) {
if (!converted->isa<tensor::Tensor>()) {
MS_EXCEPTION(TypeError) << "For 'graph mode', the " << i << "th arg: " << converted->ToString()
<< " is not tensor.";
}
if (converted->cast<TensorPtr>()->is_parameter()) {
MS_EXCEPTION(TypeError) << "The inputs could not be Parameter.";
}
}
arg_list->push_back(converted);
}

View File

@ -15,7 +15,7 @@
""" Test Dynamic Learning Rate """
import pytest
from mindspore import Tensor, Parameter
from mindspore import Tensor
from mindspore.nn import learning_rate_schedule as lr_schedules
from mindspore.common.api import _executor
import mindspore.common.dtype as mstype
@ -29,7 +29,7 @@ warmup_steps = 2
min_lr = 0.01
max_lr = 0.1
power = 0.5
global_step = Parameter(Tensor(2, mstype.int32), 'global_step')
global_step = Tensor(2, mstype.int32)
class TestInit:

View File

@ -104,7 +104,6 @@ def test_pow():
result = testpow(input_tensor, power)
assert np.all(result.asnumpy() == expect)
net = PowNet()
net(input_tensor, True)
net(input_tensor, power2)

View File

@ -85,6 +85,33 @@ class NetForConcat1(nn.Cell):
return self.concat((x1, x2))
class NetForConcat2(nn.Cell):
def __init__(self):
super(NetForConcat2, self).__init__()
self.concat = P.Concat(axis=2)
def construct(self, x1, x2):
return self.concat((x1, x2))
class NetForConcat3(nn.Cell):
def __init__(self):
super(NetForConcat3, self).__init__()
self.concat = P.Concat(axis=0)
def construct(self, x1, x2, x3):
return self.concat((x1, x2, x3))
class NetForConcat4(nn.Cell):
def __init__(self):
super(NetForConcat4, self).__init__()
self.concat = P.Concat(axis=-1)
def construct(self, x1, x2, x3):
return self.concat((x1, x2, x3))
class NetForPackInput(nn.Cell):
def __init__(self, op):
super(NetForPackInput, self).__init__()
@ -1080,7 +1107,7 @@ test_case_math_ops = [
'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
('NotEqual_0', {
'block': P.NotEqual(),
'desc_inputs': [1, [2, 3, 4, 5]],
'desc_inputs': [Tensor(np.array(1).astype(np.int32)), [2, 3, 4, 5]],
'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))],
'skip': ['backward']}),
('ApproximateEqual', {
@ -1893,15 +1920,15 @@ test_case_array_ops = [
'desc_inputs': [(Tensor(np.array([-1.6, -0.1, 1.5, 2.0]).astype(np.float32)))],
'skip': ['backward']}),
('ConcatV2_0', {
'block': P.Concat(),
'block': NetForConcat1(),
'desc_inputs': [
(Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)),
Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)))],
Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)),
Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))],
'desc_bprop': [([4, 2], {'dtype': np.int32})]}),
('ConcatV2_1', {
'block': P.Concat(axis=2),
'desc_inputs': [(Tensor(np.array([[[0, 1, 2]], [[2, 1, 2]]]).astype(np.int32)),
Tensor(np.array([[[0, 1]], [[2, 1]]]).astype(np.int32)))],
'block': NetForConcat2(),
'desc_inputs': [Tensor(np.array([[[0, 1, 2]], [[2, 1, 2]]]).astype(np.int32)),
Tensor(np.array([[[0, 1]], [[2, 1]]]).astype(np.int32))],
'desc_bprop': [([2, 1, 5], {'dtype': np.int32})]}),
('ConcatV2_2', {
'block': NetForConcat(),
@ -1912,17 +1939,17 @@ test_case_array_ops = [
'desc_inputs': [[2, 2], [2, 2]],
'desc_bprop': [[4, 2]]}),
('ConcatV2_4', {
'block': P.Concat(axis=0),
'block': NetForConcat3(),
'desc_inputs': [
(Tensor(np.ones((3, 2, 3), np.float32)),
Tensor(np.ones((5, 2, 3), np.float32)),
Tensor(np.ones((6, 2, 3), np.float32)))],
Tensor(np.ones((3, 2, 3), np.float32)),
Tensor(np.ones((5, 2, 3), np.float32)),
Tensor(np.ones((6, 2, 3), np.float32))],
'desc_bprop': [[14, 2, 3]]}),
('ConcatV2_5', {
'block': P.Concat(axis=-1),
'desc_inputs': [(Tensor(np.array([1], np.float32)),
Tensor(np.array([1], np.float32)),
Tensor(np.array([1], np.float32)))],
'block': NetForConcat4(),
'desc_inputs': [Tensor(np.array([1], np.float32)),
Tensor(np.array([1], np.float32)),
Tensor(np.array([1], np.float32))],
'desc_bprop': [[3, ]]}),
('Pack_0', {
'block': NetForPackInput(P.Pack()),

View File

@ -74,7 +74,7 @@ def test_remove_and_fv_2():
return ret
@ms_function
def out_loop(input1, input_data):
def out_loop(input1, input_data0, input_data1):
ret = ()
def fv_func1(y):
@ -82,14 +82,15 @@ def test_remove_and_fv_2():
def fv_func2(y):
return input1 - y
fv_func_list = [fv_func1, fv_func2]
ele0 = inner_loop(input1, input_data[0], fv_func_list)
ele1 = inner_loop(input1, input_data[1], fv_func_list)
ele0 = inner_loop(input1, input_data0, fv_func_list)
ele1 = inner_loop(input1, input_data1, fv_func_list)
ret = (ele0, ele1)
return ret
input_data = (Tensor(normal(0, 0.1, (3, 3))), Tensor(normal(0, 0.1, (3, 1))))
input_data0 = Tensor(normal(0, 0.1, (3, 3)))
input_data1 = Tensor(normal(0, 0.1, (3, 1)))
input1 = Tensor(normal(0, 0.1, (3, 3)))
out_loop(input1, input_data)
out_loop(input1, input_data0, input_data1)
# test cell as high order argument

View File

@ -466,7 +466,7 @@ def test_tensor_assign():
# Error for A[Slice] = Number
# 1. A[Slice] = Number, Slice error
with pytest.raises(IndexError):
net_e2(t, 2)
net_e2(t, Tensor(2, mstype.int32))
# Error for A[Slice] = U, U is a Tensor
# 1. A[Slice] = U, u.size is error
@ -493,7 +493,7 @@ def test_tensor_assign():
# Error for A[Tuple(Slice...)] = Number
# 1. A[Tuple(Slice...)] = Number, Slice error
with pytest.raises(IndexError):
net_e1(Ta, 2)
net_e1(Ta, Tensor(2, mstype.int32))
net = TensorAssignWithInteger()
# Error for A[Number] = scalar/Tensor
@ -675,12 +675,12 @@ def test_tensor_assign_bool_index():
with pytest.raises(AttributeError):
net3(Ta, Tb, Tc, u_tensor)
with pytest.raises(AttributeError):
net3(Ta, Tb, Tc, u_scalar)
net3(Ta, Tb, Tc, Tensor(u_scalar, mstype.int32))
net4 = TensorAssignWithBoolTensorIndex2Error()
with pytest.raises(AttributeError):
net4(Ta, u_tensor)
with pytest.raises(AttributeError):
net4(Ta, u_scalar)
net4(Ta, Tensor(u_scalar, mstype.int32))
test_cases = [

View File

@ -32,7 +32,8 @@ class NetWork_1(Cell):
super(NetWork_1, self).__init__()
self.addN = P.AddN()
def construct(self, tensor_tuple):
def construct(self, tensor1, tensor2, tensor3, tensor4, tensor5, tensor6):
tensor_tuple = (tensor1, tensor2, tensor3, tensor4, tensor5, tensor6)
tensor_tuple_slice0 = tensor_tuple[:]
tensor_tuple_slice1 = tensor_tuple[:3]
tensor_tuple_slice2 = tensor_tuple[1:]
@ -52,7 +53,8 @@ class NetWork_2(Cell):
super(NetWork_2, self).__init__()
self.addN = P.AddN()
def construct(self, tensor_tuple):
def construct(self, tensor1, tensor2, tensor3, tensor4, tensor5, tensor6):
tensor_tuple = (tensor1, tensor2, tensor3, tensor4, tensor5, tensor6)
tensor_tuple_slice0 = tensor_tuple[::-1]
tensor_tuple_slice1 = tensor_tuple[-1::-1]
tensor_tuple_slice2 = tensor_tuple[:-4:-1]
@ -94,21 +96,21 @@ class NetWorkOutOfBounds(Cell):
test_cases = [
('SlicePositive', {
'block': NetWork_1(),
'desc_inputs': [(Tensor(np.ones([2, 3, 4], np.int32)),
Tensor(np.zeros([2, 3, 4], np.int32)),
Tensor(np.ones([2, 3, 4], np.int32)),
Tensor(np.ones([2, 3, 4], np.int32)),
Tensor(np.zeros([2, 3, 4], np.int32)),
Tensor(np.ones([2, 3, 4], np.int32)))],
'desc_inputs': [Tensor(np.ones([2, 3, 4], np.int32)),
Tensor(np.zeros([2, 3, 4], np.int32)),
Tensor(np.ones([2, 3, 4], np.int32)),
Tensor(np.ones([2, 3, 4], np.int32)),
Tensor(np.zeros([2, 3, 4], np.int32)),
Tensor(np.ones([2, 3, 4], np.int32))],
}),
('SliceNegative', {
'block': NetWork_2(),
'desc_inputs': [(Tensor(np.ones([2, 3, 4], np.int32)),
Tensor(np.zeros([2, 3, 4], np.int32)),
Tensor(np.ones([2, 3, 4], np.int32)),
Tensor(np.ones([2, 3, 4], np.int32)),
Tensor(np.zeros([2, 3, 4], np.int32)),
Tensor(np.ones([2, 3, 4], np.int32)))],
'desc_inputs': [Tensor(np.ones([2, 3, 4], np.int32)),
Tensor(np.zeros([2, 3, 4], np.int32)),
Tensor(np.ones([2, 3, 4], np.int32)),
Tensor(np.ones([2, 3, 4], np.int32)),
Tensor(np.zeros([2, 3, 4], np.int32)),
Tensor(np.ones([2, 3, 4], np.int32))],
}),
]

View File

@ -98,7 +98,7 @@ def test_dup_context():
return net1() + net2()
Net()(5.0)
Net()(Tensor(np.array(5.0).astype(np.float32)))
def test_maybe_poly_func():
@ -125,4 +125,4 @@ def test_maybe_poly_func():
y_input = Tensor(np.array([1, 2]).astype(np.int32))
z_input = Tensor(np.array([[2, 2], [3, 3]]).astype(np.int32))
Net()(1, y_input, z_input)
Net()(Tensor(np.array(1).astype(np.int32)), y_input, z_input)

View File

@ -192,10 +192,10 @@ def test_enumerate_start_type_error():
super(Net, self).__init__()
def construct(self, x):
return enumerate(x, start=1.2)
return enumerate((x, x), start=1.2)
x = Tensor(np.arange(3 * 4 * 5).reshape((3, 4, 5)))
net = Net()
with pytest.raises(TypeError) as ex:
net((x, x))
net(x)
assert "For 'enumerate', the 'start'" in str(ex.value)

View File

@ -179,7 +179,8 @@ def test_bprop_with_wrong_output_num():
return BpropWithWrongOutputNum()(x, y)
with pytest.raises(ValueError):
grad_all(BpropWithWrongOutputNumCell())(1, 2)
grad_all(BpropWithWrongOutputNumCell())(Tensor(np.array(1).astype(np.int32)),
Tensor(np.array(2).astype(np.int32)))
def test_bprop_with_wrong_output_type():
context.set_context(check_bprop=True)

View File

@ -25,7 +25,21 @@ from mindspore.ops.functional import depend
context.set_context(mode=context.GRAPH_MODE)
def test_output_const_tuple():
def test_output_const_tuple_0():
class Net(Cell):
def __init__(self):
super(Net, self).__init__()
self.x = (1, 2, 3)
def construct(self):
return self.x
x = (1, 2, 3)
net = Net()
assert net() == x
def test_output_const_tuple_1():
class Net(Cell):
def __init__(self):
super(Net, self).__init__()
@ -83,32 +97,6 @@ def test_output_const_str():
assert net() == "hello world"
def test_output_parameter_tuple():
class Net(Cell):
def __init__(self):
super(Net, self).__init__()
def construct(self, x):
return x
x = (1, 2, 3)
net = Net()
assert net(x) == x
def test_output_parameter_list():
class Net(Cell):
def __init__(self):
super(Net, self).__init__()
def construct(self, x):
return x
x = [1, 2, 3]
net = Net()
assert net(x) == x
def test_output_parameter_int():
class Net(Cell):
def __init__(self):
@ -117,7 +105,7 @@ def test_output_parameter_int():
def construct(self, x):
return x
x = 88
x = Tensor(np.array(88).astype(np.int32))
net = Net()
assert net(x) == x
@ -126,13 +114,14 @@ def test_output_parameter_str():
class Net(Cell):
def __init__(self):
super(Net, self).__init__()
self.x = "hello world"
def construct(self, x):
return x
def construct(self):
return self.x
x = "hello world"
net = Net()
assert net(x) == x
assert net() == x
def test_tuple_tuple_0():