forked from mindspore-Ecosystem/mindspore
[test] Fix GRAPH_MODE not restored after PYNATIVE_MODE is set
This commit is contained in:
parent
fd2a9e700d
commit
171cd83188
|
@ -550,9 +550,12 @@ def test_side_effect_grad_two_addn_switch():
|
||||||
inputs = Tensor([9.0], ms.float32)
|
inputs = Tensor([9.0], ms.float32)
|
||||||
out1 = net.grad_mindspore_impl(inputs, grad_ys)
|
out1 = net.grad_mindspore_impl(inputs, grad_ys)
|
||||||
net = SideEffectTwoAddnSwitchNet()
|
net = SideEffectTwoAddnSwitchNet()
|
||||||
|
try:
|
||||||
context.set_context(mode=context.PYNATIVE_MODE)
|
context.set_context(mode=context.PYNATIVE_MODE)
|
||||||
out2 = net.grad_mindspore_impl(inputs, grad_ys)
|
out2 = net.grad_mindspore_impl(inputs, grad_ys)
|
||||||
allclose_nparray(out1[0][0].asnumpy(), out2[0][0].asnumpy(), 0.001, 0.001)
|
allclose_nparray(out1[0][0].asnumpy(), out2[0][0].asnumpy(), 0.001, 0.001)
|
||||||
|
finally:
|
||||||
|
context.set_context(mode=context.GRAPH_MODE)
|
||||||
|
|
||||||
|
|
||||||
class SideEffectGradIfNet(Cell):
|
class SideEffectGradIfNet(Cell):
|
||||||
|
@ -590,9 +593,12 @@ def test_side_effect_grad_if():
|
||||||
inputs = Tensor([9.0], ms.float32)
|
inputs = Tensor([9.0], ms.float32)
|
||||||
out1 = net.grad_mindspore_impl(inputs, grad_ys)
|
out1 = net.grad_mindspore_impl(inputs, grad_ys)
|
||||||
net = SideEffectGradIfNet()
|
net = SideEffectGradIfNet()
|
||||||
|
try:
|
||||||
context.set_context(mode=context.PYNATIVE_MODE)
|
context.set_context(mode=context.PYNATIVE_MODE)
|
||||||
out2 = net.grad_mindspore_impl(inputs, grad_ys)
|
out2 = net.grad_mindspore_impl(inputs, grad_ys)
|
||||||
allclose_nparray(out1.asnumpy(), out2.asnumpy(), 0.001, 0.001)
|
allclose_nparray(out1.asnumpy(), out2.asnumpy(), 0.001, 0.001)
|
||||||
|
finally:
|
||||||
|
context.set_context(mode=context.GRAPH_MODE)
|
||||||
|
|
||||||
|
|
||||||
class OneInputBprop(Cell):
|
class OneInputBprop(Cell):
|
||||||
|
@ -683,8 +689,11 @@ def test_side_effect_grad_control_flow_assign_depend_while_net():
|
||||||
inputs2 = Tensor([6.0], ms.float32)
|
inputs2 = Tensor([6.0], ms.float32)
|
||||||
inputs3 = Tensor([3.0], ms.float32)
|
inputs3 = Tensor([3.0], ms.float32)
|
||||||
out1 = net.grad_mindspore_impl(inputs1, inputs2, inputs3, grad_ys)
|
out1 = net.grad_mindspore_impl(inputs1, inputs2, inputs3, grad_ys)
|
||||||
|
try:
|
||||||
context.set_context(mode=context.PYNATIVE_MODE)
|
context.set_context(mode=context.PYNATIVE_MODE)
|
||||||
net = SideEffectControlFlowAssignDependWhileNet()
|
net = SideEffectControlFlowAssignDependWhileNet()
|
||||||
out2 = net.grad_mindspore_impl(inputs1, inputs2, inputs3, grad_ys)
|
out2 = net.grad_mindspore_impl(inputs1, inputs2, inputs3, grad_ys)
|
||||||
allclose_nparray(out1[0][0].asnumpy(), out2[0][0].asnumpy(), 0.001, 0.001)
|
allclose_nparray(out1[0][0].asnumpy(), out2[0][0].asnumpy(), 0.001, 0.001)
|
||||||
allclose_nparray(out1[1][0].asnumpy(), out2[1][0].asnumpy(), 0.001, 0.001)
|
allclose_nparray(out1[1][0].asnumpy(), out2[1][0].asnumpy(), 0.001, 0.001)
|
||||||
|
finally:
|
||||||
|
context.set_context(mode=context.GRAPH_MODE)
|
||||||
|
|
|
@ -29,6 +29,7 @@ class Sampling(nn.Cell):
|
||||||
"""
|
"""
|
||||||
Test class: sample of Normal distribution.
|
Test class: sample of Normal distribution.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, shape, seed=0):
|
def __init__(self, shape, seed=0):
|
||||||
super(Sampling, self).__init__()
|
super(Sampling, self).__init__()
|
||||||
self.n1 = msd.Normal(0, 1, seed=seed, dtype=dtype.float32)
|
self.n1 = msd.Normal(0, 1, seed=seed, dtype=dtype.float32)
|
||||||
|
@ -400,6 +401,8 @@ class RandomChoiceWithMaskNet(nn.Cell):
|
||||||
@pytest.mark.platform_x86_ascend_training
|
@pytest.mark.platform_x86_ascend_training
|
||||||
@pytest.mark.env_onecard
|
@pytest.mark.env_onecard
|
||||||
def test_random_choice_with_mask():
|
def test_random_choice_with_mask():
|
||||||
|
mode = context.get_context('mode')
|
||||||
|
assert (mode == context.GRAPH_MODE), 'GRAPH_MODE required but got ' + str(mode)
|
||||||
net = RandomChoiceWithMaskNet()
|
net = RandomChoiceWithMaskNet()
|
||||||
x = Tensor(np.array([[1, 0, 1, 0], [0, 0, 0, 1], [1, 1, 1, 1], [0, 0, 0, 1]]).astype(np.bool))
|
x = Tensor(np.array([[1, 0, 1, 0], [0, 0, 0, 1], [1, 1, 1, 1], [0, 0, 0, 1]]).astype(np.bool))
|
||||||
index1, index2, index3 = net(x)
|
index1, index2, index3 = net(x)
|
||||||
|
|
|
@ -312,6 +312,11 @@ def train_process_thor(q, device_id, epoch_size, device_num, enable_hccl):
|
||||||
@pytest.mark.platform_x86_ascend_training
|
@pytest.mark.platform_x86_ascend_training
|
||||||
@pytest.mark.env_single
|
@pytest.mark.env_single
|
||||||
def test_resnet_and_resnet_thor_imagenet_4p():
|
def test_resnet_and_resnet_thor_imagenet_4p():
|
||||||
|
# reset context
|
||||||
|
context.set_context(save_graphs=False, enable_graph_kernel=False, enable_sparse=False)
|
||||||
|
context.reset_auto_parallel_context()
|
||||||
|
context.reset_ps_context()
|
||||||
|
|
||||||
q = Queue()
|
q = Queue()
|
||||||
q2 = Queue()
|
q2 = Queue()
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue